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Variational superposed Gaussian approximation for time-dependent solutions of Langevin equations
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We propose a variational superposed Gaussian approximation (VSGA) for dynamical solutions of Langevin
equations subject to applied signals, determining time-dependent parameters of superposed Gaussian distributions
by the variational principle. We apply the proposed VSGA to systems driven by a chaotic signal, where the
conventional Fourier method cannot be adopted, and calculate the time evolution of probability density functions
(PDFs) and moments. Both white and colored Gaussian noises terms are included to describe fluctuations. Our
calculations show that time-dependent PDFs obtained by VSGA agree excellently with those obtained by Monte
Carlo simulations. The correlation between the chaotic input signal and the mean response are also calculated
as a function of the noise intensity, which confirms the occurrence of aperiodic stochastic resonance with both
white and colored noises.
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I. INTRODUCTION

Langevin equations can model systems subject to fluctu-
ations and hence have many applications in diverse research
fields such as physics, chemistry, financial engineering, and
biology [1–3]. Without a driving force, systems subject to
white Gaussian noise relax to their stationary states. For
one-dimensional stationary systems, the probability density
function (PDF) can be obtained in a closed form for many
cases. However, in the presence of a driving force, its
time-dependent solution is rarely available even for one-
dimensional systems. Recent advancements in nonequilibrium
theory [4,5] strongly demand reliable methods for time-
dependent solutions of Langevin equations for systems driven
by time-dependent external forces. The moment method (MM)
is widely used to study dynamics [6–8]; it considers the time
evolution of moments of PDFs [in most cases, up to the
second-order moments (mean and variance) are considered]. If
we truncate at the second moment (i.e., nth-order terms where
n � 3 are ignored), the number of differential equations is
N (N + 3)/2, where N is the dimensionality of the model;
thus, with current computer capabilities, the MM is tractable
up to relatively large N . Although the MM can provide
satisfactory results for linear (or weakly nonlinear) systems,
its applicability collapses even for simple bistable models.
Here, for time-dependent solutions of Langevin equations,
we propose an approximation technique in which PDFs are
represented by superposed multiple Gaussian distributions,
obtaining time-evolution equations for parameters of each of
the Gaussian distributions with the variational principle. We
call the proposed method the variational superposed Gaussian
approximation (VSGA). Dynamical Gaussian approximations
have a long history in quantum mechanics. Heller introduced
the Gaussian wave-packet method [9], which approximates
time-dependent solutions of Schrödinger equations with a
Gaussian packet by obtaining equations for the mean and
variance through the McLachlan variational principle [10]
(other equivalent variational principles are also known [11–13]
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and this is a special case of the weighted residual method).
Several researchers extended Heller’s approach to incorporate
multiple Gaussian distributions [14–16], and these methods
can provide reliable solutions for time-dependent wave func-
tions by virtue of their multiplicity. Although the effectiveness
of the multiple Gaussian method with the variational principle
has been shown to approximate time-dependent wave func-
tions [14–16], its capability has not been shown in the context
of time-dependent Fokker-Planck equations (FPEs).

After the Gaussian wave-packet approximations in quan-
tum mechanics, several studies employed a superposition
of Gaussian distributions for Langevin equations [17–19].
Reference [17] adopted superposed Gaussian distributions
to approximate stationary solutions through the weighted
residual method. For dynamical solutions, Ref. [18] employed
superposed Gaussian distributions based on the statistical
equivalent linearization where PDFs are represented by small
elements of Gaussian distributions. It was noted that Pradl-
warter’s method has to manage the variance and the number
of Gaussian distributions during the propagation. Similarly,
Terejanu et al. [19] developed an approximation scheme based
on superposed Gaussian distributions, which calculated the
mean and variance with a fixed weight. After calculating
the mean and variance, they optimized the weight, using
quadratic programming to minimize the squared error. Unlike
these approaches, the VSGA does not require such extra
steps; it directly calculates the mean, variance, and weight
in a unified way. Reference [20] approximates time-dependent
solutions with exponential of a polynomial function to ob-
tain the time-evolution equations of parameters through the
weighted residual method. However, such an approximation
has difficulty in satisfying the normalization condition during
the time evolution. There are several numerical approaches
to the study of the dynamics of FPEs that represent PDFs by
using complete set functions (e.g., a matrix continued-fraction
method; for details, see Ref. [21] and the references therein).
More-direct numerical schemes, such as a finite-element
method [22,23] and a finite-difference method [24], have also
been studied. These approaches, however, have high compu-
tational costs and hence are not suited for time-dependent
solutions.
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To investigate the effectiveness of VSGA, we applied
it to a quartic bistable system subject to white or colored
noise. Although a bistable system can describe switching
dynamics and has many and varied applications to realistic
problems [25], its nonlinearity makes the application of the
simple MM difficult. We consider a system driven by a
chaotic signal (the Rössler oscillator). When the signal is
aperiodic, we cannot use a Fourier series expansion, as is
often employed for periodic cases [26], and hence many
studies have resorted to using direct Monte Carlo (MC)
simulations. We show that VSGA can accurately approximate
the time-dependent moments and the PDFs of the systems for
both white (one-dimensional) and colored (two-dimensional)
noises. Calculating the correlation between the chaotic input
signal and the mean of the dynamics [cf. Eq. (27)], we
show that the correlation is maximal when the noise is of
intermediate strength; this is a signature of aperiodic stochastic
resonance (ASR) [27,28] [for general stochastic resonance
(SR), see [29–33] and the references therein]. Furthermore,
from the results with colored noise, we show that the time
correlation weakens the magnitude of the ASR.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our proposed method, the VSGA, and
provide a detailed explanation of the variational principle for
FPEs. We obtain implicit differential equations that should
be satisfied by the mean, variance, and weights of each of
the Gaussian distributions. In Sec. III, we investigate the
effectiveness of VSGA by applying it to two cases: a bistable
system driven by a chaotic signal subject to white noise
(Sec. III A) and colored noise (Sec. III B). Finally, we provide
a discussion and present our conclusions in Sec. IV.

II. METHODS

We consider an N -dimensional Langevin equation (the
Stratonovich interpretation),

dxi

dt
= fi(x,t) +

Ng∑
j=1

gij (x,t)ξj (t), (i = 1,2, . . . ,N ), (1)

where x = (x1, . . . ,xN )� (� denotes the transpose operation)
is an N -dimensional column vector, fi(x,t) and gij (x,t) denote
drift and multiplicative terms, respectively, ξi(t) is white
Gaussian noise with the correlation 〈ξi(t)ξj (t ′)〉 = 2δij δ(t −
t ′), and Ng is the number of noise sources [21]. The Langevin
equation (1) has the corresponding FPE [21],

∂

∂t
P (x; t) = L̂(x,t)P (x; t), (2)

where P (x; t) is the probability density of x at time t , and
L̂(x,t) is an FPE operator defined by

L̂(x,t) = −
∑

i

∂

∂xi

Fi(x,t) +
∑
i,j

∂2

∂xi∂xj

Gij (x,t). (3)

Here Fi(x,t) = fi(x,t) + ∑
k,j gkj (x,t)∂xk

gij (x,t) and
Gij (x,t) = ∑

k gik(x,t)gjk(x,t) [note that the VSGA can be
applied to the Itô interpretation by modifying Fi(x,t)] [21].
We are interested in a time-dependent solution P (x; t) of

PDF

Basis functions

(b)(a)

FIG. 1. (Color online) (a) Illustration of time evolution of a PDF.
If the PDF at time t [i.e., P (x; t)] is known, the optimal P (x; t +
�t) is given by P (x; t + �) � P (x; t) + �t�(x; t), where �(x; t) is
optimal. (b) Example of an approximative PDF (solid line) that is a
superposition of five Gaussian distributions (dashed lines).

Eq. (2). We approximate the time evolution by using the
variational principle, which is explained below for the FPE.

Let �(x; t) be the time derivative of P (x; t), i.e., �(x; t) =
Ṗ (x; t). We focus on a specific time t , where P (x; t) is already
known, and we want to know the optimal time evolution
�(x; t) [Fig. 1(a)]. In other words, we want to calculate
P (x; t + �t), where �t is a sufficiently small increment,
from a known P (x; t) by using P (x; t + �t) � P (x; t) +
�t�(x; t). From Eq. (2), the optimal �(x; t) should minimize

R[�] =
∫ ∞

−∞
{L̂(x,t)P (x; t) − �(x; t)}2dx, (4)

where we have abbreviated as follows:∫ ∞
−∞ dx1 · · · ∫ ∞

−∞ dxN = ∫ ∞
−∞ dx. Although we may obtain

the optimal P (x; t + �t) by solving Eq. (4) with respect to
�, the optimal � does not necessarily yield solutions that
satisfy the normalization condition

∫ ∞
−∞ P (x; t)dx = 1 at any

time t . Therefore, we should impose an additional constraint
on Eq. (4). When P (x; t) is normalized at t = 0, then the
normalization of P (x; t) at t > 0 is satisfied by the equation
given by

d

dt

∫ ∞

−∞
P (x; t)dx =

∫ ∞

−∞
�(x; t)dx = 0. (5)

Therefore, to minimize Eq. (4) with the normalization condi-
tion of Eq. (5), we consider the equation

R̃[�] =
∫ ∞

−∞
{L̂(x,t)P (x; t) − �(x; t)}2dx

+ λ(t)
∫ ∞

−∞
�(x; t)dx, (6)

where λ is the Lagrange multiplier. With a variation of δ�(x; t)
in Eq. (6), δR̃ should vanish for the optimal �(x; t), yielding∫ ∞

−∞
δ�{L̂(x,t)P (x; t) − �(x; t) + λ(t)}dx = 0, (7)

where we redefined λ for notational convenience. Suppose
P (x; t) is a function parametrized by time-dependent K values
θ (t) = (θ1(t),θ2(t), . . . ,θK (t)),

P (x; t) = P (x; θ (t)), (8)
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where the time-dependence of P (x; t) is represented through
θ(t). Thus, �(x; t) is given by

�(x; t) = �(x; θ (t),θ̇(t)). (9)

The variation δ� can be achieved only through the variation δθ̇

[θ cannot be changed, as we assumed that P (x; t) = P (x; θ (t))
is fixed at time t]:

δ� =
K∑

	=1

∂�(x; θ ,θ̇ )

∂θ̇	

δθ̇	, (10)

where

∂�(x; θ ,θ̇ )

∂θ̇	

= ∂

∂θ̇	

dP (x; θ )

dt

= ∂

∂θ̇	

[
K∑

	′=1

∂P (x; θ )

∂θ	′
θ̇	′

]
= ∂P (x; θ )

∂θ	

. (11)

For the variation δθ̇ = (δθ̇1, . . . ,δθ̇K ), we consider the simplest
orthogonal case:

δθ̇ = (1,0,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0,0,0, . . . ,1).

Substituting Eqs. (10) and (11) into Eq. (7), we have K

constraints∫ ∞

−∞

∂P (x; θ )

∂θ	

{L̂(x,t)P (x; θ ) − �(x; θ ,θ̇ ) + λ(t)}dx = 0

(	 = 1,2, . . . ,K), (12)

which is the variational principle for FPEs that is equivalent to
the McLachlan one. Also, Eq. (12) without λ can be seen as
minimizing the residual with a weight function ∂θ	

P (x; θ ).
We next show an explicit form of P (x; θ (t)). We ap-

proximate P (x; t) with a superposition of multiple Gaussian
distributions [Fig. 1(b)],

P (x; θ (t)) =
NB∑

m=1

rmg(x; Am(t),bm(t)), (13)

where g(x; A,b) is an un-normalized Gaussian distribution:

g(x; A,b) = exp(−x� Ax + b�x). (14)

Here A is an N × N symmetric matrix (positive definite),
b is an N -dimensional column vector, rm is a parameter that
combines the weight of the mth Gaussian with a normalization
constant, and NB is the number of basis functions. We
employed a parametrization of Eq. (14) that is different
from the conventional multivariate Gaussian representation,
because multidimensional calculations are easier with Eq. (14)
(cf. Appendix A). For instance, multiplication is simply given
by

g(x; Am,bm)g(x; Am′ ,bm′) = g(x; Am + Am′ ,bm + bm′).

We optimized all of the Gaussian parameters by using the
variational principle, i.e., θ = (Am,bm,rm)NB

m=1. For an N -
dimensional system and NB basis functions, the total number
of parameters is

K = NB(N + 1)(N + 2)

2
. (15)

From Eq. (12) and the constraint of Eq. (5), we obtain (K + 1)
implicit differential equations of the following form:

H	(θ (t),θ̇(t),λ(t),t) = 0, 	 = 1,2, . . . ,K,K + 1. (16)

Equation (16) is called a differential algebraic equation
(DAE) [34]. Because the dimensionality of (θ̇(t),λ(t)) is
K + 1 and there are K + 1 equations, we can uniquely specify
(θ̇ (t),λ(t)) given θ (t). However, because it is very difficult to
explicitly solve Eq. (16) with respect to (θ̇(t),λ(t)) for higher
dimensional cases, we use a DAE solver in Mathematica 10
(NDSolve function). VSGA does not accept arbitrary initial
values, because (Am,bm,rm)NB

m=1 should satisfy the normalizing
condition, which can be obtained from Eqs. (A3)–(A5) (cf.
Appendix B).

III. RESULTS

We applied the VSGA to two double-well systems driven by
chaotic signals, one subject to white Gaussian noise (Sec. III A)
and the other subject to colored Gaussian noise (Sec. III B).
We also performed MC simulations to show the reliability of
the VSGA.

A. Chaotically driven bistable potential subject to white noise

We applied the VSGA to a driven bistable potential subject
to white Gaussian noise. Specifically, we applied it to a one-
dimensional potential driven by an input signal I (t),

dy

dt
= y − y3 + I (t) +

√
Dξ (t), (17)

where D is the noise intensity and ξ (t) is white Gaussian noise
with the correlation 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′). The FPE operator
L̂(x,t) = L̂(y,t) is given by

L̂(y,t) = − ∂

∂y
{y − y3 + I (t)} + D

∂2

∂y2
. (18)

Substituting Eq. (18) into Eq. (12), we can calculate K

coupled DAEs with respect to θ = (Am,bm,rm)NB

m=1 (for the
one-dimensional case, Am = am and bm = bm, where am,bm

are real scalar quantities), requiring moments of the Gaussian
distribution of up to the sixth order [

∫ ∞
−∞ yny g(y; A,b)dy,

with ny � 6]. For the one-dimensional case, the normalization
constraint is

d

dt

∫ ∞

−∞
P (x; θ (t))dx

= d

dt

∫ ∞

−∞

NB∑
m=1

rm(t) exp[−am(t)y2 + bm(t)y]dy = 0,

(19)

yielding

0 =
NB∑

m=1

√
π

4am(t)5/2
[4am(t)2ṙm(t) − 2am(t)rm(t)

× {ȧm(t) − bm(t)ḃm(t)}

− bm(t)2ȧm(t)rm(t)] exp

[
bm(t)2

4am(t)

]
. (20)
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FIG. 2. (Color online) Trajectories of Rössler chaos
[Eqs. (21)–(23)]: (a) 3D plot of s1, s2, and s3; and (b) s1 as a
function of t . The parameters are c1 = 0.15, c2 = 0.2, and c3 = 7.1.

Equation (20) should be solved along with the DAEs obtained
from Eq. (12); the total dimensionality of the DAEs is K + 1.

For the input signal I (t), we used the Rössler oscillator [35]:

ds1

dt
= −s2 − s3, (21)

ds2

dt
= s1 + c1s2, (22)

ds3

dt
= c2 + s3(s1 − c3). (23)

Here ci are parameters of the oscillator, and we used c1 =
0.15, c2 = 0.2, and c3 = 7.1 (identical to the values used
in Ref. [36]), with which Eqs. (21)–(23) exhibit chaotic
dynamics. Figures 2(a) and 2(b) show trajectories of the
Rössler oscillator for (a) s1, s2, and s3 and (b) s1 as a function of
time t . The average peak-to-peak interval (which corresponds
to the period of the oscillations) of s1(t) is about 6. We define
the input signal as

I (t) = αs1(ωt), (24)

where α is the input strength and ω is the reciprocal of the
time scale (this corresponds to the angular frequency of the
periodic oscillations). Although time-dependent solutions of
periodically driven systems are often represented as a Fourier
series expansion [26], such an expansion cannot be used for a
chaotically driven system.

We first study a stationary case [i.e., I (t) = κ , where κ is a
constant parameter], because stationary PDFs can be obtained
analytically for a quartic potential. Note that the VSGA in
a stationary case is essentially equivalent to that given in
Ref. [17]. The stationary PDF Pst (y) is given by

Pst (y) = 1

Z(D)
exp

[
− U (y)

D

]
, (25)

where Z(D) = ∫ ∞
−∞ exp[−U (y)/D]dy (numerically inte-

grated) and U (x) is a potential function U (y) = − ∫
(y − y3 +

κ)dy = y4/4 − y2/2 − κy. The stationary PDF of a VSGA
is obtained by letting the system evolve for a long enough
time when it equilibrates. Although in the VSGA calculations
with larger NB can yield more accurate results, we employed
NB = 5 (total parameter size is K = 15 [Eq. (15)]) because
numerical instability occurs for excessively large NB due
to the nonorthogonality of multiple Gaussian distributions.
Figure 3 shows the stationary distributions of the VSGA
(NB = 5; dashed line) and the analytic solutions obtained for
Eq. (25) (solid line) for (a) D = 0.2 and κ = 0, (b) D = 1.0
and κ = 0, and (c) D = 0.5 and κ = 0.1. In all parameter
settings, the VSGA shows very good agreement with the
analytical solutions, including the asymmetric case [Fig. 3(c)].
In Figs. 3(a)–3(c), the dot-dashed lines denote the Gaussian
bases constituting the PDFs of the VSGA; we can see that
two bases each are located near the deterministic stable steady
states (y = ±1) and one near the deterministic unstable steady
state (y = 0). In Figs. 3(a)–3(c), the insets describe tails of
PDFs with lot plots, where we see that tails of VSGA decay
slightly slower than analytical solutions; this is because tails
of VSGA are exp[−O(y2)] (Gaussian), while the analytical
ones are exp[−O(y4)]. There is a small deviation in VSGA
solutions around y = 0 and it is considered that the deviation
compensates slow decay at tails of the PDFs. We next see a
relation between NB and an error ε of the approximation by
calculating distance between analytic and VSGA stationary
PDFs:

ε =
∫ ∞

−∞
{Pst (y) − P (y; θ )}2dy. (26)

Figure 4 shows the error ε as a function of NB with a log
plot, where circles and a line denote ε and its fitting line
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FIG. 3. (Color online) Stationary PDFs obtained by analytic calculation of Eq. (25) (solid line) and by the VSGA with NB = 5 (dashed
line) for (a) D = 0.2 and κ = 0, (b) D = 1.0 and κ = 0, and (c) D = 0.5 and κ = 0.1. In (a)–(c), the dotted lines denote each of the single
bases of the VSGA. The insets show log plots of PDFs at tail regions.
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FIG. 4. (Color online) Error ε [Eq. (26)] of VSGA as a function
of NB for the one-dimensional stationary case, where circles and a
line denote ε and its fitting curve, respectively (the curve is ln ε =
−1.48NB + 0.28). Parameters are D = 0.2 and κ = 0.

(ln ε = −1.48NB + 0.28), respectively. We see that the error
ε decreases exponentially as a function of NB .

We next studied the dynamical case where the input I (t) is
given by Eq. (24). Figure 5 displays the P (y; t) as functions of
y and t , which are calculated by the VSGA with NB = 5, for (a)
D = 0.2, α = 0.02, and ω = 0.5; (b) D = 1.0, α = 0.02, and
ω = 0.5; and (c) D = 0.2, α = 0.02, and ω = 0.25. To verify
the P (y; t) calculated by the VSGA, we evaluated the accuracy
of the PDFs P (y; t) at time t = 100 by calculating the VSGA
and by performing MC simulations (we selected t = 100 so
that we could ignore the effects of the initial values). For
the MC simulations, the PDFs were constructed by repeating
the stochastic simulations 100 000 times (time resolution is
0.0001). Figures 6(a)–6(c) show the PDFs calculated by the
MC simulations (circles), the VSGA (dashed line), and each
of the bases of the VSGA (dotted line). The parameter settings
for panels (a), (b), and (c) correspond to those in Figs. 5(a)–
5(c), respectively. For all parameter settings, the PDFs of the
VSGA are in excellent agreement with those obtained by the
MC simulations; this verifies the reliability of the VSGA with
respect to the PDFs at a specified time.

In order to see the dynamical aspects of the VSGA, we also
compared the mean 〈y(t)〉 obtained by the MC simulations
to that obtained by the VSGA for the interval t = 100–200
(we did not consider the interval t = 0–100 because of the
initial value effects). In Figs. 7(a)–7(c), we show the mean

〈y(t)〉 calculated by the MC simulations (dashed line), the
VSGA with NB = 5 (solid line), and the VSGA with NB = 1
(dot-dashed line). The parameter settings for (a), (b), and (c)
correspond to those used in Figs. 5(a)–5(c), respectively. For
the MC simulations, we repeated the Langevin equations with
the same chaotic signal 10 000 times to calculate the average.
Along with results of VSGA with NB = 5 plotted by solid
lines, dot-dashed lines show those calculated by the VSGA
with NB = 1, which is similar to the MM case. In Figs. 7(a)–
7(c), we can see that the mean 〈y(t)〉 of the values obtained
by the VSGA with NB = 5 are in excellent agreement with
that of the MC simulations, but not with that of the NB = 1
model. The mean of the NB = 1 values is located near 1 and
it only approximates one of the two wells (the mean would be
distributed around −1 for particular different initial values).

In order to study the properties of the VSGA in more detail,
we considered the time evolution of the parameters of each
of the Gaussian bases for NB = 5. Figures 8(a)–8(c) show the
mean μm, standard deviation σm, and weight qm, respectively,
of each Gaussian basis as a function of time t [μm, σm, and qm

were calculated by am, bm, and rm with Eqs. (A6)–(A8)]; the
parameters were D = 0.2, α = 0.02, and ω = 0.25 identical to
those used in Fig. 5(c). In Figs. 8(a)–8(c), solid, dashed, dotted,
dot-dashed, and long-dashed lines represent the quantities of
the 1st,2nd, . . . ,5th Gaussian bases, respectively. In Fig. 8(a),
which shows the time evolution of the mean μm, we can see
that the two wells are each approximated by two Gaussian
distributions, and the temporal variation of the mean is at most
∼1 (cf. 5th basis; long-dashed line). From the time evolution of
the standard deviation σm [Fig. 8(b)], we see that the temporal
variation as a function of time is small (about ∼0.1), although
the standard deviation averaged over time is different for each
basis. In Fig. 8(c), all the weights qm are distributed around
0.2, which shows that all of the bases contributed to the PDF.
Because the VSGA approximates the two wells with more than
two Gaussian distributions, the mean properly approximates
the exact time evolution.

Driven bistable systems subject to noise are often character-
ized by the maximal signal-to-noise ratio under adequate noise
strength (SR). Although SR was originally studied in periodic
signals, Refs. [27,28] studied the SR effects in aperiodic
signals. We quantified the extent of SR for aperiodic signals
as

C0 = I (t)〈y(t + T0)〉, (27)
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FIG. 5. (Color online) Dynamical PDFs P (y; t) as functions of y and t obtained by the VSGA with NB = 5 for (a) D = 0.2, α = 0.02,
and ω = 0.5; (b) D = 1.0, α = 0.02, and ω = 0.5; and (c) D = 0.2, α = 0.02, and ω = 0.25.
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FIG. 6. (Color online) PDFs P (y; t) at time t = 100 obtained by MC simulations (circles), the VSGA with NB = 5 (dashed line), and each
of the Gaussian bases of the VSGA (dotted line). The parameters in panels (a)–(c) are the same as in Figs. 5(a)–5(c), respectively.

with

F(t) = 1

T

∫ t0+T

t0

F(t)dt,

where F(t) is an arbitrary time-dependent function, t0 is the
starting time, and T is the duration of the observation; we
again set t0 = 100 and T = 200. In Eq. (27), T0 is time lag
yielding the maximal correlation

T0 = argmax
T

I (t)〈y(t + T )〉. (28)

Here C0 evaluates the amount of chaotic information trans-
mitted, and a larger value corresponds to better transmission.
Although the SR for a chaotic signal was studied in view of
noise-induced phase synchronization [36], the ASR obtained
by calculating the correlation of Eq. (27) has not yet been
studied. Figure 9 shows (a) the correlation C0 and (b) the
time lag T0 as a function the noise intensity D, where C0

for the VSGA with NB = 5 is shown by a solid line and that
for the MC simulations is shown by circles. Note that VSGA
could not calculate solutions for D < 0.15 (see the discussion).
The parameters were α = 0.02 and ω = 0.5. C0 achieves
a maximum at D � 0.35, which indicates the occurrence
of ASR. Comparing the VSGA and MC results shown in
Figs. 9(a) and 9(b), we see very good agreement, which verifies
the reliability the VSGA. By using the VSGA, we can calculate
properties of chaotically driven systems without performing
stochastic simulations.

B. Chaotically driven bistable potential with colored noise

We next apply the VSGA to a bistable system with colored
Gaussian noise. The one-dimensional colored Gaussian noise
system can be embedded into a two-dimensional Langevin
equation with white Gaussian noise,

dy

dt
= y − y3 + I (t) + z(t), (29)

dz

dt
= − z

τ
+

√
D

τ
ξ (t), (30)

where ξ (t) is white Gaussian noise [〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′)],
I (t) is the input signal, τ is the correlation time, and z(t) (the
Ornstein-Uhlenbeck process) corresponds to a colored noise
with the correlation 〈z(t)z(t ′)〉 = (D/τ ) exp(−|t − t ′|/τ ). We
also employed the Rössler input for I (t) [Eq. (24)]. The FPE
operator L̂(y,z,t) of Eqs. (29) and (30) is

L̂(y,z,t) = − ∂

∂y
[y − y3 + z + I (t)] + 1

τ

∂

∂z
z + D

τ 2

∂2

∂z2
.

(31)

Substituting Eq. (31) into Eq. (12), we can again calculate the
K (the number of total parameters) coupled DAE with respect
to θ = (Am,bm,rm)NB

m=1, with

Am =
(

am,11 am,12

am,21 am,22

)
, bm =

(
bm,1

bm,2

)
, (32)
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FIG. 7. (Color online) Mean 〈y(t)〉 as a function of t as obtained by MC simulations (dashed line), the VSGA with NB = 5 (solid line),
and the VSGA with NB = 1 (dot-dashed line). The parameters in panels (a)–(c) are the same as in Figs. 5(a)–5(c), respectively.
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FIG. 8. (Color online) Time evolution of (a) the mean μm, (b) the standard deviation σm, and (c) the weight qm, for each Gaussian basis
(NB = 5). In panels (a)–(c), the solid, dashed, dotted, dot-dashed, and long-dashed lines represent the quantities for the 1st,2nd, . . . ,5th
Gaussian bases, respectively. The parameters are D = 0.2, α = 0.02, and ω = 0.25.

where am,12 = am,21 (Am is a symmetric matrix). We
require moments of up to the sixth order, i.e.,∫ ∞
−∞ yny znzg(y,z; A,b)dydz, with ny + nz � 6, in order to

obtain the DAE. As in the case with white Gaussian
noise, Eq. (5) should be satisfied for the normaliza-
tion, and the resulting (K + 1)-dimensional DAE is solved
numerically.

Figures 10(a) and 10(b) show PDFs P (y,z; t) at t = 100,
which are calculated by MC simulations and the VSGA with
NB = 5, respectively, for τ = 0.1 with D = 1.0, α = 0.02,
and ω = 0.5. To plot the results of the MC simulations as
functions of y and z, we employed kernel distributions. Fig-
ure 10(c) shows the marginal PDF P (y; t) = ∫ ∞

−∞ P (y,z; t)dz,
as calculated by MC simulations (circles) and by the VSGA
with NB = 5 (dashed curve). Note that these are in good
agreement. Figures 10(d) and 10(e) show similar PDFs
P (y,z; t), and Fig. 10(f) shows the marginal PDF P (y; t)
for τ = 0.5 with D = 1.0, α = 0.02, and ω = 0.5. As in the
one-dimensional case, two bases each are located near the
deterministic stable steady states [(y,z) = (±1,0)] and one
near the deterministic unstable steady state [(y,z) = (0,0)].
For τ = 0.5, the peaks of the PDFs are steeper, as can be seen
from Figs. 10(d)–10(f). Still the marginal PDF P (y; t) of the
VSGA can approximate the MC simulations. These results

verify the reliability of the VSGA for the systems with colored
Gaussian noise.

Next, we evaluated the dynamical properties of the VSGA
by comparing the means 〈y(t)〉 of the MC simulations and
the VSGA. Figure 11 shows the mean 〈y(t)〉 calculated by
the MC simulation (dashed line) and from the VSGA with
NB = 5 (solid line), for two different parameters, (a) τ = 0.1
and (b) τ = 0.5; the other parameters were D = 1.0, α =
0.02, and ω = 0.5 [the parameters settings for Figs. 11(a)
and 11(b) correspond to those in Figs. 10(a)–10(c) and 10(d)–
10(f), respectively]. In Figs. 11(a) and 11(b), the mean 〈y(t)〉
obtained from the VSGA is in good agreement with that of the
MC simulations, for both τ values. As in the case with white
Gaussian noise, the VSGA approximates the two wells with
more than two Gaussian distributions, and hence the mean path
obtained from the VSGA can accurately approximate the MC
simulations. These results show that the VSGA can be applied
to a two-dimensional system driven by external forces.

We also computed the correlation C0 [Eq. (27)] of a
chaotically driven system for the case with colored Gaussian
noise. Figure 12(a) shows the correlation C0 as a function
of the noise intensity D for τ = 0.1, where other parameters
are α = 0.02 and ω = 0.5 (C0 for the VSGA with NB = 5
is shown by a solid line and that for the MC simulations is

VSGA
 MC

VSGA
 MC

(b)(a)
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1
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FIG. 9. (Color online) (a) Correlation C0 [Eq. (27)] and (b) time lag T0 [Eq. (28)] as a function of the noise intensity D, obtained by the
VSGA with NB = 5 (solid line) and by the MC simulations (circles). The parameters are α = 0.02 and ω = 0.5. For D < 0.15, VSGA could
not calculate PDFs.
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FIG. 10. (Color online) (a),(b),(d),(e) PDFs P (y,z,; t) at time t = 100 for two τ settings (a),(b) τ = 0.1 and (d),(e) τ = 0.5 (other parameters
are D = 1.0, α = 0.02, and ω = 0.5), where (a) and (d) are obtained by the MC simulations and (b) and (e) are obtained by the VSGA with
NB = 5. (c),(f) Corresponding marginal PDFs P (y; t) for (c) τ = 0.1 and (f) τ = 0.5; results of the VSGA and the MC simulations are shown
by dashed lines and circles, respectively.

shown by circles). As seen in Fig. 12(a), C0 also achieved the
maximum value at an intermediate value of D. Comparing the
VSGA and MC results shown in Fig. 12(a), we see agreement
especially for D > 0.4. Figure 12(b) shows the time lag T0

[Eq. (28)] for the colored-noise case; again T0 for the VSGA
is shown by a solid line and that for MC simulations by
circles. From Fig. 12(b), VSGA overevaluated the time lag
T0, implying that the reliability of VSGA in the colored-noise
case is worse than the white-noise case. Comparing results of
the colored and white-noise cases, we see that the maximum
value of C0 for the colored-noise case is smaller than that
for white-noise case which indicates that the colored noise
degrades the ASR effect. However, when the noise intensity
is not optimal (i.e., D > 0.6), the colored noise can better

transmit information. We note that the time lag for T0 with the
colored-noise case is larger than that of the white noise.

IV. DISCUSSION AND CONCLUSION

The VSGA introduced in Sec. II can be used to obtain
several time-dependent solutions of FPEs. We have shown
that our approach can provide very accurate approximations
by the superposition of multiple Gaussian distributions for
one- and two-dimensional driven systems. We have modeled
the mean, variance, and weight as time-dependent parameters.
However, as inclusion of the covariance terms [Am in Eq. (13)]
significantly increases the number of parameters, it is one
possible approach to approximate the covariance as a constant
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FIG. 11. (Color online) Time dependence of mean 〈y(t)〉 for (a) τ = 0.1 and (b) τ = 0.5, calculated by MC simulations (dashed curve)
and the VSGA with NB = 5 (solid curve). The parameters are D = 1.0, α = 0.02, and ω = 0.5.
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FIG. 12. (Color online) (a) Correlation C0 [Eq. (27)] and (b) time lag T0 [Eq. (28)] as a function of the noise intensity D, obtained by the
VSGA with NB = 5 (solid line) and by the MC simulations (circles) for the colored-noise case (τ = 0.1). The parameters are α = 0.02 and
ω = 0.5. For D < 0.15, VSGA could not calculate PDFs.

in order to reduce the computational cost. This approach has
been considered in the Gaussian wave-packet approximation
in quantum mechanics [14] and is referred to as a frozen
method (the time-dependent covariance model is called a
thawed method). As shown in Fig. 8, the temporal variation of
the standard deviation is around ∼0.1, which is smaller than
that of the mean. Therefore, if we can first specify the standard
deviation of each Gaussian basis, we may ignore the time
evolution of the variance. This frozen approximation could
dramatically reduce the number of parameters in the VSGA
where the parameter size K is

K = NB(N + 1), (33)

being linear with respect to the dimension N and its order of
N is smaller than that given by Eq. (15).

Although the effectiveness of the VSGA was demonstrated
by our numerical results, it has some disadvantages. Because
multiple Gaussian distributions are not orthogonal, the VSGA
cannot calculate solutions when more than two Gaussian
distributions coalesce. In theory, the accuracy of the VSGA
increases when more basis functions are used (cf. Fig. 4).
However, due to their nonorthogonality, an excessively large
number of bases prevents the calculation of the time evolution
of the parameters. Also it becomes more difficult to find valid
initial values of DAEs for the large NB cases. Indeed, for
the one-dimensional case, the VSGA could not calculate the
time evolution with NB = 5 for D < 0.15. For such cases,
we should reduce NB in order to enable the calculations.
Similarly, for the two-dimensional case, colored noise with
a larger time correlation tends to yield steeper peaks, which
makes the application of the VSGA difficult with large NB .
Because peaks of PDFs are represented by a few Gaussian
bases in VSGA, the required number of bases NB can be
estimated by the number of stable points of the system. When
there is no input signal, we can know the number of stable
points from a deterministic equation by solving fi(x) = 0 [a
time-independent drift in Eq. (1)] and evaluating eigenvalues
of the Jacobian matrix around the solutions. If the input signal
is weak, it is expected that a driven case has the same number
of peaks as the no input case. Still the VSGA can provide a

computationally efficient way to calculate the time-dependent
dynamics of FPEs. Chaotically driven stochastic systems have
often been solved by MC simulations. As shown in Sec. III,
the VSGA successfully and very accurately calculated many
of the quantities for the system without relying on stochastic
approaches.

We applied the VSGA to a quartic bistable potential,
where the moments of the Gaussian can be calculated in
closed form. The integral in Eq. (12) can be computed
analytically if the potentials are represented by polynomials.
However, for general nonlinear models, the moment cannot
necessarily be represented in closed form. In such situations,
we may approximate the drift term fi(x) by the Taylor
expansion,

fi(x) � fi(μg) + ∇fi(μg)�(x − μg), (34)

where μg is the center of the Gaussian distribution in the
integrand. When using the linear approximation, obtained
results become unreliable when the nonlinearity of a system is
strong and/or the variance of basis is large. As for the quartic
bistable case, the linear approximation can yield accurate
solutions when the noise intensity is sufficiently weak (i.e.,
the variance of basis is small).

To summarize, we have proposed the VSGA for the
time-dependent solution for Langevin equations by using the
variational principle for superposition of multiple Gaussian
distributions. Because we have shown the effectiveness of the
VSGA in strongly nonlinear systems, the VSGA is expected
to be used for many real-world problems. Applications of the
VSGA to other problems, such as to stochastic models of gene
expression [2,3], are left to our future study.
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APPENDIX A: RELATION TO CONVENTIONAL
MULTIVARIATE GAUSSIAN REPRESENTATION

The N -dimensional multivariate Gaussian distribution is
generally given by the representation

N (x; μ,�) = 1

(2π )N/2
√|�| exp

{
− 1

2
(x−μ)��−1(x−μ)

}
,

(A1)

where μ is the mean vector (column vector) and � is the
covariance matrix (positive definite). In Eq. (A1), |�| denotes
the determinant of �. The mixture of multivariate Gaussian
distributions is given by

P (x; {μm},{�m},{qm}) =
NB∑

m=1

qmN (x; μm,�m), (A2)

where qm is the weight (
∑NB

m=1 qm = 1). This conventional
representation and Eq. (13) are related in the following
way:

Am = �−1
m

2
, (A3)

bm = �−1
m μm, (A4)

rm = qm

(2π )N/2
√|�m| exp

{
− 1

2
μ�

m�−1
m μm

}
. (A5)

According to Eq. (A3), Am is positive definite since it is the
inverse of a positive definite matrix (� is positive definite).

The inverse transform of Eqs. (A3)–(A5) is

�m = 1

2
A−1

m , (A6)

μm = 1

2
A−1

m bm, (A7)

qm = rmπN/2

√|Am| exp

{
1

4
b�

m A−1
m bm

}
. (A8)

In Eqs. (A3)–(A8), we used the fact that Am is symmetric.

APPENDIX B: INITIAL VALUES OF DAE

One of the difficulties in our approach is to find valid
initial values for the DAEs. Unlike conventional (explicit)
ordinary differential equations, DAEs must satisfy an equal-
ity condition, and some parameters should be determined
numerically by that equality (in our implementation, this
was done automatically by Mathematica 10). We found that
calculating the equality is difficult in some cases. For larger
noise intensities D (for both the white- and colored-noise
cases) and for smaller correlation times τ (for the colored-noise
case), it is relatively easy to find valid initial values for
the DAE. Therefore, when finding initial values when D is
smaller, we first find valid initial values with D = 1.0 (large D

value) and then iterate the calculations, adopting the converged
stationary values of the preceding D values as the initial values
used to find the next D value. It is also possible to adjust the
system by making D (or τ ) a time-dependent parameter and
assuming that D (τ ) decreases (increases) over time starting
from large D (small τ ) value. This time-dependent technique
was employed for the τ = 0.5 case.
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