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Numerical study of extreme events in a laser diode with phase-conjugate optical feedback
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Extreme intensity pulses sharing statistical properties similar to rogue waves have been recently observed in
a laser diode with phase-conjugate feedback [A. Karsaklian Dal Bosco, D. Wolfersberger, and M. Sciamanna,
Opt. Lett. 38, 703 (2013)], but remain unexplained. We demonstrate here that a rate equation model of a laser
diode that includes an instantaneous phase-conjugate feedback field reproduces qualitatively well the statistical
features of these extreme events as identified in the experiment, i.e., the deviation of the intensity statistics to
a Gaussian-shape statistics and the statistics of the time separating extreme events. The numerical simulations
confirm the importance of the feedback strength in increasing the number of such extreme events and allow us
to explain how extreme events emerge from a sequence of bifurcations on self-pulsating solutions, the so-called
external cavity modes.
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I. INTRODUCTION

The impact of optical feedback on the dynamics of
a semiconductor laser diode has been extensively studied
over the past 40 years. Several beneficial effects have
been identified such as a narrowing of the wavelength of
emission or a reduction of the lasing threshold [1]. On the
downside, however, the laser diode typically deviates from
its otherwise steady-state operation and a large variety of
nonlinear dynamics including self-pulsation and chaos has
been identified. One way of classifying the richness of the
dynamical behavior is to consider whether the time delay
induced by the external feedback is small or large with respect
to the laser diode relaxation oscillation period, hence referring
to a short or long external cavity, respectively [2]. In the
case of a long external cavity, chaotic dynamics, referred to
as coherence collapse [3] and a low-frequency fluctuation
(LFF) regime [4], are typically observed when increasing
the feedback strength. Low-frequency fluctuation has been
shown to originate from chaotic itinerancy among destabilized
external-cavity modes [5]. In the case of a short external
cavity, dynamics typically consist of self-pulsation from mode
beating between external-cavity modes [6,7] or quasiperiodic
regular pulse packages [8,9] with the slow modulation of
pulsing dynamics at the external-cavity frequency. Apart from
the time-delay value, the richness of the observed dynamics
depends on the type of optical feedback. While studies have
addressed in detail conventional optical feedback (COF) from a
distant mirror, optoelectronic feedback [10,11], and incoherent
feedback [12], much less work has been published regarding
phase-conjugate optical feedback (PCF) [13–16].

Although at first sight chaotic dynamics from a laser diode
with COF share several properties with those arising from
PCF [15], a closer inspection of the underlying bifurcations
unveils significant differences. For example, except for very
low feedback strength, there is no steady-state external-
cavity mode (ECM) in the case of PCF. Instead, ECMs are
self-pulsating solutions at a frequency being a multiple of
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the external-cavity frequency [16,17]. These superharmonic
self-pulsating solutions have only recently been found in ex-
periment [18]. As recently shown theoretically [19], secondary
bifurcations on these limit-cycle ECM solutions explain the
occurrence of LFFs as observed experimentally [20].

In this paper we focus on a specific dynamic of a laser diode
with PCF, which consists of extremely-high-intensity pulses
that exhibit statistical properties similar to those observed in
so-called rogue waves [21]. Rogue waves are inspired from
oceanographic studies [22] and are rare and high-amplitude
waves that appear randomly at the surface of an otherwise calm
sea. Rogue waves were first observed in optics in nonlinear
propagation of light launched in an optical fiber showing a
supercontinuum [23]. The concept of optical rogue waves was
then generalized to include the study of extreme events in
optics where a variation of a parameter leads to a deviation of
the intensity statistics to the otherwise Gaussian distribution,
hence explaining the occurrence of rare and intense pulses.
Even though rogue waves and extreme events are different in
nature, they may share statistical properties owing to the fact
that they both correspond to large deviations of the system state
away from its nominal value [24]. Examples of rogue waves
and extreme events include high-intensity pulses underlying
chaotic dynamics in laser diodes with optical injection [25,26]
or optical feedback [21,27], and high-amplitude localized
light peaks in the transverse plane of a spatially extended
nonlinear optical cavity [28–30]. Our purpose is here to
provide a theoretical framework to explain the emergence
of these extreme events in a laser diode with PCF. More
specifically, we show that a rate-equation model, inspired
by Lang and Kobayashi equations [31] and adapted to the
case of PCF [16], is able to reproduce the dynamical features
observed in the experiment [21]. Of particular interest is the
influence of the delay and the feedback rate (a measure of the
quantity of light that is fed back in the laser) on the number
and statistics of time separating extreme events. Not only are
the theoretical results in good qualitative agreement with the
experimental observations, but they also allow us to provide in-
sight into the physics underlying the emergence of extreme
events. We indeed demonstrate that extreme events emerge
from secondary bifurcations on the ECMs of the PCF laser
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system. Most importantly, we identify the parameter range
where extreme events are detected and relate the occurrence
of extreme events to the occurrence of chaos crisis in
the bifurcation cascade leading to ECM solutions. Finally,
we explain why the number of extreme events is found to
increase when increasing the feedback strength in the PCF
laser system.

This paper is organized as follows. Section II focuses on
the description of the rate-equation model we use. Section III
demonstrates good qualitative agreement between numerical
simulations of this model and characteristic dynamics recently
observed experimentally for different values of the external-
cavity length and hence of the time delay. In Sec. IV we analyze
a case of intermediate value of the external-cavity time delay
with low to moderate feedback strength where extreme events
appear with a significant deviation of the intensity statistics
from a Gaussian distribution. We focus on the evolution of
the distribution of extrema, the analysis of the time between
said extreme events, how these time intervals are distributed
according to a log-Poisson law, and how these extreme events
emerge from chaos. Finally, Sec. V presents a summary of our
study and our conclusions.

II. RATE-EQUATION MODEL

The model we use is a set of rate equations adapted to
the case of PCF from the Lang and Kobayashi equations [31]
where quantities, including time, are normalized [16,17,19]:

dY

dt
= (1 + iα)ZY + γ Y ∗(t − θ ), (1)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2, (2)

where Y is the complex slowly varying envelope of the
electric field and Z is the carrier density. These quantities
are normalized, along with time, which is normalized by
the photon lifetime τp = 1.4 ps. Here α is the linewidth
enhancement factor, γ is the normalized feedback rate, θ is the
normalized delay, T is the ratio of the carrier to photon life-
times, and P represents the pumping current above threshold.
The model matches recent experimental conditions [18,20,21]
since it considers the realization of a phase-conjugate mirror
through self-pumped four-wave mixing, thus inducing no
detuning in the feedback term [32]. For the sake of simplicity,
we will consider here that the response from the mirror is
instantaneous, hence neglecting the time scale of the nonlinear
optical process that yields phase conjugation [33].

We consider the following set of parameter values: α =
4, T = 1428, and P = 0.0417, as is common for several
other previous theoretical studies [14,16,17,34]. In addition,
γ and θ will be our free parameters, which we change to
reproduce the different types of dynamics and to influence
the properties of said dynamics. Indeed, recent experiments
on PCF [18,20,21] have shown that both the time delay and
the feedback strength play a crucial role on the bifurcations
and on the waveforms of the observed dynamics. In addition,
this paper aims at justifying theoretically the experimental
observations of Ref. [21], where the feedback strength was
considered as the experimentally varying parameter.

III. FROM SELF-PULSATION TO CHAOTIC DYNAMICS

The equations are numerically integrated with a fourth-
order Runge-Kutta algorithm with a fixed step h = 1 in
normalized time, which corresponds to a step of τp = 1.4 ps
in real time. The time step has been chosen small enough
so as to ensure the numerical convergence of the results.
Unless specified otherwise, the time traces present the optical
output power filtered using a moving-average filter with a
3-dB frequency cut of 4 GHz so as to account for the limited
bandwidth of the acquisition in the experimental setup of
Refs. [18,20,21]. The radio-frequency (rf) spectra have been
made using a fast Fourier transform on unfiltered time traces.

Figure 1 presents simulated time traces of three typical
dynamics that qualitatively match experimental observations
in a laser diode with phase-conjugate feedback for increasing
values of the external-cavity time delay. Figure 1(a) shows
self-pulsating dynamics at a frequency equal to three times the
external-cavity frequency and corresponding to the so-called
ECM of harmonic 3. These dynamics are observed for a
relatively short external cavity (θ = 476, which corresponds
to a time delay τ = 0.666 ns) and a low value of the feedback
rate (γ = 0.012). Such harmonic self-pulsating dynamics have
recently been observed in experiment [18] where it was also
confirmed that, as predicted earlier [16,17], ECMs destabilize
to chaotic dynamics when increasing the time-delay value
and/or the feedback rate.

Figure 1(b) shows chaotic pulsing dynamics where some
pulses show an intensity much larger than the average intensity
value. How many such extreme events occur can be quantified,
e.g., by considering the definition of the abnormality index
from oceanographic studies [22], i.e., the ratio between the
pulse intensity and the average intensity of one-third among
the most intense pulses. Pulses that have an abnormality
factor greater than 2 (see Sec. IV for details) are arbitrarily
called extreme. Such a dynamic with the occurrence of rare
but intense pulses resembles qualitatively the one observed
recently in experiment [21] and is observed for a longer
external cavity (θ = 1600 or τ = 2.24 ns) and for low to
moderate feedback rates (from γ = 0.002 to γ = 0.05).
Section IV will focus on the definition of the abnormality index
and will relate the number of extreme events to the parameters
of the PCF laser system.

A further increase of the external cavity length or time
delay (θ = 3200 or τ = 4.48 ns) and of the feedback rate
(γ = 0.1) yields chaotic dynamics that typically show features
of so-called low-frequency fluctuations, as can be seen in
Fig. 1(c). The low-pass-filtered time trace in Fig. 1(c1) unveils
the occurrence of power dropouts at randomly distributed time
intervals and with an averaged time separation larger than the
time delay or any other internal time scales of the laser diode.
Low-frequency fluctuations therefore result in a significant
increase of the low-frequency content in the rf spectrum in
Fig. 1(c1). A detailed theoretical study of the low-frequency
fluctuation regime can be found in [19], which confirms several
recent experimental findings [20].

IV. EXTREME EVENTS

The study of extreme events requires us to define what
we call an event and to identify a criterion that discriminates
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FIG. 1. (Color online) Simulated time traces (left column) and associated rf spectra (right column). (a) Unfiltered time trace of the third
ECM when θ = 476 and γ = 0.012. (b) Chaotic regime where we observe extreme events [peaks that overshoot the threshold A = 2 (see
Sec. IV for details)] for θ = 1600 and γ = 0.025. The associated rf spectrum shows almost no contribution in frequencies below 1 GHz. (c)
Case where low-frequency fluctuations appear for θ = 3200 and γ = 0.1. The low-pass-filtered trace is superimposed in gray (red) to show
the power dropouts and the rf spectrum shows a significant contribution in the frequencies below 1 GHz.

what is extreme in this population. Several definitions for
extreme events can be found in the literature and appear as
quite arbitrary. However, as will be discussed in the following,
we have checked that our conclusions and, most importantly,
how the feedback strength in the PCF time-delayed system
influences the occurrence and number of extreme events are
robust when applying the commonly suggested criteria for
extreme events.

We first discuss the definition for extreme event applied
in the corresponding PCF experiment [21]. In [21] an event
is defined as a local maximum of the filtered time trace of
the optical output power of the laser diode. Defined for each
event n is the height of the peak pn, which is the optical
output power of the local maximum. Then Hfn, which is the
difference between the peak height of the event n and the
mean height of our population of events, is calculated: Hfn =
pn − 〈pn〉n. Also, the significant height H1/3 is defined as
the average value among one-third of the highest values of
Hfn. Finally, the abnormality index of event n is An = Hfn

H1/3
.

Any event that yields an abnormality index greater than 2 is
then considered in the following as extreme. These definitions
and criteria are inspired from a proposal made to classify
rogue waves in oceanographic studies [35] and have been used
in several experimental and theoretical works reporting on
extreme events in optics [30,36–38].

Another definition of the significant height can be inspired
from a different proposal made in oceanography for the

significant wave height [22], i.e., Hs is four times the standard
deviation of the measured Hfn and an event is called extreme
if the corresponding abnormality index An = Hfn

Hs
> 2. This

definition has been applied in the analysis of extreme events
in the chaotic pulsing dynamics of a laser diode with optical
injection [25,26]. Although we will mainly use the traditional
definition of the significant height H1/3, in the following we
discuss the robustness of our conclusions against the definition
of an extreme event.

A. Distribution of output power maxima

In this section and the following, we use the same external-
cavity length as in the case of Fig. 1(b), θ = 1600, and
we vary γ from 0 to 0.05. All simulations are performed
over a fixed duration of 56 μs and we observe how the
number of extreme events evolves over this fixed duration.
The influence on the distribution of the number of events
versus their abnormality index can be clearly seen in Fig. 2.
It is shown that the statistics deviate more and more from
a Gaussian distribution when increasing γ . This tendency
to deviate from a Gaussian distribution while increasing the
driving parameter, here the feedback rate, is consistent with
the experimental observations [21] and with other optical
systems where extreme events or rogue waves appear when
increasing, e.g., the optical pump intensity [23,28–30] or the
optical injection strength [25].
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FIG. 2. (Color online) Evolution of the distribution of extreme
events versus the abnormality index. Increasing the feedback rate
leads to a greater deviation from a Gaussian distribution (from left to
right), more extreme events, with a higher abnormality index.

Time traces of the optical output power present a strong
pulsing behavior. In Fig. 3(a), where γ = 0.004, there are
only a few events above the threshold A = 2 and Fig. 2 shows
us that the most extreme one reaches only A = 4. In Fig. 3(b),
where γ = 0.024, there are more extreme events and they
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FIG. 3. (Color online) (a) and (b) Illustration of the tendency of
extreme events appearing more often for strong feedback values with
snapshots of the time traces where the horizontal gray (red) line
indicates the threshold over which an event is considered extreme.
The insets on the right show the tendency for extreme events to appear
in bunches with repetitions at the time delay for several values of the
feedback rate.

FIG. 4. (Color online) Analysis of the correlation between con-
secutive extreme events. Black (blue) dots are 637 time traces centered
around extreme events with the largest amplitude and plotted on a
11.2-ns time window for a feedback rate γ = 0.025. The gray (red)
thick line is the averaged time trace over the 637 plotted time traces.

reach high abnormality indices, some of them going above
A = 6 according to Fig. 2. The insets on the right in Fig. 3
show an interesting feature. For low feedback rates, extreme
events appear isolated, which is the expected behavior of
rogue waves. However, for higher values of the feedback rate,
extreme events tend to appear in bunches of pulses that repeat
at a period close to the time-delay value. The bifurcation study
of the PCF laser system [16,17,39,40] shows us indeed that
as the feedback rate increases, the laser experiences a cascade
of bifurcations. The first one is a Hopf bifurcation close to
the frequency of the laser relaxation oscillations. A further
increase of the feedback strength leads to a cascade of Hopf
bifurcations whose frequencies are close to harmonics of the
external cavity frequency, hence explaining the modulation of
the laser intensity at the period of the time delay. We will
classify these events in two distinct categories: Lone pulses
will be named type I and bunches of pulses will be labeled type
II, in agreement with the experimental observations of [21].
More specifically, through an analysis of the time separating
extreme events (which is detailed in Sec. IV B), we shall
consider in the following that any sequence of successive
extreme events whose time separation is smaller than twice
the time-delay value is called type II.

Similarly to Fig. 4 of the corresponding experiment [21],
we have also analyzed the correlation properties of successive
extreme events in the laser time series. For this purpose, in
Fig. 4 we have superimposed 637 extreme events and centered
them on a time window of 11.2 ns. In agreement with the
experimental observation, successive extreme events are char-
acterized by an extreme pulse of similar shape and duration,
which is preceded and followed by pulses that are correlated
and repeat at the period of the time delay, with some of these
pulses also being extreme events. The pulses that repeat at the
period of the external cavity therefore appear as precursors
and replica of an extreme event. This property is highlighted
by the red (thick) line showing the averaged time trace.

We can learn interesting facts by looking more carefully
to the count of extreme events. Figure 5(a) confirms what
we observed in Fig. 2: As the feedback rate increases, extreme
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FIG. 5. (Color online) Evolution of the number of extreme events
with the feedback rate: (a) absolute count over a fixed duration, (b)
count relative to the total number of maxima, and (c) absolute count
with distinction of types I and II.

events are more numerous, in agreement with the experimental
observations of [21]. However, Fig. 5(b) shows that extreme
events never represent more than 4% of the total number of
events and this number saturates when further increasing the
feedback rate, which is consistent with the fact that extreme
events are supposed to be rare. This can be qualitatively
explained by the bifurcations of the PCF laser system. Indeed,
it is known theoretically that as the feedback rate increases
the PCF laser system oscillates around one or several ECMs
with an increasing harmonic value of the external cavity
frequency. Therefore, the dynamics observed on the same
time interval show a larger number of pulses and thus a
larger number of events among which to count the extreme
events. Both the number of events and the number of extreme
events increase with the increase of feedback rate and with
approximately the same rate such that the ratio of extreme
events to the total number of events remains roughly the same
when increasing the feedback rate. In addition, Fig. 5(c) shows
that although type-I extreme events dominate for small values
of the feedback rate, increasing the feedback rate leads to not
only a larger proportion of type-II extreme events (bunches of
pulses) but even to a majority of type-II extreme events for
large values of γ .

This result agrees with the experimental observations of
Ref. [21], which reported an increasing number of extreme
events and a larger proportion of type-I extreme events when
increasing the feedback rate. The crossing point around
γ = 0.02 in Fig. 5(c) beyond which type-II extreme events
dominate over type-I extreme events was not reached in
the experiment, most probably due to the limited feedback
strength (related to the gain of the four-wave mixing in the
photorefractive crystal).

As γ increases, we saw that more extreme events are
detected over the same fixed duration. This implies that they
are more frequent. In the following section, we discuss how
the time intervals between extreme events evolve when varying
the feedback rate.

B. Time between extreme events

Experiments on a laser diode with optical feedback [21]
but also on temporally driven optical speckles [29,41] suggest
that the time between two successive extreme events follows
a log-Poisson law. To check this feature we define tn as the
time at which the extreme event n occurs and we measure the
waiting time between two consecutive extreme events on a
logarithmic scale as wn = ln( tn

tn−1
).

For low feedback rates [Fig. 6(a)], we observe that the wait-
ing times wn are distributed according to a log-Poisson law,
which is consistent with experimental observations [21,29].
However, as also observed in experiment [21], increasing the
feedback rate leads to a deviation of the statistics of the waiting
times wn from the log-Poissonian law; see Fig. 6(b). The
best fitting unveils two different distributions depending on
the time separation between extreme events. The law for the
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FIG. 6. Waiting times between consecutive extreme events are
measured on a logarithmic scale for the cases in which (a) γ = 0.004
and the waiting-time distribution follows a log-Poisson law and (b)
γ = 0.044 and waiting times are distributed according to two different
log-Poisson laws.
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longest waiting times represents the waiting times that would
be normally observed, as in the case of a low feedback rate,
while the distribution for the shortest waiting times accounts
for repetitions of an extreme event at time intervals close to
the time delay. Indeed, increasing the feedback rate leads to
a larger number of extreme events of type II for which not
only does a main pulse overshoot the threshold A = 2 but also
the smaller pulses that repeat at a time smaller or about the
value of the time delay. This yields an increasing proportion
of counts of values of time separation between extreme events
smaller than or close to the time-delay value, hence modifying
the statistical distribution.

C. Bifurcation to extreme events

The rate-equation model reproduces qualitatively well the
experimental observation of the role played by the feedback
rate in modifying the number of extreme events, the type of
extreme events (type I or type II), and the statistics of the
time between extreme events. In this section we thus use it to
provide insight into the sequence of bifurcations that yields
extreme events.

Figure 7(a) shows the bifurcation diagram in the case of
θ = 1600 where local extrema of the filtered time traces
are plotted versus the feedback rate γ . The bifurcations
leading to chaotic dynamics in a PCF laser system have
been analyzed in depth by several groups, including with the
use of so-called continuation methods for delay-differential
equations [14,16,17,39,40]. Our purpose is here to identify
the parameter range where extreme events are detected and
to relate these regions of extreme pulses with the sequence
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FIG. 7. (Color online) Bifurcation diagrams plotting extrema of
the output power low-pass filtered at 4 GHz against the feedback rate
γ for different external-cavity lengths: (a) θ = 476 and (b) θ = 1600.
The thick (red) line is the A = 2 level. Extreme events seem to already
appear for a short cavity. Labels A, B, and C refer to three particular
bubbles of chaos on which we focus in the text and in Fig. 8.

of bifurcations leading to chaos. The evolution of the power
for which A = 2 has also been plotted as the threshold above
which we consider the intensity pulse as being extreme. This
figure offers several insights. First, it confirms that extreme
events are observed in a large interval of feedback rate γ

that corresponds to a region of parameters leading to chaotic
dynamics, as also evidenced experimentally in Ref. [21]. This
chaotic dynamic appears from a sequence of period-doubling
and quasiperiodic bifurcations at small feedback rates and
experiences a chaos crisis at larger values of the feedback rate,
leading to self-pulsating solutions called ECMs [17]. Second,
this figure confirms that as the feedback rate increases, the
intensity pulses exceed more and more the threshold value
for extreme events, hence increasing the number of counted
extreme events when increasing γ .

To clarify the role played by the ECMs, it is interesting
to compare the bifurcation diagram with the one computed
for a smaller value of θ , for example, θ = 476 in Fig. 7(b),
which corresponds to the situation analyzed theoretically in
Ref. [17] and to a set of parameters used in a large number of
publications analyzing in depth the bifurcation scenarios of the
PCF laser system [14,16]. As γ increases, the first ECM steady
state destabilizes to chaos and the laser experiences a cascade
of bubbles of chaos that originate on self-pulsating (ECM)
dynamics and that terminate with chaos crisis leading to other
self-pulsating (ECM) dynamics of higher frequency. The chaos
crisis was analyzed in detail through continuation methods
in Ref. [17] and the succession of ECMs with increasing
frequencies being harmonic of the external-cavity frequency
was recently evidenced experimentally for the same external
cavity length (leading to θ = 476) [18]. This figure reveals
the same conclusions on, first, the increasing number of
extreme events when increasing γ and, second, on the fact
that extreme events appear in parameter ranges leading to
chaos and close to the onset of a chaotic crisis. The important
role played by a chaotic crisis in generating extreme events
was also identified theoretically in a laser diode with optical
injection [26]. Still, this figure provides insight into the
mechanism that is responsible for an increasing number of
extreme events when increasing the feedback rate. For this
purpose we look more carefully into the pulsating dynamics
in three different ranges of feedback strength corresponding
to the three regions labeled A, B, and C in Fig. 7(b). Figure 8
compares the pulsating dynamics (with a close-up in the right
panels) for increasing values of γ , respectively, in regions
A, B, and C. Two ingredients contribute to increasing the
number of extreme events from Fig. 8(a) to Fig. 8(c). First,
as is known in any optical feedback configuration and also
identified in PCF [19], increasing the feedback strength leads
to an increased level of the average output power. Figure 8
furthermore shows that not only does the averaged level of
the power increase, but so does the maximum power when
increasing γ . Second, a specific feature of PCF is that when
increasing γ the laser bifurcates to new ECMs with increasing
(harmonic) frequencies [17,18]. This is clear from Figs. 8(a2)–
8(c2). Although the time duration of a pulse that reaches the
extreme event threshold remains similar, the dynamics pulsate
faster in Fig. 8(c2) than in Fig. 8(b2) or 8(a2) for a smaller value
of γ and this is mostly visible in the time interval that separates
two extreme events. This is also clear in the corresponding
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FIG. 8. (Color online) Snapshots of time traces in the case of θ = 476 in three different bubbles of chaos labeled A, B, and C in Fig. 7:
(a) γ = 0.015, (b) γ = 0.0202, and (c) γ = 0.025. In the left column are snapshots of 100 ns that show the evolution of the A = 2 level for
similar waveforms. The middle column presents close-ups of those time traces that show fast oscillations close to the mean power, with a
frequency that increases with the feedback rate. This increase in frequency is responsible for lowering the A = 2 level, thus increasing the
number of extreme events detected, which can be confirmed in the right column where power spectra of the output power are plotted, showing
more higher-frequency content for high feedback rates.

spectra where we identify more higher-frequency content
while increasing the feedback rate. Indeed, as stated before,
increasing γ means that the system has access to ECMs
of higher frequencies. Because of the higher frequency in
the dynamics of Fig. 8(c2), more pulses and therefore more
events are counted in the same time interval in Fig. 8(c2)
than in Fig. 8(b2) or 8(a2), hence contributing to decreasing
the average value of the pulse intensities among one-third
of the highest intensity pulses. To say this differently, this
explains why the level A = 2 decreases with the increase of γ

when comparing Figs. 8(a1), 8(a2), with Figs. 8(b1), 8(b2) and
with Figs. 8(c1), 8(c2). The decreasing level of the threshold
for defining an event as extreme and the larger value of the
peak pulse intensity when increasing γ explain the increasing
number of extreme events when increasing the feedback rate.

The conclusion drawn from Fig. 8 remains true when
the criterion for an extreme event uses the definition of
the significant height Hs instead of H1/3. According to this
definition, the power values corresponding to the A = 2
change to 0.73, 0.60, and 0.45 from Fig. 8(a) to Fig. 8(c),
respectively. As mentioned before, increasing the feedback
strength from Fig. 8(a) to Fig. 8(c) leads to a larger number
of events corresponding to pulsing intensities with higher
frequencies. Since these high-frequency pulses typically have
a small amplitude around the mean value of the output power,
increasing the feedback strength leads to a decreasing value of
the standard deviation of recorded events, hence to a decreasing
value of the A = 2 level and to a larger number of detected
extreme events.

V. CONCLUSION

In summary, numerical simulations of a rate-equation
model for a laser diode with PCF reproduce qualitatively well
the experimental observations of extreme event statistics of
Ref. [21]. More specifically, the three main conclusions of
the experiment are captured by the model: When increasing
the feedback rate (i) the deviation of the intensity statistics
to the Gaussian statistics increases, leading to heavy-tailed or
L -shaped statistics with a larger proportion of high-intensity
pulses, as observed in general in rogue wave statistical
studies [23]; (ii) the number of extreme events increases with
an increasing proportion of so-called type-II extreme events
that consist of extreme intensity pulses repeating at a time
smaller or of the order of the time-delay value, and (iii) the
statistics of the time between extreme events deviates from a
log-Poissonian distribution due to the larger contribution of
type-II extreme events.

Insight is gained from the bifurcation diagram over the
mechanisms that underlie the increasing number of ex-
treme events when increasing the feedback rate, i.e., on
the role played by delayed feedback in generating extreme
events. In particular we have identified a correlation be-
tween the increasing self-pulsating frequencies when in-
creasing the feedback strength, which is a specific feature
of PCF in contrast with COF, and the decreasing level of
the extreme event threshold, hence explaining the increas-
ing number of events counted as extreme in a statistical
study.
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Good agreement with all experimental observations is
obtained, although the rate-equation model does not account
for several features that we might think of as being important
at first glance to faithfully model the setup, e.g., the nonlinear
optics time scale, multiple reflections in the external cavity, and
multimode laser dynamics. This demonstrates the essential
role played by the two basic ingredients of the system, i.e.,
the phase conjugation and the time delay, in explaining the
emergence of extreme events and the corresponding statistics
in our system. Considering the small value of the feedback
strength accessible in the PCF experiment [21] and used in
the numerical simulations reported herein, we do not expect
multiple reflections to significantly impact the laser dynamics
and the resulting extreme event statistics. By contrast, although
not well documented [33], it is expected that including the
filtering effect of PCF through a finite-penetration depth
nonlinear medium would lead to stabilization of the otherwise
chaotic dynamics and hence would reduce the parameter range
leading to extreme intensity pulses. Similarly, multimode laser
dynamics are known to produce anticorrelated pulses in the

modal dynamics of a laser with optical feedback [42–44],
hence reducing the large intensity fluctuations in the recorded
total laser intensity dynamics and the occurrence of extreme
intensity pulses. Although theory and experiment agree very
well qualitatively, further more quantitative agreement would
require more complex investigations on the impact of the
time-dependent four-wave-mixing dynamics on the chaotic,
possibly multimode, laser dynamics. In addition, it is thought
that this work, although concerned mostly with PCF con-
figuration, motivates a comparison with configurations of
delayed optical feedback other than PCF, in particular COF
and incoherent feedback.
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