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Global change in action due to trapping: How to derive it whatever
the rate of variation of the dynamics
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In this paper, we investigate the motion of a set of charged particles acted upon by a growing electrostatic
wave in the limit when the initial wave amplitude is vanishingly small and when all the particles have the same
initial action, I0. We show, both theoretically and numerically, that when all the particles have been trapped in
the wave potential, the distribution in action exhibits a very sharp peak about the smallest action. Moreover, as
the wave keeps growing, the most probable action tends toward a constant, If , which we estimate theoretically.
In particular, we show that If may be calculated very accurately when the particles’ motion before trapping is
far from adiabatic by making use of a perturbation analysis in the wave amplitude. This fills a gap regarding
the computation of the action change, which, in the past, has only been addressed for slowly varying dynamics.
Moreover, when the variations of the dynamics are fast enough, we show that the Fourier components of the
particles’ distribution function can be calculated by connecting estimates from our perturbation analysis with
those obtained by assuming that all the particles have the same constant action, I = If . This result is used
to compute theoretically the imaginary part of the electron susceptibility of an electrostatic wave in a plasma.
Moreover, using our formula for the electron susceptibility, we can extend the range in εa (the parameter that
quantifies the slowness of the dynamics) for our perturbative estimate of If − I0. This range can actually be
pushed down to values of εa allowing the use of neoadiabatic techniques to compute the jump in action. Hence,
this paper shows that the action change due to trapping can be calculated theoretically, regardless of the rate of
variation of the dynamics, by connecting perturbative results with neoadiabatic ones.
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I. INTRODUCTION

As is well known [1], for the nearly periodic and slowly
varying dynamics of a Hamiltonian, H (x,v,εt), the action I

defined as the area enclosed by a frozen orbit [i.e., an orbit
of the Hamiltonian H (x,v,εt0), where t0 is a constant] is an
adiabatic invariant. Nevertheless, it is also well known [2,3]
that the crossing of a separatrix (i.e., a frozen orbit that contains
an unstable fixed point) breaks the adiabatic invariance, and the
change in action, which quantifies the accuracy of the adiabatic
approximation, has been studied extensively due to its rele-
vance to many fields of physics. To cite a few examples, action-
variation calculations, and the adiabatic approximation itself,
have been used in transport theory (see Refs. [4,5] and refer-
ences therein), celestial mechanics (see, for example, Ref. [6]),
accelerator physics [7], Bose-Einstein condensates (see
Ref. [8] and references therein), and the nonlinear propagation
of an electrostatic wave in a plasma (see, for example, Refs. [9–
15]) with an application to stimulated Raman scattering
[16,17]. With regard to the latter application, which motivated
the present work, separatrix crossing occurs due to the trapping
of electrons in the potential of an essentially growing electro-
static wave. This led us to focus, in this paper, on the motion of
particles in an exponentially increasing potential, and, for this
important physics situation, we completely revisit the change
in action, �I , due to trapping. Indeed, we believe that the anal-
ysis we are presenting here significantly differs from the previ-
ous numerous publications on the subject in several respects.

First, we provide a theoretical estimate of �I for a
non-slowly-varying dynamics, i.e., when the particles’ motion
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before trapping is far from adiabatic. This fills a gap regarding
the computation of the action change, which, as far as we
know, has always been performed within the framework
of the neoadiabatic theory [1–3], which is only useful for
slowly varying dynamics. Consequently, as shown in Fig. 6,
we are able to estimate �I when it is not small compared
to the initial action. At this point, one may wonder about
the relevance of the action, I , for a non-slowly-varying
Hamiltonian dynamics, when the very notion of adiabatic
invariance seems meaningless. Actually, for the adiabatic
approximation to be valid, the period of a frozen orbit must
be small compared to the typical time of variation of the
Hamiltonian. Now, the period of a trapped orbit typically
decreases as the square root of the potential amplitude so
that, if this amplitude keeps growing, eventually the variations
in the action will become very small. Moreover, as we will
show in this paper, and as illustrated in Fig. 2, if the growth
rate is large enough, then, by making use of a perturbation
analysis in the potential amplitude, we are able to solve the
equations of motion up to a time, t1, when the amplitude is large
enough for the action to remain nearly constant when t > t1.
Therefore, for large enough growth rates, perturbative results
may be connected with adiabatic ones to provide an accurate
solution of the equations of motion. In particular, as explained
in Ref. [18], this procedure yields the particles’ distribution
function at any time, for a nonintegrable dynamics when the
classical methods of the neoadiabatic theory do not apply. This
shows the importance of computing the jump in action, �I .

Second, we do not focus here on the microscopic descrip-
tion of the change in action for each particle; instead, we
want to show how �I may be used to compute macroscopic,
or averaged, quantities. To do so, we address the relevance
of defining, at any time, one single action, I ∗(I0), for a set
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of particles having all the same initial action, I0. Hence,
by “global change in action” we mean here the change in
I ∗(I0), provided that this quantity is meaningful. Clearly, the
concept of a “global action” for a set a particles, which we
want to introduce here, would be exact if the distribution in
action, f (I,t), remained a Dirac distribution at any time, i.e.,
f (I,t) = δ(I − I ∗). Therefore, we start by investigating if,
and when, f (I,t) has just one very sharp peak about a given
action, I ∗. Then, we study the convergence of I ∗ toward an
asymptotic value, If , as the wave amplitude keeps growing,
and we define the global change in action as �I ≡ If − I0.

Third, we test the usefulness of the concept of global action
to compute one particular macroscopic quantity, χi , which is
the imaginary part of what may be viewed as a generalized
electron susceptibility for a plasma wave. Our definition for
the generalized susceptibility, χ , is given by Eq. (11) of
Sec. III, showing that χ is proportional to the ratio between
the amplitude of the charge density and that of the wave. Then,
Gauss law just translates into 1 + χ = 0, so that, necessarily,
χi = 0. As discussed in several papers (e.g., Refs. [10–13,15–
17]), the latter equation may be used to derive such basic and
important quantities as the nonlinear Landau damping rate of a
plasma wave, and, more generally, to describe very accurately
the nonlinear propagation of such a wave. This is also true
when the wave is laser-driven, so that, once the nonlinear
variations of χi are known, one may address the nonlinear
stage of stimulated Raman scattering, which has proven to
be an issue for inertial confinement fusion [19]. We will not
discuss here any of these points, which are beyond the scope
of this paper, and which will be the subject of a forthcoming
article. Nevertheless, as an application of our results, we will
show how to compute χi for an exponentially growing wave.
This will actually let us estimate �I for a larger range in εa ,
the parameter that quantifies the slowness of the dynamics,
than by directly resorting to the distribution function, and,
actually, down to values of εa within the range of validity of the
neoadiabatic theory. Hence, one important result of this paper
is to show that the change in action due to trapping may be
accurately estimated, regardless of the rate of variation of the
dynamics, by connecting results from a perturbation analysis
in the wave amplitude with those from the neoadiabatic theory.

Note that, in this paper, we focus on the asymptotic variation
in action, �I ≡ If − I0, due to trapping so that, by “global
change in action” we also mean the “total action variation” due
to trapping. However, we also investigate the shift in action,
δIS , experienced by the particles once they have come close
to the frozen separatrix. In particular, we investigate how δIS

scales with εa , and we compare this scaling with that of �I .
The previous points, which are the main results of our

paper, are presented the following way. In Sec. II, we introduce
the Hamiltonian dynamics that will be studied throughout the
paper, and we define what we will consider as the parameter, εa ,
that quantifies the slowness of the dynamics, and that usually
is the small parameter of the neoadiabatic theory (but which
is not necessarily small here). When εa is larger than unity,
we show that a perturbation analysis in the wave amplitude
may accurately describe the orbits in phase space up to the
point when the amplitude is so large that the wave has trapped
almost all the particles in its potential. Using this result, we
can very easily predict the main features of the distribution in

action, f (I,t), when f (I,t = 0) = δ(I − I0). In particular, we
can discuss when, and why, f (I,t) should exhibit one single
peak, about a given value I ∗, which happens to be the smallest
action. Moreover, the main results obtained theoretically for
f (I,t) when εa � 1 are numerically shown to remain valid
when εa < 1, particularly with regard to the fact that f (I,t)
eventually exhibits one single peak about I ∗. The latter point
is actually expected since, as we will show in Sec. II, it agrees
with the predictions of the neoadiabatic theory. The values
of I ∗ derived by making use of a perturbation analysis are
compared to those calculated numerically, with an emphasis
on the ability to correctly estimate the asymptotic value, If ,
reached by I ∗ as the wave keeps growing. The comparison
between the numerical and theoretical values of If actually
sets the limit, in εa , for the direct use of a perturbation analysis.
The scaling of �I ≡ If − I0 with εa , in the limit εa → 0, is
also investigated numerically and compared to that obtained
by making use of the neoadiabatic theory. Numerically, we
also investigate the change in action, δIS ≡ I ∗ − I0, when the
particles are very close to the frozen separatrix, and the scaling
of δIS with εa is compared with that of �I . In Sec. III, we
show that when εa is large enough, the imaginary part, χi , of the
electron susceptibility of an electrostatic wave in a plasma may
be accurately estimated by connecting perturbative results with
those obtained by assuming that all the particles have the same
constant action, I = If . Comparisons between the numerical
and theoretical values of χi actually provide another diagnostic
with regard to the accuracy of our prediction for If . Moreover,
since χi is more easily and more accurately computed than the
distribution in action, it can be used to yield precise estimates
of If for a larger range in εa than in Sec. II. In particular, we
show that these perturbative estimates remain accurate down
to values of εa within the range of validity of the neoadiabatic
theory. Finally, Sec. IV summarizes and concludes this work.

II. THE GLOBAL CHANGE IN ACTION

A. The considered dynamics

In the remainder of this paper, we will study the motion of
particles in an exponentially growing sinusoidal potential, as
given by the Hamiltonian

H1 = p2

2
− A0e

ετ cos(x). (1)

This choice was mainly motivated by issues regarding nonlin-
ear wave-particle interactions in plasma physics [20], which
will be discussed briefly in Sec. III.

At first glance, it seems natural to use ε, the wave growth
rate, in order to quantify the slowness of the dynamics, and
to study how the change in action scales with ε, as done, for
example, in Ref. [3]. However, it is more accurate to use εa =
ε/p0, where p0 is the initial value of p, since this represents the
ratio between the period of a frozen orbit and the typical time of
variation of the dynamics. Indeed, the period of an untrapped
orbit, far from the separatrix, scales as 1/p0, while for a nearly
adiabatic motion, an orbit is trapped when

√
A � πp0/4 [10]

(where A ≡ A0e
ετ ), and the period of this orbit then scales as

1/
√

A. With this in mind, we now make the change of variables
t = ετ , v = p/ε, and, in these new variables, the dynamics of
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H1 is given by

H = v2

2
− 	0e

t cos(x), (2)

where 	0 = A0/ε
2 [21]. The slowness of the dynamics defined

by H is quantified by εa = 1/v0, where v0 is the initial value
of v. Moreover, in the limit when 	0 → 0, which we will
consider here, the initial action, I0, is just I0 = v0, since

I = 1

2π

∮
v dx, (3)

where the integral is over a frozen orbit, provided that this
orbit is untrapped [for a trapped orbit, I is defined as one-half
of the value given by Eq. (3) in order to avoid a jump in action
only due to geometrical effects]. We therefore conclude that
εa = 1/I0.

Note that if, for the dynamics of H1, the change in action
scales as ε, then the change in action for the dynamics defined
by H is just a constant, independent of εa . Moreover, a
change in action proportional to ε ln(ε) for the dynamics
of H1 would translate into an action change proportional to
ln(εa) = − ln(I0) for the dynamics of H .

In the remainder of this paper, we will focus on the
dynamics of H in the limit 	0 → 0, and we will simply study
the change in action as a function of I0.

B. The distribution in action

Let us now investigate the distribution in action, f (I ), for
a set of particles with the same initial action, I0 (i.e., the same
initial velocity), and whose positions are uniformly distributed
between 0 and 2π . Since we consider the limit 	0 → 0, it is
possible to describe the particles’ motion, up to a certain time,
by making use of a perturbation analysis in the amplitude of the
potential, 	 ≡ 	0e

t . This has actually been done in Ref. [10],
where it has been shown that εp = 	/(1 + I 2

0 ) may be chosen
as the small parameter of the perturbative expansion, which
should therefore provide accurate results when 	 � (1 + I 2

0 ).
Now, as regards the change in action, it mainly occurs when
the orbit is close to the frozen separatrix, i.e., when 	 ∼ I 2

0 ,
so that I should remain nearly constant once 	 � I 2

0 . Hence,
when I0 is sufficiently small compared to unity, is should be
possible to use a perturbation analysis to derive the distribution
in action up to the point when this distribution remains nearly
stationary. Therefore, as explained in Ref. [20], by connecting
perturbative results with adiabatic ones, it is possible to derive
the particles’ distribution function at any time. However,
in this paper, we shall pursue another goal, which is the
derivation of macroscopic quantities, such as moments or
Fourier components of the distribution function, that are
usually enough to address self-consistent physics problems,
such as the nonlinear propagation of waves in a plasma. Now,
it is not necessary to go through the precise microscopic
description of the distribution function to derive macroscopic
quantities, and this would actually be very ineffective. To make
this point more transparent, we start by investigating the main
properties of the action distribution function, f (I ).

When the amplitude, 	 ≡ 	0e
t , is so small that no particle

is trapped in the potential, i.e., when

m ≡ H + 	

2	
(4)

is larger than unity for all particles, f (I ) exhibits two
sharp peaks located at the minimum and maximum action.
This may be seen in Fig. 1(a) comparing the perturbative
results with those obtained numerically by directly solving
the equations of motion with a symplectic leapfrog integrator
[22]. Numerically, we choose 	0 = 10−8, we consider 1000
particles, and we initialize them with the hypothesis that,
when 	0 → 0, all the particles have the same velocity (or,
equivalently, the same action, I0) and that their positions, x0,
are uniformly distributed between 0 and 2π (see Ref. [10]
for details). As may be seen in Fig. 1, when no particle is
trapped, the perturbative analysis (led, here, up to order 12
[23]) is very accurate, and lets us understand very easily why
the distribution in action has two sharp peaks. Indeed, from
a perturbative expansion, and for each amplitude, 	, one can
express the action of any particle as a function of its initial
position, x0, and of its initial velocity. Since we consider
here the situation when all the particles have the same initial
velocity and when x0 is uniformly distributed between 0 and
2π , we conclude that the distribution function in action, f (I ),
should just be proportional to (∂I/∂x0)−1. Therefore, if the
function I (x0) has some extrema, f (I ) should be very peaked
about each of these extrema. Now, we find that the function
I (x0) calculated perturbatively has just one maximum and one
minimum, which explains why f (I ) has exactly two peaks
about the minimum and maximum action. These two peaks
have nearly the same amplitude, although the one located at the
maximum action is a bit higher, so that, for the corresponding
values of 	, the most probable action, I ∗, is the maximum one.

As the amplitude, 	, keeps on increasing, more and more
particles are trapped in the potential, i.e., they are such that m,
as defined by Eq. (4), is less that unity. Even in the situation
when a large fraction of particles are trapped, the perturbative
analysis describes very accurately the distribution in action, as
may be seen in Fig. 1(c), and it gives a very good approximation
of the orbit in phase space, as shown in Fig. 2. Hence, even
when a large amount of particles are trapped, by using the same
argument as before, we conclude that f (I ) should have two
sharp peaks about the minimum and maximum actions, which
is indeed the case as illustrated in Fig. 1(b). However, these two
peaks do not have the same height because, now, the minimum
action is for the trapped particles while the maximum action
is for the untrapped ones, so that the relative amplitude of the
two peaks is just proportional to the relative abundance of these
two distinct types of particles. Hence, perturbative results tell
us that, as 	 keeps on increasing and more and more particles
are getting trapped, the peak in f (I ) located at the minimum
action becomes more and more prominent while that located
at the maximum action tends to vanish. Now, when I0 � 1, the
perturbative analysis can be led up to the point when nearly all
the particles are trapped in the potential so that f (I ) exhibits
one single peak at the minimum action, Imin [see Fig. 1(c)].
At this point, the particles with I = Imin are deeply trapped,
i.e., they are far away from the frozen separatrix, so that, as 	

keeps on increasing, their action does not vary much, and f (I )
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FIG. 1. (Color online) Distribution in action, f (I ), when I0 = 1/
√

3 and for different values of 	. In panels (a), (b), and (c), the blue solid
line represents the distribution obtained numerically, and the green dashed line represents that calculated perturbatively. In panel (d), only the
numerical distribution function is plotted since a perturbation analysis is no longer valid for such a large amplitude. In each panel, the value of
the most probable action, I ∗, is indicated.

keeps one single peak at I = Imin, as shown in Fig. 1(d). Note
that, in Fig. 1(c) for 	 = 2.1, Imin ≈ 0.237, while in Fig. 1(d)
for 	 = 380, Imin ≈ 0.232. Therefore, when I0 � 1, we are
able to prove that, eventually, once all the particles have been
trapped in the potential, f (I ) has one single sharp peak at the
value, I = Imin, that remains nearly constant.
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FIG. 2. (Color online) Orbit in phase space calculated numeri-
cally (blue solid line) and perturbatively (green dashed line) when
I0 = 1/

√
3 and 	 = 2.1. For these parameters, more than 97% of the

particles are trapped in the potential, i.e., they are such that m < 1.

For larger values of I0, we resort to numerical simulations
in order to study the variations of f (I ), as 	 increases.
Figures 3(a)–3(c) show the evolution of f (I ) with 	 when
I0 = 10. When 	 is so small that most particles are untrapped
and perturbative results are accurate, then, for the same reason
as before, f (I ) has two sharp peaks about the minimum
and maximum actions. For intermediate values of 	, when
most particles are trapped and the perturbative expansion is
no longer valid, then, as may be seen in Fig. 3(b), a new
peak in f (I ) may appear for an action slightly larger than the
minimum one, a feature that is found numerically and that
cannot be explained with the theoretical arguments used when
I0 � 1. Nevertheless, as 	 keeps on increasing, and for all the
cases we investigated numerically, we found that, eventually,
f (I ) exhibited only one sharp peak and that the most probable
action, I ∗, was also the minimum one.

The latter result is actually expected for large values of I0

from the neoadiabatic theory. Indeed, from Eq. (83) of Ref. [3],
we conclude that, as 	 increases, the action of any particle
should converge to the value I∞ given by

I∞ = I0 − (2/π ) ln |2π sin (h0/I0)| , (5)

where h0 is the value of (H − 	) when the particle crosses the
line x = π (modulo 2π ) for the last time before being trapped
in the potential. The values of h0 may be found by using
Eqs. (2.12), (2.17), and (2.19) of Ref. [24]. These equations
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FIG. 3. Distribution in action, f (I ), found numerically when I0 = 10 and for various values of 	.

let us conclude that, for the case considered in this paper,
with positions uniformly distributed between 0 and 2π in the
limit 	 → 0, h0 = −πI0u, where u is uniformly distributed
between zero and unity. Plugging this expression for h0 into
Eq. (5), we find

I∞ = I0 − (2/π ) ln |2π sin (πu)| , (6)

which clearly shows that I∞ has only one extremum, which
actually is an absolute minimum. Since u is uniformly
distributed, we conclude that neoadiabatic theory does predict
that f (I ) should eventually exhibit only one peak at the
minimum action. Moreover, Eq. (6) provides an explicit simple
expression for the asymptotic value, If , of the most probable
action, If = I0 − (2/π ) ln(2). We therefore conclude that,
for large enough values of I0, the global change in action,
�I ≡ I0 − If , as predicted by the neoadiabatic theory, is

�I = −(2/π ) ln(2) ≈ −0.441, (7)

a result we shall now check numerically in Sec. II C. Note that
�I given by Eq. (7) is independent of I0, meaning that, if one
used Hamiltonian H1 given by Eq. (1), one would find that the
action change would scale as ε in the limit ε → 0.

C. Asymptotic value of the most probable action

The typical evolution of the most probable action, I ∗, as
a function of the wave amplitude, 	, is plotted in Fig. 4
when I0 = 1. For small values of 	, I ∗ > I0, and it slightly
increases with 	 because, for such small amplitudes, when
most particles are untrapped, then, as explained in Sec. II B,
I ∗ is the maximum action.

A sudden jump, δI , occurs in I ∗ when most particles are
trapped so that I ∗ no longer is the maximum action but the
minimum one. Therefore, δI is the difference between the
maximum and minimum action, hence the spread in action,
when the particles are close to the frozen separatrix. As shown
in Fig. 5, δI scales as ln(I0), when I0 � 10 [which means
that, for the Hamiltonian H1 given by Eq. (1), the spread in
action would scale as ε ln(ε)]. Figure 5 shows that the change
in action, δIS , for particles close to the separatrix, either
trapped or untrapped, also scales as ln(I0). Hence, although
studying δIS in detail is beyond the scope of this paper, it is
important to note that the total change in action, �I , is not

FIG. 4. Evolution of the most probable action, I ∗, with 	 when
I0 = 1.
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FIG. 5. (Color online) Jump, δI , in the most probable action
divided by ln(I0) when I0 = 10 (black solid line), I0 = 100 (red solid
line with pluses), I0 = 1000 (starred blue solid line), and I0 = 104

(green dashed line). The amplitude, 	, has been centered about the
value, 	j , where the jump occurs, and rescaled so that, for our
numerical data, we see a jump in I ∗ when the amplitude changes
by one unity.

the maximum action shift experienced by the particles as 	

increases. Actually, �I , as predicted by Eq. (7), does not even
scale with I0 as the maximum action shift.

After the jump, I ∗ exhibits some oscillations of smaller and
smaller amplitude and therefore seems to converge toward an
asymptotic value, If , as the amplitude of the potential keeps
on increasing. We now investigate how accurately If may
be estimated theoretically by making use of a perturbative
expansion. When doing so, we cannot take the limit 	 → ∞,
because the perturbative expansion is limited to a finite range
of amplitudes. Therefore, we identify If with the value of
the most probable action, I ∗, at a given amplitude, 	M , large
enough for I ∗(	) to remain nearly constant when 	 > 	M ,
and yet small enough to remain within the range on validity of
the perturbative analysis. Since we want to apply our results
on the action change to the computation of χi , the imaginary
part of the electron susceptibility defined by Eq. (11) of
Sec. III, we choose 	M as the amplitude when χi reaches
its first maximum. Indeed, as we shall show in Sec. III,
after reaching its first maximum, χi oscillates with 	 in
a very regular fashion, thus reflecting the nearly adiabatic
motion of the trapped particles, i.e., the near constancy of
their action. As may be seen in Fig. 6, when I0 � 1, the
perturbative value of I ∗ at the amplitude when χi reaches
its first maximum is in excellent agreement with the numerical
one, and it does indeed provide a very good estimate of
If , which is only underestimated by about 5%. Hence, as
is clearly shown in Fig. 6, we are indeed able to precisely
calculate the global change in action due to trapping, �I ≡
If − I0, even when this change is of the order of the initial
action.

As may be already guessed from Fig. 6(a), and is obvious in
Fig. 7, the global change in action, �I = If − I0, converges

0 0.5 1 1.5 2
0

0.2

0.4

0.6

I0

I 0
−

I
∗

(a)

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

I0

(I
0
−

I
∗ )

/
I 0

(b)

FIG. 6. (Color online) Panel (a), change in action, I0 − I ∗, as a
function of I0. The blue solid line plots this change when I ∗ is derived
from the perturbative distribution function calculated when χi reaches
its first maximum. The green stars also correspond to values of I ∗ at
the first maximum of χi , but they are deduced from the distribution
function calculated numerically. The black dashed line also refers
to I ∗ at the frst maximum of χi , and it is evaluated by making use
of Eq. (29) of Sec. III. The red pluses plot (I0 − If ) as estimated
numerically. In panel (b), the relative change in action, (I0 − I ∗)/I0,
is plotted with the same conventions as in panel (a).

toward a constant as I0 → ∞. Numerically, this constant is
found to be very close to −0.44 (see also Figs. 9 and 10),
which is in excellent agreement with the prediction of Eq. (7)
from neoadiabatic theory. Note also that the convergence of �I

toward a constant occurs quite rapidly since we numerically
estimate that, when I0 = 1, �I ≈ −0.414 [which departs by
less than 10% from the asymptotic value of Eq. (7)], while
when I0 = 1.6, �I ≈ −0.437 [which departs by less than 1%
from the asymptotic value of Eq. (7)].
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FIG. 7. Global change in action, �I = If − I0, as a function of I0.
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III. APPLICATION TO THE DERIVATION OF THE
IMAGINARY PART OF THE ELECTRON SUSCEPTIBILITY

FOR AN ELECTROSTATIC WAVE IN A PLASMA

In Sec. II, we showed that we could provide a theoretical
estimate for the global change in action, �I , when it was not
small compared to the initial action, i.e., when the classical
techniques of the neoadiabatic theory did not apply. However,
to do so, we had to use a perturbation analysis up to order
12, and the corresponding formulas are pages long so that,
although it is important to provide theoretical results, one
may wonder about the practical interest of such theoretical
developments. Moreover, one may also wonder about the
physics relevance of the most probable action, I ∗, we use
to define �I . We will now answer these questions by showing
that, indeed, I ∗ is useful to compute the imaginary part, χi ,
of the electron susceptibility for a plasma wave, and that χi

will actually provide a very fine diagnostic for our prediction
of �I . Moreover, we will show that, by using our perturbative
results for χi , which are actually published in Ref. [10] and are
much simpler than those giving the orbit in phase space, we
are able to calculate �I for a larger range in I0 than in Sec. II.

A. The electron susceptibility

The sinusoidal potential used in Hamiltonian H , Eq. (2),
may be viewed as the potential of a sinusoidal electric field,

E = −i
	

2
eix + c.c. (8)

≡ E0e
ix + c.c., (9)

where c.c. stands for the complex conjugate. This field induces,
for example in a plasma, the charge density,

ρ = ρ0e
ix + c.c., (10)

and we introduce

χ ≡ iρ0

ε0E0
, (11)

so that, since E0 only depends on time, Gauss law just reads

1 + χ = 0. (12)

Note that the electron susceptibility is usually defined in
Fourier space, while we define here χ in the direct space,
because the use of the Fourier representation is of little help to
address the nonlinear regime of wave-particle interaction we
focus on in this paper. The imaginary part of Eq. (12) simply
yields χi = 0, and, as shown in previous papers (see Ref. [15]
and references therein), the resolution of this equation, with
χi derived for an exponentially growing wave, could provide
values of such quantities as Raman reflectivity in a plasma, or
yield a very accurate description of the nonlinear propagation
of an electrostatic wave. However, previous results for χi

were only obtained in a nearly adiabatic situation, with a
smooth distribution in the initial particles’ velocity, so that
phase mixing was effective enough to render negligible the
contribution to χi from trapped particles (see Refs. [10,25]).
We now want to calculate this contribution very precisely,
which lets us choose an initial condition with the same initial
velocity for all particles, so that phase mixing cannot occur.

Now, from Eq. (10), since ρ0 only depends on time,

ρ0 = 1

2π

∫ π

−π

ρe−ixdx (13)

= 1

2π

∫ π

−π

∫ +∞

−∞
F (x,v,t)e−ixdx dv (14)

≡ 〈e−ix〉, (15)

where F (x,v,t) is the particles’ distribution function, and
where 〈·〉 stands for the statistical averaging over all the parti-
cles. Since, from Eq. (8), E0 is purely imaginary, we conclude
that χi is proportional to 〈sin(x)〉, the quantity we focus on
in the remainder of this paper. Note that, for a discrete set of
particles, as considered in numerical simulations,

〈sin(x)〉 = 1

N

N∑
i=1

sin(xi), (16)

where N is the total number of particles and xi is the position
of the ith particle.

B. Use of the global change in action to compute χi

1. Theoretical estimate of χi and comparisons
with numerical results

In this subsection we show that, when I0 is small enough,
it is possible to compute χi [or 〈sin(x)〉] by connecting
perturbative estimates with adiabatic ones.

The perturbative estimate of 〈sin(x)〉 is calculated at order
11 [23], and its value may be found in Ref. [10]. This estimate is
used up to 	 = 	M , when 〈sin(x)〉 reaches its first maximum,
which we denote by SM .

When 	 > 	M , we make use of the adiabatic approx-
imation and, therefore, we shift to action-angle variables,
(θ,I ), and introduce f̃ (θ,I,t) = F (x,v,t), the action-angle
distribution function. Then,

〈sin(x)〉 = 1

2π

∫ 2π

0

∫ +∞

0
sin[x(θ,I )]f̃ (θ,I,t)dθ dI (17)

since the change of variables (x,v) → (θ,I ) is canonical, so
that its Jacobian is unity. We now assume that, by the time 	

reaches the value 	M , all the particles have been trapped in
the potential. Then, using the formulas of θ and I for trapped
particles (see Ref. [10]), we find

sin(x) = 2 sin(x/2) cos(x/2) (18)

= 2
√

msn

[
2Kθ

π

∣∣∣∣m
]

dn

[
2Kθ

π

∣∣∣∣m
]

, (19)

where sn(u|m) and dn(u|m) are Jacobian elliptic functions and
K ≡ K(m) is the complete elliptic integral of the first kind
[26]. Using the Fourier representation of elliptic functions
[26], we find

sin(x) = 2

{
2π

K

+∞∑
n=0

qn+1/2

1 − q2n+1
sin[(2n + 1)θ ]

}

×
{

π

2K
+ 2π

K

+∞∑
n=1

qn

1 + q2n
cos[2nθ ]

}
, (20)
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where q ≡ exp[−πK(1 − m)/K(m)]. Note that q < 1 and
that it rapidly decreases with m. Hence, if all the particles are
deeply trapped when 	 > 	M , i.e., such that m is significantly
less than unity, then sin(x) may be approximated by its first
Fourier coefficient in θ , namely,

sin(x) ≈ 2π2

K2

√
q

1 − q
sin(θ ). (21)

Now, in Sec. II we saw that, once all the particles have been
trapped, the distribution in I exhibited one sharp peak and
that, once 〈sin(x)〉 has reached its first maximum, the most
probable action was quite close to its asymptotic value, If .
Consequently, we may approximate 〈sin(x)〉 by assuming that,
when 	 > 	M , all the particles have the same constant action,
I = If . This allows us to relate the angle θ of each particle to
the value, θM , reached at t = tM when 	 = 	M , by the same
formula,

θ (t) = θM +
∫ t

tM

ω0(If )dt ′, (22)

with

ω0(If ) = π
√

	

2K[m(If )]
, (23)

and m(If ) is such that

4
√

	

π
{E[m(If )] + [m(If ) − 1]K[m(If )]} = If , (24)

where E(m) is the elliptic integral of the second kind [26].
Equation (23) is just the well-known result for the frequency of
a pendulum, while Eq. (24) expresses the fact that the particle’s
action is If [10].

To conclude the derivation of 〈sin(x)〉, we use the Li-
ouville theorem, f̃ (θ,I,t) = f̃ [θM (θ,I ),IM (θ,I ),tM ], we ap-
proximate the distribution in action by a δ function at I = If ,
and we expand f̃ (θM,IM ) in Fourier series to find

f̃ (θ,I,t) = f̃ [θM (θ,I ),IM (θ,I ),tM ]

=
+∞∑
n=0

[fcn cos(nθM ) + fsn sin(nθM )] δ(IM − If ).

(25)

Plugging Eqs. (21) and (25) into the expression (17) for
〈sin(x)〉, taking advantage of the fact that the Jacobian of
the change of variables (θ,I ) → (θM,IM ) is unity, and using
the value of 〈sin(x)〉 at t = tM when 	 = 	M derived from
perturbation theory, namely 〈sin(x)〉 = SM when t = tM , we
find

〈sin(x)〉 = SM

K2
M

K2

√
q

qM

1 − qM

1 − q
cos

[∫ t

tM

ω0(If )dt ′
]

, (26)

where KM and qM are the values of K and q when 	 =
	M . Note that, in Eq. (26), we did not account for the term
proportional to sin[

∫ t

tM
ω0(If )dt ′]. This term should actually

be negligible because the value reached by 〈sin(x)〉 at t =
tM is a local maximum, and

∫ t

tM
ω0(If )dt ′ varies much more

rapidly with time than q. Therefore, the maxima of 〈sin(x)〉
are identified with those of cos[

∫ t

tM
ω0(If )dt ′].
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FIG. 8. (Color online) 〈sin(x)〉 when I0 = 0.9 as calculated nu-
merically (blue solid line) and theoretically (black dashed line) by
connecting the perturbative estimate with the values of 〈sin(x)〉 given
by Eq. (27).

We now make the change of variables t → 	 in the integral
of Eq. (26) to find, when 	 grows exponentially in time,

〈sin(x)〉 ≈ SM

K2
M

K2

√
q

qM

1 − qM

1 − q
cos

[∫ 	

	M

d	′
√

	′K[m(If )]

]
,

(27)

where m(If ) is related to 	 by Eq. (24).
As shown in Fig. 8, the values of 〈sin(x)〉 for I0 = 0.9

obtained by using the perturbative estimate of Ref. [10]
for 	 � 	M ≈ 3.08, and Eq. (27) for 	 � 	M , agree very
well with the numerical ones. To derive the value of If ,
we followed the method described in Sec. II, i.e., using a
perturbation analysis, we estimated the most probable action
when 	 = 	M . When doing so, we found If ≈ 0.495, so that
the global change in action, �I , is about 40% of I0.

2. Use of χi as a diagnostic for �I

As shown in Fig. 8, 〈sin(x)〉 oscillates very quickly with 	

so that a small error in the estimate of the frequency, ω0, of
these oscillations would entail a shift in the positions of the
maxima of 〈sin(x)〉 that would be rapidly visible. Therefore,
one way to guess If numerically may consist in trying to
match the locations of the maxima of 〈sin(x)〉, obtained from
numerical simulations, with those derived from Eq. (27).
More precisely, we denote by 	num

n and 	th
n , respectively,

the numerical and theoretical estimates of the amplitude at
which 〈sin(x)〉 reaches its nth maximum, and we introduce
�n ≡ 	num

n+1 − 	num
n and δn = 	th

n − 	num
n . Then, If is found

numerically as the value that, when used in Eq. (27), makes
the ratio δn/�n as small as possible over a large number of
oscillations. Numerically, it is very demanding to calculate
〈sin(x)〉 up to very large amplitudes, and, to do so, we had to
use a very small time step, dt = 10−9. Figure 9 plots δn/�n

when I0 = 100 and If = 99.56 (blue line) or If = 100 (green
line). It shows that, when using If = 99.56 in Eq. (27) (with
	M and SM obtained numerically), the positions of the maxima
of 〈sin(x)〉 remain very close to the numerical ones. Indeed,
even after the 25 395 oscillations we calculated, they differ by
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FIG. 9. (Color online) δn/�n as a function of the number of
oscillations, nosc, when I0 = 100, and by using in Eq. (27) If = 99.56
(blue lower line) or If = 100 (green upper line).

less than the uncertainty due to the discreteness of 〈sin(x)〉, and
the averaged value δn/�n is found to be close to −8 × 10−4.
The good agreement between the values of 	num

n and 	th
n with

If = 99.56 may also be appreciated in Fig. 10 [where we
multiplied the amplitudes of 〈sin(x)〉 given by Eq. (27) by a
factor close to 0.8, because they were slightly overestimated
by this equation for the large amplitudes considered in Fig. 10,
as discussed in the end of Appendix]. Moreover, as shown
in Figs. 9 and 10, neglecting the change in action and using
If = I0 = 100 instead of If = 99.56 does entail a shift in
the locations of the maxima of 〈sin(x)〉 that is clearly visible.
Hence, in addition to being an important physics quantity, χi

may be used as a very fine diagnostic that reveals a relative
error in the particles’ global action as small as 0.5%. Moreover,
the results of Figs. 8–10 clearly show that the very concept of
a global action for a set of particles is relevant to theoretically
compute macroscopic quantities such as χi , and, in particular,
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FIG. 10. (Color online) Comparisons between the values of
〈sin(x)〉 when I0 = 100 calculated numerically (black solid line) and
by making use of Eq. (27) with If = 99.56 (blue dashed line) and
If = 100 (green dash-dotted line) after 23 595 oscillations.

the contribution to χi from trapped particles. Actually, for
the parameters of Fig. 9, making use of Eq. (27) reduces
the computation time of 〈sin(x)〉 by more than four orders
of magnitude compared to a direct numerical resolution of the
equations of motion.

C. Use of χi to compute the global change in action

In the preceding subsection, we saw that we could compute
χi very efficiently by making use of the concept of global
action, provided that �I was known. In Sec. II, �I was
obtained theoretically, for small enough values of I0, from
the particles’ distribution function derived by making use of a
perturbation analysis. Now, it is much more difficult to derive
the distribution function than to estimate one of its Fourier
coefficient, so that the perturbative values of 〈sin(x)〉, and in
particular the estimates of 	M and SM , are expected to be
accurate for a larger range in I0 than the distribution function
itself. Moreover, from the perturbative estimate of 〈sin(x)〉 it
is possible calculate �I , as we will now show.

Plugging Eqs. (21), (22), and (25) into Eq. (17) yields

〈sin(x)〉 = π2fs1

√
q

K2(1 − q)
cos

[∫ t

tM

ω0(If )dt ′
]

, (28)

showing that the maxima of 〈sin(x)〉 are proportional to√
q/K2(1 − q). Moreover, as discussed in Appendix, the

coefficient fs1 depends very little on I0, and it may therefore be
considered as a constant. This is illustrated in Fig. 11 showing
that the local maxima of 〈sin(x)〉, when plotted as a function
of m, lie on a curve that depends very little on I0.

Therefore, each maximum Smax of 〈sin(x)〉, occurring at
	 = 	max, is such that

Smax = S0

√
qmax

K2
max(1 − qmax)

, (29)

where S0 is a constant, and where qmax ≡ q(mmax) and Kmax ≡
K(mmax), with mmax such that

4

π

√
	max [E(mmax) + (mmax − 1)K(mmax)] = If . (30)

Now, the first maximum, SM , of 〈sin(x)〉, and the amplitude,
	 = 	M , when it occurs, can be estimated by making use
of our perturbation analysis in the wave amplitude [27].
Therefore, if the constant S0 is known, one just has to solve
Eq. (29) for mmax with Smax = SM , and to plug the value thus
found in Eq. (30) with 	max = 	M in order to calculate If .
To derive the constant S0, we need to know the change in
action, �I = If − I0, at least for one I0, which we do by
making use of the method described in Sec. II, and which yields
S0 ≈ 11.6 [the accuracy of this estimate, further discussed in
Appendix, may be appreciated in Fig. 11(a)]. With this value
of S0, we calculate the function �I (I0) represented by the
dashed curve in Fig. 6(a), and which appears to be accurate
whenever I0 � 1.6. To be more specific, when I0 = 1.6 we find
�I ≈ −0.444, which is to be compared with the numerical
result �I ≈ −0.437 given at the end of Sec. II, and with
the neoadiabatic estimate, �I = −(2/π ) ln(2) ≈ −0.441. We
therefore conclude that, by making use of a perturbation
analysis, it is possible to provide accurate estimates for the
global change in action up to values of I0 large enough

042915-9
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FIG. 11. (Color online) Local maxima, Smax, of 〈sin(x)〉 as a function of m for various values of I0. The black solid curve in panel (a) plots
the values given by Eq. (29) with S0 = 11.6.

for the neoadiabatic estimate to be also very accurate. This
shows that, indeed, the action change due to trapping can be
calculated theoretically, regardless of the rate of variation of
the dynamics, by connecting the perturbative results with the
neoadiabatic ones.

IV. CONCLUSION

In this paper, we introduced the concept of a “global
action” for a set of particles with the same initial action,
I0. This was done by showing that, when all the particles
are trapped, the distribution in action, f (I ), has one very
sharp peak, at the smallest action. In addition to numerical
evidence, this result was proved theoretically by making use
of a perturbation analysis in the potential amplitude, which
is valid when I0 � 1, and by making use of the neoadiabatic
theory, which is already quite accurate when I0 � 1. Moreover,
we showed that the global action we defined was relevant,
and actually very useful, to efficiently compute macroscopic
quantities, such as the imaginary part, χi , of the electron
susceptibility for a plasma wave. In particular, we could
compute very accurately χi whether the particles were trapped
or untrapped, even when the particles’ motion was far from
adiabatic before trapping, a result that was not available in
previous publications [10,25,28]. As for the change in action,
�I = (If − I0), we could derive it regardless of the rate
of variation of the dynamics and, in particular, for a non-
slowly-varying dynamics, when �I was not small compared
to I0. Our derivation of �I rests mainly on a perturbative
expansion, in the potential amplitude, of the particles’ motion.
More precisely, it is derived by plugging the perturbative
estimate of the first maximum, Smax ≡ SM , of 〈sin(x)〉 (which
is proportional to χi), and of the corresponding value of the
potential amplitude, 	max ≡ 	M , into Eqs. (29) and (30) with
S0 ≈ 11.6. These equations provide an accurate estimate of
�I up to the point when it becomes essentially independent of
I0, and nearly matches the constant value �I ≈ −(2/π ) ln(2)

provided by the neoadiabatic theory. The latter value was,
moreover, found to be in excellent agreement with numerical
results when I0 � 1.

In conclusion, this paper shows the following two main
results: (i) The notion of a global action and its relevance
to theoretically compute macroscopic quantities such as χi ;
(ii) the theoretical derivation of the global change in action
due to trapping, whether the dynamics is slowly varying or
not. Moreover, as will be shown in a forthcoming paper,
the results derived here, particularly those with regard to
the theoretical estimate of χi , constitute an essential step to
describe the nonlinear regime of the beam-plasma instability
and to theoretically compute the nonlinear Landau damping
rate of a plasma wave, which are long-standing issues in plasma
physics.
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APPENDIX: SHIFT IN ANGLE COMPARED TO A PURELY
ADIABATIC MOTION

In this Appendix we show that, once the action is very close
to its asymptotic value, I ≈ I0 − �I , the variation in angle
compared to purely adiabatic motion is essentially independent
of I0 in the limit I0 → ∞. This proves that, once the action has
converged toward a nearly constant value, the distribution in
angle, which would have been uniform for a purely adiabatic
motion, changes in a fashion that is essentially independent of
I0. Consequently, the Fourier component of this distribution,
which we denoted by fs1 in Sec. III, is essentially independent
of I0, so that the factor S0 in Eq. (29) for 〈sin(x)〉 is indeed a
constant, as illustrated in Fig. 11 of Sec. III.
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To show the aforementioned results, we calculate the
variation in angle up to a time, tt , when the shift in action
has reached its asymptotic value, �I , and the particles are
deeply trapped [since Eq. (29) on Sec. III is only valid in this
limit]. In action-angle variables, the dynamics is ruled by the
Hamiltonian

H(θ,I ) = H + ∂F

∂t
, (A1)

where H is defined by Eq. (2), and where F is the generative
function of the canonical change of variables, (x,v) → (θ,I ).
Calculating the change in angle by making use of the adiabatic
approximation amounts to neglecting the term ∂F/∂t in H, so
that I remains a constant. Then, for an untrapped particle,

dθ

dt
= π

√
	

2
√

m1K(m1)
, (A2)

where m1 is related to the action and the amplitude by

4
√

	

π
√

m1
E(m1) = I, (A3)

while, for a trapped particle,

dθ

dt
= π

√
	

2K(m)
, (A4)

with

4
√

	

π
[E(m) + (m − 1)K(m)] = I. (A5)

Using d	/dt = 	, one easily finds that the adiabatic change
in angle, which we denote by �θa , is

�θa = π2

8

{∫ 1

mmin

I

m1E2
dm1 +

∫ 1

mt

I

[E + (m − 1)K]2 dm

}
,

(A6)

where the first term accounts for the variation of the angle
while the particle is untrapped, and the second term is the
angle variation when the particle is trapped. In Eq. (A6), mmin

is the value of m1 defined by Eq. (A3) at t = 0 when 	 = 	0

and I = I0. As for mt , it is the value of m defined by Eq. (A5)
at time tt when, for the true nonadiabatic dynamics, the action
is very close to its asymptotic value, i.e., I ≈ I0 − �I .

Now, using the Hamiltonian H defined by Eq. (A1), one
finds

dθ

dt
= dH

dI
+ ∂

∂I

(
∂F

∂t

)
, (A7)

so that the shift in angle compared to a purely adiabatic motion,
which we denote by δθ , may be seen as the sum of two
contributions. The first one, δθ1, is obtained by accounting
for the change in action when calculating

∫
(dH/dI )dt .

Hence, δθ1 is just the shift in �θa entailed by the change in
action, which we denote by δθ1 ≡ δ(�θa). As for the second
contribution to δθ , which we denote by δθ2, it is defined by

dδθ2

dt
= ∂2F

∂I∂t
. (A8)

Let us first estimate δθ1 ≡ δ(�θa), which, from Eq. (A6),
is given by

δθ1 = π2

8

{∫ 1

mmin

δ

[
I

mE2

]
dm+

∫ 1

mt

δ

[
I

[E+(m−1)K]2

]
dm

− Iδmt

[E + (mt − 1)K]2

}
. (A9)

Let us now denote by δIm the instantaneous change in action
when the wave amplitude assumes the value 	, i.e., δIm ≡
I [m(	)] − I0. From Eq. (A3), it is easily found that when the
particle is untapped, the change δIm entails a change in m1 by

δm1 = −2m1E

K

δIm

I
, (A10)

while when the particle is trapped, one finds from Eq. (A5)

δm = 2[E + (m − 1)K]

K

δIm

I
. (A11)

Plugging the results from Eqs. (A10) and (A11) into Eq. (A9),
one easily finds

8δθ1

π2
=

∫ 1

mmin

δIm

m1E2

[
4E

K
− 1

]
dm1

−
∫ 1

mt

δIm

[E + (m − 1)K]2 dm − 2δImt

K[E + (mt − 1)K]
.

(A12)

When the particle is untrapped, δIm is negligible except close to
the separatrix, where it scales as ln(I0) when (1 − m) ∼ 1/I0.
Similarly, when the particle is trapped, then within a narrow
region close to the separatrix where (1 − m) ∼ 1/I0, δIm scales
as ln(I0). However, away from this narrow region, δIm for a
trapped particle is very close to its asymptotic value, �I .
Hence, one finds

δθ1 = −π2�I

8
F (mt ) + O

[
ln(I0)

I0

]
, (A13)

where

F (mt ) =
∫ 1

mt

dm

[E + (m − 1)K]2 + 2

K[E + (mt − 1)K]
.

(A14)

For large I0’s, since �I becomes essentially independent of
I0, it is clear from Eq. (A13) that so does δθ1.

Let us now calculate δθ2, defined by Eq. (A8). Using

F = ±
∫ x

0

√
2[H + 	 cos(u)]du (A15)

together with d	/dt = 	, one easily finds

∂F

∂t
= θ

∂H/∂t − H

∂H/∂I
+ F

2
. (A16)

Note that, in Eq. (A8), F is considered as a function of θ and I

so that, in Eq. (A15), x ≡ x(θ,I ), such that, for an untrapped
electron,

sin(x/2) = sn(2Kθ/π ), (A17)

042915-11



DIDIER BÉNISTI AND LAURENT GREMILLET PHYSICAL REVIEW E 91, 042915 (2015)

while for a trapped electron,

sin(x/2) = √
m sn(2Kθ/π ). (A18)

Then, using the fact that, for an untrapped electron, H and
I read H ≡ hu(m1)	, I ≡ Iu(m1)

√
	 [while, for a trapped

electron, H ≡ ht (m)	, I ≡ It (m)
√

	], one easily finds

∂2F

∂I∂t
= 1

2

∂F

∂x

∂x

∂I
. (A19)

Then, Eqs. (A8), (A15), (A19), and (A17) yield, for an
untrapped electron,

dδθ2

dt
= π

4(m − 1)K
dn(υ)[dn(υ)Z(υ) − m sc(υ)cn2(υ)],

(A20)

where we have denoted υ ≡ 2Kθ/π , and where the functions
appearing in Eq. (A20) are the well-known Jacobian elliptic
functions [26]. Similarly, for a trapped electron, it comes from
Eqs. (A8), (A15), (A19), and (A18) that

dδθ2

dt
= π

4K
cn(υ)

[
(m − 1)sd(υ) + sd(υ)cn2(υ)

m − 1

+ cn(υ)Z(υ)

m − 1

]
. (A21)

Hence, dδθ2/dt is an oscillating function with period 2π in θ .
In the limit when I0 → ∞, θ varies much more rapidly with

time than m so that δθ2 nearly averages out to zero any time θ

is a multiple of 2π . Hence, since dθ/dt is proportional to I0,
δθ2 is expected to decrease as 1/I0 and become negligible as
I0 → ∞.

In conclusion, for large enough values of I0, and once the
action is very close to its asymptotic value, I ≈ I0 − �I , the
shift in angle compared to a purely adiabatic motion, δθ =
δθ1 + δθ2 ≈ δθ1, is a function of m that is independent of I0.
Since the distribution in θ would have been uniform if the
motion were adiabatic, its Fourier coefficient fs1, defined by
Eq. (25), is also a function of m that becomes independent of
I0 in the limit I0 → ∞. This is in total agreement with the
results of Fig. 11 in Sec. III.

Note that fs1 is necessarily less than unity, while we used
π2fs1 ≡ S0 ≈ 11.6 in Eq. (29). This value was used in order
to derive precisely the amplitude of the first maximum of
〈sin(x)〉, which occurs for an amplitude that is not large
enough for the approximate expression of sin(x) given by
Eq. (21) of Sec. III to be extremely accurate (although it is
already a good approximation). For subsequent maxima, which
occur for large amplitudes and, therefore, small values for m,
the expression for 〈sin(x)〉 given by Eq. (28) becomes very
accurate, and, in this expression, fs1 is necessarily a constant
(independent of m) less than unity. This explains why, in
Fig. 10 of Sec. III, we had to multiply the amplitude of 〈sin(x)〉,
as given by Eq. (27), by a constant close to 0.8 in order to
match the numerical results (and one may actually notice that
π2/11.6 ≈ 0.85).
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