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Analytical stability boundaries of an injected two-polarization semiconductor laser
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The classical problem of a semiconductor laser subject to polarized injection is revisited. From the laser
rate equations for the transverse electric (TE) and transverse magnetic (TM) modes, we first determine the
steady states. We then investigate their linear stability properties and derive analytical expressions for the steady,
saddle-node, and Hopf bifurcation points. We highlight conditions for bistability between pure- and mixed-mode
steady states for the laser subject to either TE or TM injection. To our knowledge, the first case has not been
documented yet. An important parameter is the ratio of the polarization gain coefficients and we explore its effect
on the stability and bifurcation diagrams.
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I. INTRODUCTION

In semiconductor lasers (SLs), there are two allowed
polarization modes constrained by the waveguide geometry of
the laser cavity. They are referred to as the transverse electric
(TE) mode, with the electric field parallel to the junction plane,
and the transverse magnetic (TM) mode, with the magnetic
field parallel to the junction plane. Under normal stress-free
conditions the laser output is TE polarized because the mode
has a larger mode-confinement factor in the waveguide and a
higher reflectivity at the facets. However, the TM mode can be
promoted to compete with the TE mode by introducing a small
amount of lattice deformation into the active layer that changes
the band structure and thereby enhances the optical gain of the
TM mode relative to that of the TE mode [1–3]. In the mid-
1980s [4,5], polarization bistability was successfully achieved
showing large hysteresis loops between the two orthogonal di-
rections as the pump current was varied. Within the hysteresis
loop, the polarization of the laser output could be switched by
current pulse injection. Soon, switching between TE and TM
polarization states in the output of a semiconductor laser was
experimentally obtained through injection locking from ex-
ternal TM-polarized radiation [6]. The polarization bistability
phenomenon was further studied by Mori et al. [7–9].

At the same time, injection locking induced by a TE external
signal appeared as an interesting method to reduce laser
linewidth [10], enhance the modulation bandwidth [11], syn-
chronize lasers for microwave generation [12,13], or measure
the linewidth enhancement factor [14,15]. The injection lock-
ing phenomenon in Fabry-Perot cavity SLs has been the topic
of a large number of papers [16]. Theoretical and experimental
studies have revealed several forms of pulsating intensity
oscillations [17]. A notable feature of the optically injected
laser is that its response can be described by three nonlinear or-
dinary differential equations. This then motivated quantitative
comparisons between experimental and numerical stability
diagrams [18,19] that led to the observation of new dynamical
regimes and the development of new engineering applications.

The relative simplicity of the laser rate equations compared
to other laser dynamical problems has encouraged analytical
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approaches. Their main advantages are the possibility to
clearly identify the effects of key parameters such as the
linewidth enhancement factor or the pump [19]. They also
provide insight on posing questions properly that numerical
computations could have missed. To date, an analytical study
of the injection laser problem with the two polarization modes
is lacking. Our objective is to investigate both the case of
the classical TE injection as well as the case of the TM
injection. We find that pure- and mixed-mode steady states
coexist in parameter space and exhibit both saddle-node and
Hopf bifurcation instabilities.

Our work has been prompted by a recent study of the bista-
bility properties of an optically injected two-mode laser (called
a two-color laser [20]). The objective of the authors was to
find out how such a laser can be used as an all-optical memory
element for which fast switching between states is possible.
They demonstrate experimentally that in the two-color laser
a bistability between the injection locked (single-mode) state
and a two-color equilibrium state (steady state) is possible.
Remarkably, the mathematical formulation of the injected
two-color laser is similar to the single longitudinal mode
laser problem with its two polarizations. We also noted that
two-mode models have successfully explained the switching
between single-mode states with different polarizations in
vertical-cavity surface-emitting lasers [21]. However, the
evolution equations are more complex to analyze compared
to the injected single-mode laser.

Furthermore, the injected semiconductor ring laser shows
a number of similarities with our two polarization injection
problem [22–24]. Indeed, the formulation of the problem is
identical to the problem we are considering if the coupling
of the clockwise and the counterclockwise modes due to
scattering is ignored.

Two important parameters measure the differences between
the total gains of the TE and TM modes. They are defined as

k ≡ G2

G1
� 1 and β ≡ 1

2

(
γ2G1

γ1G2
− 1

)
� 0, (1)

where k is the ratio of the gain coefficients of the TM (G2)
and TE (G1) modes. β measures the losses of the TM mode
compared to the TE mode. It depends on both the ratio of
the gains coefficients and the ratio of the cavity losses for
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the TM (γ2) and TE (γ1) modes. For both the TE and TM
injection problems, we plan to, first, investigate the ideal case
where k = 1 and β = 0 because it highlights some important
conditions. It is also the case considered in Ref. [20] for
the two-color laser. We then analyze the modification of the
stability diagrams when k < 1 and β > 0. For mathematical
simplicity, we assume γ1 = γ2 and concentrate on the effects of

k ≡ G2

G1
� 1 and β ≡ 1 − k

2k
� 0. (2)

The plan of the paper is as follows. Sections II and III
consider the cases of a single TE injection and a single
TM injection, respectively. We determine the steady states
and analyze their linear stability properties. Our results
are summarized through stability diagrams in terms of the
injection amplitude and the frequency detuning. Bifurcation
diagrams showing the steady-state intensity as a function of
the injection amplitude illustrate different forms of bistability.

II. TE INJECTION

The usual rate equations describing a semiconductor laser
subject to TE-polarized optical injection consist of two
equations, namely an equation for the complex TE electric
field coupled to an equation for the carrier density. Here we
take into account the two polarization modes of the laser and
include a third equation for the complex TM electric field.
This two-mode model has successfully been used in the case
of a delayed optical feedback [25–29] and we recently showed
that different models proposed in the literature reduce to the
same dimensionless equations [30]. In the case of TE optical
injection, the dimensionless rate equations are given by

dE1

dt
= (1 + iα)NE1 + γ exp(i�t), (3)

dE2

dt
= k(1 + iα)(N − β)E2, (4)

T
dN

dt
= P − N − (1 + 2N )(|E1|2 + |E2|2), (5)

where E1, E2, and N are the amplitude of the TE electric field,
the amplitude of the TM electric field, and carrier density,
respectively. α is the linewidth enhancement factor, T is the
ratio of carrier to cavity lifetimes, and P is the pump parameter
above threshold; k and β are defined in Eq. (2). In addition,
γ is the injection strength and � is the frequency detuning
between the injected signal and the solitary laser. Introducing
E1 = R1 exp(i�t + iφ1) and E2 = R2 exp(iφ2) into Eqs. (3)–
(5) leads to the following equations for R1, φ1, R2, and N :

dR1

dt
= NR1 + γ cos(φ1), (6)

dφ1

dt
= −� + αN − γR−1

1 sin(φ1), (7)

dR2

dt
= k(N − β)R2, (8)

T
dN

dt
= P − N − (1 + 2N )

(
R2

1 + R2
2

)
. (9)

The evolution of φ2 passively depends on N and its equation
is not shown.

We first compute the steady-state solutions of Eqs. (6)–(9).
The pure-mode solution satisfies the conditions

(1) : R2 = 0,

γ =
√

[N2 + (−� + αN )2]R1, (10)

R2
1 = P − N

1 + 2N
� 0.

In order to analyze R2
1 as a function of γ, we consider N as a

parameter (−1/2 < N � P ). Using (10), we first compute R2
1

and then γ.

There exists a mixed-mode solution if β < P . It satisfies
the conditions

(2) : N = β,

R2
2 = P − β

1 + 2β
− R2

1 � 0, (11)

γ =
√

[β2 + (−� + αβ)2]R1.

We compute the two intensities as functions of γ by using R1

as a parameter [0 � R1 �
√

(P − β)/(1 + 2β)]. From (11),
we first determine γ and then R2.

A. Stability

1. TE steady state

From Eqs. (6)–(9), we formulate the linearized problem
and determine the characteristic equation for the growth rate
λ. One eigenvalue is

λ1 = k(N − β) (12)

and the remaining eigenvalues satisfy

λ3 + a1λ
2 + a2λ + a3 = 0, (13)

where

a1 = −2N + ε
(
1 + 2R2

1

)
,

a2 = N2 + (� − Nα)2 − 2ε
(
1 + 2R2

1

)
N + 2R2

1ε(1 + 2N ),

a3 = ε
{(

1 + 2R2
1

)
(N2 + (� − Nα)2)

+ 2(1 + 2N )R2
1[(� − Nα)α − N ]

}
, (14)

and ε ≡ T −1. The Routh-Hurwitz conditions for the stability
of the steady state are [31]

a1 > 0, a3 > 0, a1a2 − a3 > 0. (15)

We next assume that there exists a steady state that satis-
fies (15). A first change of stability may occur if a3 = 0
[saddle-node (SN) bifurcation]. Equivalently,

1 + 2P

1 + 2N
X2 + 2(P − N )αX + 1 + 2P

1 + 2N
N2 − 2N (P − N )

= 0, (16)

where X ≡ � − Nα. Another change of stability is
possible if a1a2 − a3 = 0 [Hopf (H) bifurcation]. This
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condition is

0 = NX2 + εα(P − N )X

− ε

(
1 + 2P

1 + 2N

)
[2N2 + ε(P − N )] + N3

+ ε(P − N )N + ε2N

(
1 + 2P

1 + 2N

)2

. (17)

Equations (16) and (17) were derived in Ref. [32] and they are
independent of k and β. Condition (12) is new and requires
N < β for stability.

2. TE+TM steady state

From Eqs. (6)–(9), we formulate the linearized problem and
determine the following characteristic equation for the growth
rate λ:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (18)

where

a1 = −2β + ε
1 + 2P

1 + 2β
,

a2 =
[

2ε(1 + 2β)R2
1 + β2 + (� − αβ)2

− ε
1 + 2P

1 + 2β
2β + 2εkR2

2(1 + 2β)

]
,

a3 = ε

{
2(1 + 2β)R2

1[(� − αβ)α − β]

+1 + 2P

1 + 2β
[β2 + (� − αβ)2] − 4kR2

2(1 + 2β)β

}
,

a4 = 2εkR2
2(1 + 2β)[β2 + (� − αβ)2]. (19)

The Routh-Hurwitz conditions for the stability of the steady
state are [31]

a1 > 0, a3 > 0, a4 > 0, a1a2a3 − a2
3 − a2

1a4 > 0. (20)

B. Case β = 0

Of particular interest is the case of equal gains for the two
modes (k = 1 and β = 0) because it corresponds to the model
used for the two-color laser (without gain saturation) and it
simplifies the mixed-mode equations. The coefficients of the
characteristic equations (19) reduce to

a1 = ε(1 + 2P ),

a2 = 2εP + �2,
(21)

a3 = ε
[
2R2

1�α + (1 + 2P )�2
]
,

a4 = 2εR2
2�

2.

The stability conditions are

(1) : 2R2
1�α + (1 + 2P )�2 > 0 (22)

(2) :
{
(1 + 2P )(2εP + �2)

[
2R2

1�α + (1 + 2P )�2
]

−[
2R2

1�α + (1 + 2P )�2]2

−(1 + 2P )22εR2
2�

2
}

> 0. (23)

The first condition is satisfied if

� > 0 or

� < 0 and R2
1 < − (1 + 2P )�

2α
. (24)

The second condition requires

R2
1 <

(1 + 2P )

2�α2
[α2εP − α�2 + (1 + 2P )ε�] (25)

and

�[α2εP − α�2 + (1 + 2P )ε�] > 0. (26)

The two-mode solution bifurcates from the pure-mode solution
at

γ = |�|
√

P (27)

and are the lines SB2 in Fig. 1. A Hopf bifurcation from the
two-mode solution is possible if (24) and (26) are satisfied. It
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FIG. 1. (Color online) Stability diagram for β = 0. In (a), only
the TE mode is considered for the slave laser and, in (b), both the
TE and TM modes are considered for the slave laser. SN1 is the
saddle-node bifurcation point where the pure mode is locked. SB2

is the steady-state bifurcation point from the pure-mode solution to
the two-mode solution. H1 and H2 are Hopf bifurcations from the
pure-mode and two-mode steady state, respectively. Full and broken
lines mark bifurcation points from stable or unstable steady states.
The values of the fixed parameters are α = 3, ε = T −1 = 10−2, and
P = 1.
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appears at

γ =
√

(1 + 2P )

2α2
�[α2εP − α�2 + (1 + 2P )ε�]. (28)

The square root is well defined in the intervals � � �− and
0 � � � �+, where

�± ≡ (1 + 2P )ε ±
√

(1 + 2P )2ε2 + 8α2εP

2α
(29)

and the graph of γ = γ (�) leads to the left and right lines
denoted by H2 in Fig. 1. The left branch for � < 0 corresponds
to the line H−

2 in Fig. 5(b) of Ref. [20] for the case of equal gain
coefficients. The critical points (�,γ ) = (�±,0) and (�,γ ) =
(0,0) are singular points and their unfolding as β increases will
be commented in the discussion section. The frequency at the
Hopf bifurcation points is given by ω = √

a3/a1. Inserting the
expression of R2

1 at the Hopf bifurcation, we obtain

ω =
√

2εP + (1 + 2P )ε�/α, (30)

showing a combination of the relaxation oscillation frequency
of the laser and the detuning.

Figure 1 shows the stability domains for the steady states
in the injection-versus-detuning parameter space. Figure 1(a)
is the diagram when only the TE mode is considered for the
slave laser. Figure 1(b) shows the diagram when both the TE
and TM modes are considered for the slave laser. Notice that
there exists two distinct regions where the mixed-mode steady
state is stable (one in the positive and one in the negative
detuning range). For higher negative detunings, the lines H2

and SN1 intersect, allowing a region of bistability between the
TE + TM steady state and the TE steady state [not shown in
Fig. 1(b)]. The dot marks a degenerate Hopf bifurcation point
(one pair of imaginary eigenvalues and one zero eigenvalue)
located at [32]

� = ε(1 + 2P )(1 + α2)

α
. (31)

The square marks another degenerate Hopf point (one pair of
imaginary eigenvalues and one zero eigenvalue) located at

� = ε(1 + 2P )

α
. (32)

Two typical bifurcation diagrams for fixed detuning as a
function of injection strength are shown in Fig. 2. It shows the
upper and middle branches of the pure-mode R2

1 in the upper
region of the figure and R2

1 of the mixed-mode emerging from
γ = 0. If � is further decreased to large negative detunings, the
Hopf bifurcation point H2 moves to higher intensities allowing
the coexistence of stable TE + TM and TE steady states.

C. Case β > 0

It is interesting to note that the TE pure-mode solution and
its stability is independent from the gain ratio k. Although
the stability analysis of the TE + TM mixed mode is not as
simple as in the previous case, we can obtain the bifurcation
boundaries parametrically, see Fig. 3. The region of stability
of this mixed-mode solution shrinks when β increases from 0
and finally disappears. The Routh-Hurwitz stability conditions
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FIG. 2. (Color online) Bifurcation diagram of the steady states as
a function of the injection strength γ in the case β = 0. (a) � = 0.005,
the mixed mode (TE + TM) exchanges its stability with the pure mode
(TE) at SB2 as illustrated by the closeup. The pure-mode steady state
then destabilizes at the Hopf bifurcation point H1. (b) � = −0.15;
the mixed-mode destabilizes through a Hopf bifurcation (H2) while
the pure mode stabilizes at SN1. Other parameters are the same as in
Fig. 1.

give us an upper bound, βc, for the presence of a stable mixed-
mode solution,

βc = 1
4 [−1 +

√
1 + 4ε(1 + 2P )]. (33)

Note the apparition of a new degenerate Hopf bifurcation
point (one pair of imaginary eigenvalues and two zero
eigenvalues) denoted by a triangle in Fig. 3. Provided that
β < βc, one may activate the unsupported polarization mode
by injecting light into the natural supported mode. Figure 4(a)
shows a bifurcation diagram in function of the injection
strength at � = 0.035 where the two steady states exchange
their stability at SB2. Figure 4(b) is a typical bifurcation
diagram in the small region of bistability.

III. TM INJECTION

We now investigate the case of orthogonal injection, where
light is injected in the unsupported TM mode. In this case, the
dimensionless rate equations are given by

dE1

dt
= (1 + iα)NE1, (34)

dE2

dt
= k(1 + iα)(N − β)E2 + γ exp(i�t), (35)

T
dN

dt
= P − N − (2N + 1)(|E1|2 + |E2|2). (36)

The case k = 1 (β = 0) is the same as for the TE injection
problem, with the roles of TE and TM being interchanged (see
Sec. II B).
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FIG. 3. (Color online) (a) Stability diagram for β = 0.01 (the
values of the other parameters are the same as in Fig. 1). The
mixed-mode steady state is stable inside the regions bounded by
the Hopf bifurcation H2. Compared to Fig. 1 for the case β = 0,
the two branches H2 are now folded and are necking off the γ = 0
axis. (b) Blow up around the stable part of SB2. The square marks a
degenerate Hopf bifurcation point (one pair of imaginary eigenvalues
and one zero eigenvalue). The triangle marks another degenerate
Hopf bifurcation point (one pair of imaginary eigenvalues and two
zero eigenvalues).

In order to analyze the case β �= 0, we introduce E2 =
R2 exp(i�t + iφ2) and E1 = R1 exp(iφ1) into Eqs. (34)–(36)
and obtain

dR1

dt
= NR1, (37)

dR2

dt
= k(N − β)R2 + γ cos(φ2), (38)

dφ2

dt
= −� + kα(N − β) − γR−1

2 sin(φ2), (39)

T
dN

ds
= P − N − (2N + 1)

(
R2

1 + R2
2

)
, (40)

where we have omitted the equation for φ1.

We first compute the steady-state solutions of Eqs. (37)–
(40). The pure-mode solution is given by

(1) : R1 = 0,

γ 2 = {k2(N − β)2 + [−� + αk(N − β)]2}R2
2, (41)

R2
2 = P − N

1 + 2N
� 0.
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FIG. 4. (Color online) Bifurcation diagram of the steady states
as a function of the injection strength γ in the case β = 0.01.
(a) � = 0.035; the stability exhange occurs at SB2, which is very
close to SN1 as illustrated by the closeup. (b) � = −0.3; the system
exhibits a small region of bistability (delimited by the vertical
blue lines) between the pure- and mixed-mode steady states. Other
parameters are the same as in Fig. 3.

The mixed-mode solution is

(2) : N = 0,

R2
1 = P − R2

2 � 0, (42)

γ =
√

[k2β2 + (� + αkβ)2]R2.

Note that this mixed-mode SS exists only if R2
1 � 0, which

then requires the condition

γ �
√

P [k2β2 + (� + αkβ)2]. (43)

In the next section we analyze the stability of these steady
states.

A. Stability

1. TM steady state

From (37)–(40), we determine the Jacobian matrix and
compute the characteristic equation for the growth rate λ. One
eigenvalue is

λ1 = N. (44)

Stability requires N < 0. Inserting N = 0 into (41), we find a
first bifurcation of the pure-mode steady state located at

γ =
√

[k2β2 + (� + αkβ)2]P . (45)

The three remaining eigenvalues satisfy

λ3 + a1λ
2 + a2λ + a3 = 0, (46)
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where

a1 = −2k(N − β) + ε
1 + 2P

1 + 2N
,

a2 = {k2(N − β)2 + [� − k(N − β)α]2}
− 2εk

1 + 2P

1 + 2N
(N − β) + ε2k(P − N ),

a3 = ε
1 + 2P

1 + 2N
{k2(N − β)2 + [−� + k(N − β)α]2}

+ 2εk(P − N )[�α − k(N − β)(α2 + 1)]. (47)

Introducing

X = � − k(N − β)α, (48)

the saddle-node or limit point condition is a3 = 0 or, equiva-
lently,

0 = 1 + 2P

1 + 2N
[k2(N − β)2 + X2]

+ 2k(P − N )[αX − k(N − β)]. (49)

The Hopf bifurcation condition is a1a2 − a3 = 0 or, equiva-
lently,

0 = (N − β)X2 + ε(P − N )αX

+ k2(N − β)3 − ε
1 + 2P

1 + 2N
[2k(N − β)2 + ε(P − N )]

+ εk(P − N )(N − β) − ε2

(
1 + 2P

1 + 2N

)2

(N − β). (50)

These two conditions lead to the neutral lines SN1 and H1.

2. TE+TM steady state

The characteristic equation for the growth rate λ of the
mixed-mode solution is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (51)

where

a1 = 2kβ + ε(1 + 2P ),

a2 = [
k2β2 + (� + kαβ)2 + ε(1 + 2P )2kβ

+ 2εkR2
2 + 2εR2

1

]
,

a3 = ε
{
(1 + 2P )(k2β2 + (� + kαβ)2)

+ 2kR2
2[(� + kαβ)α + kβ]4R2

1kβ
}
,

a4 = 2εR2
1[k2β2 + (� + kαβ)2]. (52)

The Routh-Hurwitz conditions for the stability of the steady
state are given by (20). The Hopf condition a1a2a3 − a2

3 −
a2

1a4 = 0 is solved for R2
1. We then use (42) to determine the

Hopf bifurcation line H2 in the (�, γ ) parameters plane.
Figure 5 shows a stability diagram for injection in the

unsupported TM mode of the diode laser. The Hopf bifurcation
H1 of the pure-mode solution is everywhere unstable and
is not drawn for clarity. The triangle marks a degenerate
bifurcation point (one pair of imaginary eigenvalues and two
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FIG. 5. (Color online) Stability diagram of the orthogonal injec-
tion case for β = 0.125 (k = 0.8). The other parameters and the
notation for the bifurcations are the same as in Fig. 1.

zero eigenvalues) located at

�c = k
√

α2P 2 − β2(2P + 1)2 − 2βP (2P + 1) − αkP

2P + 1
−αβk. (53)

Note that there is only one H2 branch. The two branches
H2 in Fig. 1 for the case β = 0 disappear as soon as β

slightly increases leading place to the one shown in Fig. 5
for moderately small values of β. For � > �c both the mixed
mode and the pure mode are stable and are connected at the SB2

line. The saddle-node bifurcation line SN1 is unstable (dashed

TM

Δ=−0.5 (a)

H2 SN1

SB2

SN1

0.0 0.2 0.4 0.6 0.80.0

0.5

1.0

1.5

γ

R
22

TE+TM

Δ=−1.2 (b)

TM

H2

SN1

0.65 0.7 0.750

1

2

3

4

γ

R
22

FIG. 6. (Color online) Bifurcation diagram of the steady states
as a function of the injection strength γ . (a) � = −0.5, the mixed
mode destabilizes through a Hopf bifurcation while the pure mode
stabilizes through SN1. (b) � = −1.2, the system exhibits a small
region of bistability (delimited by the vertical blue lines) between the
pure- and mixed-mode steady states. Other parameters are the same
as in Fig. 5.
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line), and the pure mode remains unstable to the SB2 line.
For � < �c the mixed mode undergoes a Hopf bifurcation
before the stable pure mode emerges at the SN1 stable line.
The bifurcation diagram of Fig. 6(a) illustrates this case.
The dot in Fig. 5 marks another degenerate bifurcation point
(one pair of imaginary eigenvalues and one zero eigenvalue).
For larger negative detunings, a region of bistability between
mixed-mode and single-mode steady states is possible, as
shown in Fig. 6(b). It is this particular domain that was explored
in detail in Ref. [20].

IV. DISCUSSION

In this paper, we analyzed the steady states and their linear
stability properties for a two polarization mode laser subject to
either TE or TM injection. Representative bifurcation diagrams
highlight particular features of the stability diagrams. We did
not explore the onset of higher-order instabilities or four-wave
mixing regimes which appear outside the locking regions.

The problem with TE injection into the dominant TE mode
is well documented in the literature. But, to our knowledge,
the problem has never been explored analytically when both
TE and TM modes are taken into account for the slave
laser. We show that, provided the gain coefficients do not
differ too much, there is the possibility of finding stable
mixed-mode steady states. In terms of our parameter β which
is proportional to the small difference between the gain
coefficients, we provide an upper bound βc below which they
can appear. Using (33) and taking advantage of the fact that
ε = 10−2 << 1, βc admits the asymptotic approximation

βc = ε

2
(1 + 2P ), (54)

where we recognize the expression of the relaxation oscillation
damping rate of the solitary laser. If β > βc, we recover the
previously known stability diagram for the locking of a single
-mode steady state. If β < βc and the detuning is sufficiently
negative, the coexistence of stable mixed-mode and single-
mode steady states is possible. Taking a typical photon
lifetime of 9.0 × 10−11 s, a detuning of 1 GHz corresponds
to � = 0.09. The region of bistability appears at a detuning
of a few (∼−4) GHz, which is realizable experimentally [33].
This does not mean that the coexistence between two single-
mode steady states is excluded. Earlier studies of optical
bistability considered injected SLs operating close to the laser
threshold [34]. More recently, bistability between TE modes
was observed for an injected quantum-dot SL [35].

In the case of a two-mode laser subject to TM injection,
the stability diagrams have been explored in detail both
experimentally and numerically in Refs. [20,33]. The onset
of higher-order instabilities to tori and chaos has also been
examined in Ref. [33]. Here we show that a fully analytical
approach is possible if we ignore gain saturation but consider
different constant gains.

For both the classical TE injection or orthogonal TM
injection problems, we have stressed the importance of
considering the case of equal gain coefficients as the starting
point of all studies. This reduced problem is valid for both
cases and its stability diagram can be used to properly
formulate our questions. We discuss two issues related to the

(a)

α=2.2

α=3

0.00 0.01 0.02 0.03 0.04

−0.2

−0.4

−0.6

−0.8

ε

Δ c

(b)

2.0 2.5 3.0 3.5

−0.2

−0.4

−0.6

−0.8

ε

Δ c

FIG. 7. Critical detuning satisfying the condition γH2 = γSN1 .
P = 1. (a) �c = �c(ε) is represented for α = 2.2 and α = 3.
(b) �c = �c(0) is represented as a function of α. If α < αc � 2.1,
then there are no solutions.

bistability between pure and mixed-mode steady states. We
first determine the bistability conditions by finding when the
curve H2 intersects the line SN1 for � < 0 (Fig. 1). Assuming
� = O(ε1/2), we find from (28)

γH2 �
√

1 + 2P

2α2
�(2αεP − α�2), (55)

where � < −√
2εP . The line SN1 does not depend on ε.

Assuming that |�| and |N | = O(|�|) are small, we obtain
from (10) and (16)

γSN1 � �√
1 + α2

√
P (1 + α2) − α�

1 + α2 + 2α�
. (56)

The critical point � = �c(ε) < 0 for the intersection of
γH2 (�) and γSN1 (�) then leads to the implicit solution

ε = 1

2P

[
�2

c + 2α�c(P (1 + α2) − α�c)

(1 + 2P )(1 + α2)(1 + α2 + 2α�c)

]
. (57)

The solution is shown in Fig. 7(a) for two different values
of α. There is a critical value of α = αc � 2.1 below which
there are no intersections of γH2 (�) and γSN1 (�). Slightly
above αc, there are two intersections in the negative detuning
range, see Fig. 7(b). We also can deduce from (57) that |�c|
increases monotonically with P . Consequently, the bistability
phenomenon could be captured for lower values of the detun-
ing by decreasing P . For the values of the fixed parameters
used in this paper, we find the first intersection at �c = −0.33
which is a good approximation of the critical point. For higher
negative �c, the approximation (57) becomes progressively
less accurate. Second, we note that the coexistence between a
pulsating TE+TM time-periodic regime and a single TE steady
state is also possible [see Figs. 4(b) and 6(b)]. The frequency of
the oscillations is provided by (30), in the first approximation.
Its dominant contribution comes from the relaxation oscillation
frequency of the solitary laser if |�| = O(ε1/2).

Last, we discuss the case of the singular points (�±,0). The
H2 curve dramatically unfolds near these points if the gain
coefficients begin to differ. In the case of small gain saturation,
it was shown that H2 unfolds into two branches, H−

2 and H+
2

(Fig. 5 of Ref. [20]). If we introduce a small β, then we have
found a similar phenomenon in our case.
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