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Renormalized phonons in nonlinear lattices: A variational approach
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We propose a variational approach to study renormalized phonons in momentum-conserving nonlinear lattices
with either symmetric or asymmetric potentials. To investigate the influence of pressure for phonon properties,
we derive an inequality which provides both the lower and upper bound of the Gibbs free energy as the
associated variational principle. This inequality is a direct extension to the Gibbs-Bogoliubov inequality. Taking
the symmetry effect into account, the reference system for the variational approach is chosen to be harmonic
with an asymmetric quadratic potential which contains variational parameters. We demonstrate the power of
this approach by applying it to one-dimensional nonlinear lattices with a symmetric or asymmetric Fermi-Pasta-
Ulam-type potential. For a system with a symmetric potential and zero pressure, we recover existing results.
For other systems which are beyond the scope of existing theories, including those having symmetric potential
and pressure and those having the asymmetric potential with or without pressure, we also obtain accurate sound
velocity.
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I. INTRODUCTION

Heat conduction in low-dimensional anharmonic systems
has attracted considerable interest in recent years [1–3]. The
phonon, as the predominant heat carrier in insulating materials,
undoubtedly lies in the center of heat conduction. However,
the phonon bears a solid basis only in harmonic systems. The
intrinsic nonlinearity in anharmonic systems will inevitably
affect the behavior of the phonon. Therefore, understanding
phonon properties in anharmonic systems represents an im-
portant question in the heat conduction field.

A renormalized phonon (r-ph) picture was put forward
independently by several groups using varying techniques
[4–11]. Within the scope of this picture, one can successfully
interpret and understand a wide range of physical phenomena,
including a theoretical description of the sound velocity [12]
as well as scaling laws of thermal conductivity κ(T ) with
temperature T [10,13].

However, the generality of existing, state-of-the-art quasi-
harmonic theories is limited. They were found to provide
inaccurate predictions for the sound velocity of a nonlin-
ear lattice with an asymmetric interparticle potential [14].
Recently a numerical method which aims to justify the
validity of the phonon concept in nonlinear lattices was
proposed [15]. The existence of phonon modes in nonlinear
lattices with asymmetric potentials is confirmed for a wide
range of parameters. Hence, a unified quasiharmonic theory
which extends to cover the general cases beyond harmonic is
desirable.

In statistical mechanics, variational approaches are of-
ten used to obtain approximate information of a nonlinear
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system via a reference system and an associated variational
principle [16]. The reference system whose properties can
be easily obtained contains several variational parameters.
In a variational scheme, an optimal reference system can be
obtained by varying those parameters such that bounds of the
variational principle go to a relative minimum or maximum.

In this paper, we develop a variational approach to study
phonons in nonlinear lattices. We choose a general harmonic
system as the reference system for this purpose and regard
the so-obtained optimal harmonic system as an approximation
to the original system from which we identify the proper-
ties of r-phs. We consider applications to one-dimensional
(1D) nonlinear lattices with either symmetric or asymmetric
interparticle Fermi-Pasta-Ulam (FPU) potentials [17] and
demonstrate the power of our approach by comparing with
molecule dynamics (MD) results.

This paper is organized as follows. In Sec. II, we introduce
our variational approach. In Sec. III, we present numerical
details. In Sec. IV and Sec. V, we study nonlinear lattices
with symmetric and asymmetric FPU potentials, respectively.
Finally, we briefly summarize the work in Sec. VI.

II. THE VARIATIONAL APPROACH

A. The variational principles

Our current investigation aims to develop a quasiharmonic
theory applicable for nonlinear lattices with asymmetric
potentials. One of the attractive features of such systems is the
existence of nonzero internal pressure due to the asymmetry
of the potential. Then from a statistical mechanics point of
view, it is convenient to use the language of the isothermal-
isobaric ensemble which maintains constant temperature T ,
constant particle number N , and constant pressure P (so-called
NPT ensemble) to describe them [18]. Their equilibrium
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thermodynamic properties can thus be well determined by
the Gibbs free energy

G = −β−1
T ln

[ ∫
e−βT (H+PL)dqdp

]
, (1)

where H , P , and L denote the Hamiltonian, pressure, and
volume (or length in 1D cases) of the system, respectively,
βT ≡ 1/T is the inverse temperature (we set kB = 1), and
q and p are short for the products of all the coordinates
and momenta of the system, respectively. The volume L is
a function of q only. Introducing

H = H + PL, (2)

whose ensemble average is just the enthalpy of the system [19],
the corresponding probability measure in phase space reads

ρ(q,p) = e−βT H∫
e−βT Hdqdp

≡ e−βT (H−G). (3)

A variational principle is an inequality satisfied by the
physical quantity in which we may be interested [16]. Hence
we should look for inequalities for the Gibbs free energy G. To
do this, we introduce a reference system with a Hamiltonian
H0 and prepare the original system and the reference system
at same pressure. Then following this spirit, we integrate both
sides of the following equality:

ρ(q,p) = ρ0(q,p)e−βT (H−H0)−βT (G0−G) (4)

over the whole phase space to yield

1 = e−βT (G0−G)〈e−βT (H−H0)〉ρ0 , (5)

where G0 is the Gibbs free energy of the reference system and
H0 = H0 + PL0, 〈·〉ρ0 denotes the ensemble average under
the probability measure ρ0(q,p) ≡ e−βT (H0−G0).

Taking the logarithm over both sides of the above equation
and using the Jensen’s inequality for exponential functions,
i.e., 〈ex〉 � e〈x〉(following Ref. [20]), we have

G � G0 + 〈H − H0〉ρ0 . (6)

By switching the role of the nonlinear system and the reference
system in Eq. (4), we obtain

G � G0 + 〈H − H0〉ρ (7)

with 〈·〉ρ the ensemble average with respect to the probability
measure ρ(q,p) [cf. Eq. (3)]. These two inequalities [Eqs. (6)
and (7)] give the upper and lower bound of G, respectively.

If the pressure vanishes, i.e., P = 0, the Gibbs free energies
G and G0 reduce to the Helmholtz free energies F and
F0, respectively, the enthalpy goes to the energy, and the
probability measure Eq. (3) should also be replaced by the
canonical measure

ρc(q,p) = e−βT H∫
e−βT H dqdp

≡ e−βT (H−F ). (8)

Then we found that the inequality Eq. (6) recovers the well-
known Gibbs-Bogoliubov (GB) inequality [21]

F � F0 + 〈H − H0〉ρc
0
, (9)

where F0 is the Helmholtz free energy of the reference system
and 〈·〉ρc

0
stands for the ensemble average with respect to

the canonical measure ρc
0(q,p)[≡e−βT (H0−F0)]. The inequality

Eq. (7) goes to

F � F0 + 〈H − H0〉ρc (10)

with 〈·〉ρc the ensemble average with respect to the probability
measure ρc(q,p) [cf. Eq. (8)]. As a lower bound of the
Helmholtz free energy F [16,22], it is little applied since
the ensemble average in it cannot be evaluated analytically.
However, it is more accurate than the upper bound in
determining the free energy of solids [23,24]. As can be
seen later, in our case for determining the sound velocity for
anharmonic lattices, it is still the lower bound that gives better
prediction comparing to the upper bound.

B. The nonlinear systems

We consider 1D momentum conserving nonlinear lattices
described by the general Hamiltonian [25]

H =
N∑

n=1

[
p2

n

2m
+ V (qn − qn−1)

]
, (11)

where N is the particle number, pn denotes the momentum
of nth particle, qn = xn − nr denotes the displacement of nth
particle from its equilibrium position nr with xn the absolute
position and r the equilibrium distance for the interaction bond,
and V represents the interparticle potential. For brevity and
without loss of generality, we take m = 1 and r = 1 as the
unit of mass and length, respectively.

The average lattice spacing a is then given by 1 + 〈qn −
qn−1〉ρ , and the average lattice length L̄ ≡ 〈L〉ρ equals Na for
an N -particle lattice. We say that the lattice is at its natural
length if a equals r [=1], namely, L̄ = N for an N -particle
lattice. The average length can be changed to other values by
applying pressure.

Furthermore, we introduce δn ≡ qn − qn−1. If the potential
satisfies V (δn) = V (−δn), we refer it to a symmetric potential,
otherwise we call it an asymmetric one. In terms of δn and pn,
the equations of motion (EOMs) read

δ̇n = pn − pn−1, (12)

ṗn = V ′(δn+1) − V ′(δn), (13)

where the dot and the prime denote the time and space
derivative, respectively.

Specifically, in this work, we focus on the FPU lattices with
the interparticle potential [17]

V (δn) = 1

2
δ2
n + α

3
δ3
n + β

4
δ4
n, (14)

which has become an archetype 1D nonlinear system in
statistical mechanics [26,27]. We call the lattice with α = 0 the
FPU-β lattice. Otherwise, we refer it to as the FPU-αβ lattice.
For simplicity but without loss of generality, we study only
the case of β = 1 in this paper. It is evident that the FPU-β
lattice has a symmetric potential while the FPU-αβ lattice has
an asymmetric one. Therefore, an FPU-β lattice with natural
length has zero pressure, while an FPU-αβ lattice with natural
length has a nonvanishing pressure due to the asymmetry of
the potential. Nevertheless, our variational principles [Eqs. (6)
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and (7)] enable us to study them within the same theoretical
scheme.

C. The harmonic reference system H0

Phonons bear a solid basis only in harmonic systems, and
in order to develop an effective phonon theory for nonlinear
lattices, we should choose a quadratic H0 as a reference system.
Moreover, the present work investigates nonlinear lattices
with asymmetric interparticle potentials. Taking those into
consideration, we consider a harmonic reference system in
the following form:

H0 =
N∑

n=1

[
p2

n

2
+ V0(δn)

]
, V0(δn) = K

2
(δn − d)2, (15)

in which K and d are variational parameters with K being
the effective elastic constant and d quantifying the degree of
asymmetry of the potentials. Note that by setting d = 0, we
can use H0 to deal with nonlinear systems with symmetric
potentials as well.

The dispersion relation of this reference system is given by

ωk = 2
√

K sin
ka

2
, (16)

where k is the wave number. It can be regarded as an
approximate dispersion relation for the r-phs in nonlinear
lattices [15]. The corresponding sound velocity reads

cs =
√

Ka. (17)

The variational method is then to select the optimal
reference systems with parameterized Hamiltonian H0 that
either minimize the right-hand side (r.h.s.) of Eq. (6) or
maximize the r.h.s. of Eq. (7). This strategy then provides
approximations for the Gibbs free energy and allows us to
find optimal H0 for the system H . The process is going to be
detailed in the next subsection.

D. Determining the optimal harmonic systems

Note that dq1dq2 · · · dqN = dδ1dδ2 · · · dδN in the large
N limit (the Jacobian is unity), then for a system with the
probability measure Eq. (3), we have

ρ(q,p) =
N∏

n=1

ρs(δn,pn), (18)

where ρs denotes the marginal phase space distribution for the
single site variables δn and pn of nth particle [28,29]

ρs(δ,p) = 1

z
exp

{
−βT

[
p2

2
+ V (δ) + Pδ

]}
(19)

with z the corresponding partition function

z =
∫∫

exp

{
−βT

[
p2

2
+ V (δ) + Pδ

]}
dδdp. (20)

Such a result can be readily tested using MD simulations; see
Sec. III.

For a system with sufficiently large particle number N , the
Gibbs free energy can be expressed as

G = Ng = −Nβ−1
T ln z, (21)

where g = −β−1
T ln z is the Gibbs free energy per particle. So

the Gibbs free energy of the reference system H0 reads

G0 = −Nβ−1
T ln z0 (22)

with z0 the partition function determined by Eqs. (15) and (20).
It can be evaluated analytically, which gives

z0 = 2π

βT

√
K

exp

[
− βT

(
Pd − P 2

2K

)]
. (23)

Using the single-site distribution Eq. (19), and noticing
that the length L and L0 have a same expression, namely,∑

n(1 + δn), the averages in Eqs. (6) and (7) read

〈H − H0〉ρ0 = N〈V (δ) − V0(δ)〉ρ0
s
, (24)

〈H − H0〉ρ = N〈V (δ) − V0(δ)〉ρs
, (25)

where 〈·〉ρ0
s

and 〈·〉ρs
denote single-site averages with respect

to the probability measure Eq. (19) with the potential being V0

and V , respectively. We will use these symbols in the rest of
the paper.

1. The upper bound harmonic system

First, we focus on the upper bound of G [Eq. (6)].
Minimizing it with respect to the variational parameters K

and d, i.e.,

∂

∂K
[G0 + 〈H − H0〉ρ0 ] = 0, (26)

∂

∂d
[G0 + 〈H − H0〉ρ0 ] = 0, (27)

we obtain the following coupled equations:

dU =
〈
(V − V0)

(
δ + P

KU

)〉
ρ0

s

〈V − V0〉ρ0
s

, (28)

KU = 〈V − V0〉ρ0
s

βT

〈
(V − V0)

(
δ − dU + P

KU

)2〉
ρ0

s

. (29)

It can be readily tested that the second order derivatives are
positive at (dU ,KU ) so that this set of solution indeed gives
the minimum of the upper bound. Thus KU and dU determine
the optimal upper bound of the Gibbs free energy G and the
corresponding optimal Harmonic reference system (denoted
as the UH system).

2. The lower bound harmonic system

Now we turn to the lower bound of G [Eq. (7)]. Similarly,
we maximize it with respect to the variational parameters K

and d, and the optimal solution reads

dL = 〈δ〉ρs
+ P

KL

, (30)

KL = 1

βT [〈δ2〉ρs
− (〈δ〉ρs

)2]
. (31)

We have also checked that KL and dL indeed give the
maximum of the lower bound, thus they uniquely determine
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the optimal lower bound of the Gibbs free energy G and the
corresponding optimal harmonic reference system (denoted
as the LH system). Note that KL does not rely on dL and is
completely determined by Eq. (31).

The LH system and the UH system can be regarded as
effective descriptions of the original nonlinear system. If we
use these two optimal systems to construct the effective theory
of r-phs in the original nonlinear system, then the dispersion
relation should follow Eq. (16) with K given by KL or KU .
The accuracy of the results can be evaluated by comparing the
calculated sound velocity with the predictions using Eq. (17).
In the following, we present numerical details and then apply
this strategy to two 1D nonlinear lattices, namely, the FPU-β
lattice and the FPU-αβ lattice.

III. NUMERICAL DETAILS

In this work, we consider systems either with or without
pressure P . The average lattice length L̄ can be controlled
by adjusting the pressure, as demonstrated in Fig. 1. It can
be clearly seen that for the FPU-β lattice once the pressure
is nonzero, the average length of the lattice is away from the
natural length, i.e., L̄ �= N . It further indicates that we can
apply a positive or negative pressure to this lattice system
in order to compress or elongate its total length. But for
systems with asymmetric potentials, i.e., the FPU-αβ lattice,
the pressure would be nonzero at its natural length. Note
that the average length L̄ equals N (1 + 〈δ〉ρs

), so a stressless
system with an asymmetric potential corresponds to an average
length N (1 + 〈δ〉ρc

s
), where ρc

s means the canonical single-site
distribution, i.e., ρs [Eq. (19)] with P = 0. Particularly, for
the FPU-αβ lattice with zero pressure, the average length is
smaller than N as can be seen from the figure.

An NPT system with pressure P can be prepared either by
applying an external pressure P to the end particles with free
boundary condition or by fixing the total length L to L̄(P ),
where L̄(P ) as a function of P is just depicted in Fig. 1. In
the present work we adopt the second approach. Specifically,
a modified periodic boundary condition is thus used to fix the

−1.8 −1.2 −0.6 0 0.6 1.2
0.5

0.75

1

1.25

1.5

P

L̄
/N

FPU − β
FPU − αβ

FIG. 1. (Color online) Average lattice length L̄ as a function of
pressure P . The dashed-dotted red line indicates that for the 1D
FPU-β lattice with T = 1. The solid blue line denotes that for the 1D
FPU-αβ lattice with T = 1 and α = 1.

total length at a certain value, namely, qN − q0 = L̄ − N =
N〈δ〉ρs

. For such systems, a symplectic integrator SABA2 with
a corrector SABA2C [30] is adopted to integrate the EOMs
with a time step h = 0.02 to ensure the conservation of the
total system energy and momentum up to high accuracy 10−14

in the whole run time. We take an initial condition such that
the displacement of every particle is set to be zero, and their
velocities are randomly chosen from a Gaussian distribution
at temperature T ; after the initialization, a transient time of
order 107 is used to equilibrate the system.

A. Single-site distributions

We first check the single-site distributions in Eq. (19). After
the system reaches its thermal equilibrium state, we can obtain
time series of vn(equalspn) and δn of the nth particle (n can be
an arbitrary integer from 1 to N ). We then plot their histograms
and compare the envelopes against ρs = ρvρδ with

ρv = 1√
2π

exp

(
−βT

v2

2

)
, (32)

ρδ = z−1
δ exp

[
−βT

(
1

2
δ2 + α

3
δ3 + 1

4
δ4 + Pδ

)]
, (33)

where zδ = ∫
dδ exp[−βT ( 1

2δ2 + α
3 δ3 + 1

4δ4 + Pδ)].
To illustrate the comparison, we simulate the FPU-β

lattice with N = 2048, T = 1, and L̄ = N or L̄ = 1.2N , the
corresponding pressure is 0 or −0.4309 according to Fig. 1,
respectively. A similar simulation is carried out on the FPU-αβ

lattice with N = 2048, T = 1, α = 1, and L̄ = 0.8023N or
L̄ = N , with the pressure equaling 0 or −0.3904, respectively.
The results are depicted in Figs. 2 and 3. ρv and ρδ are shown
as blue dashed-dotted and red solid curves in the figures,
respectively. Perfect agreements between theoretical curves
and the MD results are presented, which indicates the validity
of the single-site distribution in Eq. (19).

FIG. 2. (Color online) Single-site distributions for the 1D FPU-β
lattice with P = 0 (upper panel) or P �= 0 (lower panel). The yellow
(light gray) parts in the left and right column denote the histogram of
δ and v, respectively. The dashed-dotted blue and solid red lines are
ρv and ρδ [cf. Eqs. (32) and (33)], respectively.
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FIG. 3. (Color online) Single-site distributions for the 1D FPU-
αβ lattice with with P = 0 (upper panel) or P �= 0 (lower panel).
The yellow (light gray) parts in the left and right column denote the
histogram of δ and v, respectively. The dashed-dotted blue and solid
red lines are ρv and ρδ [cf. Eqs. (32) and (33)], respectively.

B. Sound velocity

Now we turn to the calculation of the sound velocity.
So far, there are mainly three numerical methods which can
obtain the sound velocity of the nonlinear lattices. The first
method regards the moving velocity of front peaks of the
equilibrium spatiotemporal correlation function as the sound
velocity [12,31]. However, a broadening of front peaks at high
temperature or strong anharmonicity will affect its accuracy.
The second one is to look at the frequency of the lowest phonon
peak of the power spectrum of an N -particle lattice [14]

ω1 = 2
cs

a
sin

π

N
, (34)

where cs is the sound velocity. This lowest phonon peak can
always be detected in the power spectrum with high resolution
(see Fig. 4); thus the sound velocity can be well determined
by ω1. The third one obtains the sound velocity from the
dispersion relation [15]. This method, although it follows the
definition of the sound velocity, is most computationally ex-
pensive comparing with the other two, because the calculation
of the dispersion relation is time consuming.

Therefore, in this study, we choose the second method to
obtain MD results of the sound velocity of nonlinear lattices.
According to the Wiener-Khinchin theorem [32], the power
spectrum P (ω) can be obtained by doing Fourier transform
of the velocity autocorrelation of a single particle 〈vn(t)vn(0)〉
with t = 0,h,2h, . . . ,tM . In order to get smooth phonon peaks
in the power spectrum, the maximum correlation time tM
whose inverse 1/tM determines the frequency resolution is
set to be 224h under the condition that N = 1024. Figure 4
presents the power spectrum of the FPU-β lattice and the
FPU-αβ lattice with α = 1 at their natural length. T = 1 is
used for both models. It is apparent that phonon peaks with
the lowest frequencies are well distinguished from the power
spectrum. The nonlinearity renders its effect in the phonon
peak broadening. Interestingly, we found that the phonon
peak of the FPU-αβ lattice is broader than the one of the

0 0.01 0.02 0.03
0

2

4

6

ω

P
(ω

)(
ar

b.
un

it
s)

FPU − β
FPU − αβ

FIG. 4. (Color online) Power spectrum P (ω) in the low-
frequency regime. The dashed-dotted red line stands for the FPU-β
lattice at its natural length. The solid blue line represents the FPU-αβ

lattice with α = 1 and natural length. For comparison, the lowest
harmonic frequency is depicted as a dashed black line.

FPU-β lattice, which indicates that the asymmetric potentials
provide stronger phonon-phonon interaction compared to the
symmetric ones.

IV. THE FPU-β LATTICE

In the following, we will give a detailed study of the FPU-
β lattice by using our variational approach. Being a special
case of the FPU-αβ lattice, i.e., α = 0, it has a symmetric
interparticle potential.

A. P = 0

The existing quasiharmonic theories of this model all focus
on this particular case [4,5,7–11]. In this part, we not only
present the comparison between our approach and MD results,
but also point out the connections between our approach
and some of the existing quasiharmonic theories. The first
observation is dU = dL = 0 [cf. Eqs. (28) and (30)] by noting
that the potential of the FPU-β lattice is an even function of
δ. Then in the following, we only need to be concerned about
the parameter K .

First, we focus on the UH system. The corresponding
parameter KU [Eq. (29)] can be calculated to yield

K2
U − KU − 3β−1

T = 0, (35)

which has a positive solution,

KU = 1
2

(
1 +

√
1 + 12β−1

T

)
. (36)

This result coincides with the prediction of the so called self-
consistent phonon theory (SCPT) [10] for the FPU-β lattice,
since the SCPT is based on the GB inequality Eq. (9) as well.

Then we turn to the LH system. The parameter KL

[Eq. (31)] reduces to the simple form

KL = 1

βT 〈δ2〉ρc
s

. (37)

The corresponding sound velocity
√

KL is exactly the same
as that predicted by the effective phonon theory (EPT) [8,12]
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FIG. 5. (Color online) Sound velocity cs as a function of tem-
perature for the 1D FPU-β lattice with zero pressure. The green
circles are MD results obtained from the power spectrum, the
solid red line the prediction of the LH system (

√
KL [Eq. (37)]),

and the dashed-dotted blue line the prediction of the UH system
(
√

KU [Eq. (36)]). The inset presents the relative deviation of the
sound velocity: σ = (cTH

s − cMD
s )/cMD

s 100% with cTH
s and cMD

s the
theoretical result and the MD result of the sound velocity, respectively.
The blue circles and red squares denote cTH

s = √
KU [Eq. (36)] and√

KL [Eq. (37)], respectively.

based on the generalized equipartition theorem [33] as well
as the nonlinear fluctuating hydrodynamics (NFH) using the
hydrodynamic approximation [29,34,35], although the NFH is
not an effective theory for phonons.

Results of the sound velocity are illustrated in Fig. 5. The
excellent agreement between the LH system’s predictions and
MD results is obvious. For the UH system, the deviation
from MD results becomes larger and larger as the temperature
increases. The reason behind this fact is clear, since high-order
nonlinear terms ignored by the UH system become important
at high temperature. Hence the LH system can describe r-phs
in the FPU-β lattices without pressure.

B. P �= 0

Now we begin to apply our variational approach to the
FPU-β lattice with pressure. The method used to obtain
nonzero pressure has been discussed in Sec. III. For simplicity,
but without loss of generality, here we study only a specific
situation, i.e., the lattice length is fixed to be 1.2N . Since L̄ =
N (1 + 〈δ〉ρs

), we have 〈δ〉ρs
= 0.2. Therefore, the pressure P

can be obtained by solving

〈δ〉ρs
=

∫
δe−βT (V +Pδ)dδ∫
e−βT (V +Pδ)dδ

= 0.2. (38)

The pressure is temperature dependent, which is plotted in the
inset (b) of Fig. 6. Since the lattice is slightly elongated, the
pressure should be negative.

With those values of pressure, we can calculate the averages
in Eq. (31) for KL numerically and thus obtain the value of KL.
As for KU , we insert the values of pressure into Eq. (28) and
Eq. (29), then solve the coupled equations together to get the
value of KU . The sound velocity of the LH system and the UH
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FIG. 6. (Color online) Sound velocity cs as a function of tem-
perature for the 1D FPU-β lattice with nonzero pressure. The
green circles are MD results obtained from the power spectrum,
the dashed-dotted blue line the prediction of the UH system (

√
KU

[Eq. (29)]), the solid red line the prediction of LH system (
√

KL

[Eq. (31)]), and the dashed cyan line the prediction of the NFH
(
√

KN [Eq. (39)]). Inset (a) presents the relative deviation of the
sound velocity: σ = (cTH

s − cMD
s )/cMD

s 100% with cTH
s and cMD

s the
theoretical result and the MD result of the sound velocity, respectively.
The blue triangles, red squares, and cyan (light gray) circles denote
cTH
s = √

KU [Eq. (29)],
√

KL [Eq. (31)], and
√

KN [Eq. (39)],
respectively. Inset (b) shows pressure P as a function of temperature
T for a 1D FPU-β lattice with L̄ = 1.2N .

system can be obtained by
√

KLa and
√

KUa, respectively.
We present results of the sound velocity in Fig. 6. It is clearly
shows that the LH system still gives better results than the UH
system, a significant deviation exists between the latter and
MD results. So the LH system can also describe r-phs in the
FPU-β lattices with pressure.

The prediction of the sound velocity given by the NFH is
also shown in Fig. 6. It takes a complex form

cs/a =
( 1

2β−2
T + 〈V + Pδ; V + Pδ〉

βT [〈δ; δ〉〈V ; V 〉 − 〈δ; V 〉2] + 1
2βT

〈δ; δ〉

)1/2

≡
√

KN, (39)

in which all the 〈·〉 are short for 〈·〉ρs
, i.e., averages under

the single site probability measure [Eq. (19)], and 〈A; B〉 =
〈AB〉 − 〈A〉〈B〉. Noticing that the EPT and the SCPT are
unable to deal with systems with pressure, they become invalid
in this case.

V. THE FPU-αβ LATTICE

When a cubic term is added to the FPU-β potential, we get
the asymmetric FPU-αβ potential [Eq. (14)]. It is remarkable
that the potential V is invariant under transformations: δ →
−δ, α → −α. Since sound velocities along two directions
should be the same in 1D isotropic systems, we deduce that
the sound velocity of the 1D FPU-αβ lattice must be an even
function of α. Accordingly, an investigation of the system with
α > 0 is enough.
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FIG. 7. (Color online) Potential V (δ) of the 1D FPU-αβ lattice
with varying α.

Potentials with different positive α are plotted in Fig. 7. It
is clearly seen that the potential becomes more asymmetric as
α increases. When α exceeds 2, dV/dδ = 0 begins to have
two solutions, and the potential tends to become a double-well
one, which is out of the scope of the present investigation,
we can see that from the form of the potential with α = 2.1
in the figure. The inherent asymmetry can induce thermal
expansion, which has been shown to play a significant role
in heat conduction [36–39]. In the following, we will study
this lattice by using our variational approach.

A. P = 0

We first apply the UH system to the FPU-αβ lattice. The
corresponding parameters dU and KU now satisfy

dU + αd2
U + d3

U + 1

βT KU

(α + 3dU ) = 0, (40)

1 − 1

KU

(
1 + 2αdU + 3d2

U

) − 3

βT K2
U

= 0. (41)

We note that dU is no longer zero due to the asymmetric
potential V . The two equations are coupled; we should solve
them together to get the value of KU . If α changes its sign,
dU should also change its sign as a consequence of the
symmetry property of the potential V ; then the invariance of
the above equations [cf. Eqs. (40) and (41)] with respect to the
transformation α → −α requires that KU is an even function
of α. Hence, the sound velocity of the UH system is an even
function of α.

We then utilize the LH system to investigate the lattice. The
parameters of the LH system are given by

dL = 〈δ〉ρc
s
, (42)

KL = 1

βT

[〈δ2〉ρc
s
− (〈δ〉ρc

s

)2] . (43)

Similarly, dL is nonzero for an asymmetric potential. It is
notable that dL changes its sign and KL remains the same after
the operation α → −α. Therefore, the sound velocity of the

LH system is also an even function of α. Notice that the EPT
still predicts the effective force constant as [8]

KE = 1

βT 〈δ2〉ρc
s

(44)

with V now the FPU-αβ potential [Eq. (14)]. It is evident that
the denominator of KL and KE takes the form of the variance
and the second moment of δ, respectively. This discrepancy
results from the asymmetry of the potential, since 〈δ〉ρc

s

vanishes for symmetric potentials. As can be seen later, such
a correction improves the accuracy of the results significantly.

We consider lattices at a fixed temperature T = 0.5 and
vary α from 0.2 to 2. Results of the sound velocity are
illustrated in Fig. 8. The deviation of predictions of the EPT
from the measured value is clearly revealed as α is increasing.
This demonstrates the invalidity of the EPT for the strong
asymmetric cases, while the LH system gives accurate results
no matter how large the asymmetry is. It thus shows the
significance of the correction term in the denominator of KL

[Eq. (43)]. Still, we observe that the LH system gives much
better results than the UH system. So we can regard the LH
system as an effective description of r-phs in the FPU-αβ

lattice without pressure. Meanwhile, an agreement between
the NFH and the LH system renders a fact that hydrodynamic
approximations can also be applied to long-wavelength r-phs
in lattices with asymmetric potentials.

B. P �= 0

Now we consider the FPU-αβ lattice with pressure and
α > 0. For simplicity, we only investigate the system at its

0.5 1 1.5 2
0.5

0.9

1.3

1.7

0

α

c s
/
a

MD
LH
UH
NFH
EPT

0.5 1 1.5 2
−20

−10

0

10

α

σ
 (

%
)

FIG. 8. (Color online) Sound velocity cs as a function of α for
the 1D FPU-αβ lattice with T = 0.5 and zero pressure. The green
circles are MD results obtained from the power spectrum, the dashed
cyan line the prediction of the NFH (

√
KN with P = 0 [Eq. (39)]),

the dashed-dotted blue line the prediction of the UH system (
√

KU

[Eq. (41)]), the solid red (upper) line the prediction of the LH system
(
√

KL [Eq. (43)]), and the solid maroon line the prediction of the
EPT (

√
KE [Eq. (44)]). The inset presents the relative deviation of

the sound velocity: σ = (cTH
s − cMD

s )/cMD
s 100% with cTH

s and cMD
s the

theoretical result and the MD result of the sound velocity, respectively.
The cyan stars, blue circles, red squares, and maroon triangles denote
cTH
s = √

KN with P = 0 [Eq. (39)],
√

KU [Eq. (41)],
√

KL [Eq. (43)],
and

√
KE [Eq. (44)], respectively.
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FIG. 9. (Color online) Sound velocity cs as a function of temper-
ature for the 1D FPU-αβ lattice with α = 1 and nonzero pressure.
The green circles are MD results obtained from the power spectrum,
the dashed-dotted blue line the prediction of the UH system (

√
KU

[Eq. (29)]), the solid red line the prediction of LH system (
√

KL

[Eq. (31)]), and the dashed cyan line the prediction of the NFH
(
√

KN [Eq. (39)]). Inset (a) presents the relative deviation of the
sound velocity: σ = (cTH

s − cMD
s )/cMD

s · 100% with cTH
s and cMD

s the
theoretical result and the MD result of the sound velocity, respectively.
The blue circles, red squares, and cyan triangles denote cTH

s = √
KU

[Eq. (29)],
√

KL [Eq. (31)], and
√

KN [Eq. (39)], respectively. Inset
(b) shows pressure P as a function of the temperature T for the
FPU-αβ lattice with α = 1 at its natural length.

natural length. The value of the pressure can be obtained by
solving

〈δ〉ρs
=

∫
δe−βT (V +Pδ)dδ∫
e−βT (V +Pδ)dδ

= 0. (45)

Results of pressure as a function of temperature with α = 1
are plotted in the inset (b) of Fig. 9. The absolute value of
pressure increases as the temperature increases because of the
interparticle interaction is stronger. At the low temperature
regime where thermal excitations dwell the very bottom of the
potential, particles cannot feel the asymmetry of the potential
strongly, so the pressure approaches zero as the temperature
tends to zero. Recall that the pressure equals the averaged
interparticle force; if α changes its sign, the value of pressure
also changes the sign.

With values of the pressure, KL can be easily calculated
from Eq. (31). The value of KU can be obtained by solving
Eqs. (28) and (29) together. We have checked that KU and KL

still are even functions of α. Thus the predictions of the sound
velocity fulfill the symmetry requirement. Notice the existing
quasiharmonic theories fail in this model, and only our results
and the NFH’s will be shown.

The result for the case α = 1 is illustrated in Fig. 9. From
this figure, we see that the LH system works better than the
UH system as usual.

We further investigate the FPU-αβ lattices with varying
α by using the LH system. The temperature T is fixed to
be 0.5. From Fig. 10, it is apparent that the discrepancy
between the theoretical prediction and MD results tends to
increase as α increases. One possible reason is that the Gibbs
free energy given by the lower bound depart from the exact

0.2 0.8 1.4 2
0.8

1.6

2.4

α

c s
/
a

MD
LH

0.2 0.8 1.4 2
−0.6

−0.5

−0.4

α

G
/N

Exact
Lower bound

FIG. 10. (Color online) Sound velocity cs as a function of α for
the 1D FPU-αβ lattice with T = 0.5 and nonzero pressure. The green
circles are MD results obtained from the power spectrum, the solid
red line the prediction of

√
KL [Eq. (31)]. The inset presents the Gibbs

free energy per particle. The dashed blue line is the exact Gibbs free
energy g according to Eq. (21), and the solid red line is the prediction
of the lower bound according to Eq. (7).

result significantly at large α (we can see that from the
inset in Fig. 10). This fact indicates that the first cumulant
approximation we adopted in deriving the inequalities is not
enough. Higher order contributions to the Gibbs free energy
must be considered in order to improve this method [40,41].

VI. SUMMARY

In summary, we have presented a variational approach to
study renormalized phonons in momentum-conserving non-
linear lattices. Specifically, we obtain two optimal harmonic
reference systems, namely, the LH system and the UH system,
by optimizing the two bounds of the Gibbs free energy of the
nonlinear system. These optimal systems which determine the
properties of renormalized phonons can be regarded as optimal
harmonic approximations of the nonlinear system.

This method has been applied to lattices with either
symmetric or asymmetric potentials, with or without pressure.
For lattices with symmetric potentials, such as the FPU-
β lattice, our variational approach gives two optimal and
symmetrical reference harmonic lattices. In the zero pressure
case, it is very interesting to find that the sound velocity derived
from the LH system reproduce the previous theoretical results
from the effective phonon theory and nonlinear fluctuating
hydrodynamic theory, and the sound velocity derived from the
UH system recovers the previous theoretical results from a
self-consistent approach.

For lattices with asymmetric potentials, such as the FPU-
αβ lattice where the existing effective phonon theory fails to
predict the sound velocity, our variational approach can also
give accurate predictions. In particular, our approach reveals
the reason why the effective phonon theory cannot predict the
correct sound velocity.

In all the cases, the LH system works better than the
UH system, since the ensemble averages in the former are
evaluated under the probability measure of the nonlinear
system; it simultaneously takes nonlinear contributions into
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account compared with the latter. Therefore, the LH system
can be treated as an effective theory of renormalized phonons in
various momentum-conserving nonlinear lattices. A deviation
between the prediction of our variational approach and the
MD results has also been found for stronger asymmetry and
nonzero pressure situation where the underlying mechanism
needs further investigations.

Compared with the existing quasiharmonic theories, this
approach can be used to investigate nonlinear systems with
asymmetric potentials. We owe this ability to two aspects.
One is the choice of an parameterized asymmetric harmonic
potential with a parameter d which can quantify the degree
of asymmetry of the potentials. The other is the consid-
eration of the Gibbs free energy instead of the Helmholtz
free energy, which enables us to deal with systems with
pressure.

We also found that the NFH gives satisfactory predictions
of sound velocity in all those cases. The theory focuses
on a hydrodynamic description of nonlinear lattices, not
a construction of an effective theory of the renormalized

phonons in nonlinear lattices. Those agreements mean that
the hydrodynamic approximation really captures essential
features of the systems in the long-wavelength limit. However,
for systems without momentum conservation, the concept of
sound velocity is invalid, the NFH may not be able to give
the information of the renormalized phonons, although it can
still describe correlation functions of those systems [42]. Our
variational approach can be used to investigate phonon band
gap and phonon dispersion of those systems [43].
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