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The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave
mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families
of the Manakov and Makhankov U (n,m)-vector models. This equivalence allows us to construct bright-bright
and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first
component oscillates in space and time, whereas the density of the second component does not. The collision
properties of solitons are also studied.
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I. INTRODUCTION

The proof of integrability of the nonlinear Schrödinger
equation (NLSE) by Zakharov and Shabat [1] via the inverse
scattering transform (IST) method (i.e., solitonic “Big Bang”)
stimulated the search for important integrable generalizations
of the NLSE. There has been great interest in natural vector
generalization of the NLSE, namely, N -coupled NLSE (N -
NLSE). This is due to the fact that the coupled NLSE appears
in numerous branches of physics, such as nonlinear op-
tics [2], Bose-Einstein condensates [3], biophysics [4], plasma
physics [5], metamaterial technologies [6], and so on. The
2-NLSE is also integrable when the nonlinear coefficients have
the same magnitudes [7–9]. The integrability of the focusing
2-NLSE has been discovered by Manakov, who first solved the
3 × 3 spectral problem for the vector bright soliton by IST [7].
Afterwards, it was revealed by Makhankov et al. that in the
mixed nonlinearity case (i.e., the nonlinear coefficients have
opposite signs), the system is still integrable [8,9]. Subsequent
studies of the soliton solutions of these systems have led to
three “traditional” vector solitons: bright-bright (BB) [7,10],
bright-dark (BD) [11–13], and dark-dark (DD) [10,14]. One
of the distinctive features of vector solitons is that they exhibit
certain novel inelastic collision properties, which has wide
potential applications in optical computers, multistate logic
systems, and so on [15–17]. Based on Ref. [7] this phenomenon
was first revealed in Ref. [18] for BB solitons of the focusing
2-NLSE, and it was extended to focusing N-NLSE [19,20].
Further, the nontrivial class of exact mixed type solutions
(which consist of s bright and m dark solitons, s + m = N )
of the general N-NLSE has been presented in Ref. [12], where
it is shown that in the N � 3 case mixed solitons undergo
nontrivial (with energy sharing) collision, and in the N = 2
case undergo only standard elastic collision [11–13,20].

Since the focusing Manakov U (2,0)-vector model, the
Makhankov U (1,1)-pseudovector model, and the defocusing
Manakov U (0,2)-vector model (hereinafter referred to as basic
models) have important theoretical and practical applications,
the broad spectrum of research is aimed at constructing an in-
tegrability generalization of these models, and to retrieve their

*gta-1987@mail.ru

solutions. In this direction, the (1 + 1)-dimensional general
coupled nonlinear Schrödinger (GCNLS) equations [21]

i
∂qj

∂t
+ ∂2qj

∂x2
+ 2Q(q1,q2)qj = 0, j = 1,2, (1)

where the potential Q(q1,q2) = a|q1|2 + c|q2|2 + bq1q
∗
2 +

b∗q∗
1 q2 is the real-valued function of qj (the asterisk is used to

denote the complex conjugate), have received considerable
interest recently. In fiber optic applications, in the above
equation, qj (x,t) represent slowly varying pulse envelopes,
and a and c simultaneously account for the self-phase modu-
lation (SPM) and cross-phase modulation (XPM) strengths.
The additional phase-dependent terms (bq1q

∗
2 + b∗q∗

1 q2)qj

with complex parameter b describe the four-wave mixing
(FWM) effect which arises in multichannel communications
systems [22]. We remark that coupled NLS equations similar to
system (1), but with different phase-dependent nonlinear terms
q∗

j

∑
k=1,2 γjkq

2
k or

∑
k=1,2 γjkq

∗
k q2

3−k in the j th equation,
and their integrable cases have been studied previously
(see, for example Refs. [23,24] and references therein).
The GCNLS system (1) is also completely integrable. Its
Painleve-integrability is examined in Ref. [25]. The Lax pair
and N-soliton BB solution are derived in Ref. [21]. The BB
one- and two- soliton solutions have also been obtained in
Ref. [26] through Hirota’s bilinear method (HBM). The DD
soliton solution in a < 0, c < 0 case and a wide range of
rational solutions of the GCNLS equations (1) such as the
Kuznetsov-Ma soliton, the Akhmediev breather, and roque
wave solution are obtained in Ref. [27] by HBM. In the same
paper, the impact of the FWM parameter was also examined.
Very recently, in Refs. [28,29] the rogue wave solutions of
Eqs. (1) have been obtained via constructing a generalized
Darboux transformation. Some comments on Eqs. (1) can be
found in Ref. [30].

Evidently, when b = 0 the system (1) is reduced to the
basic models by q1 → q̃1/

√
2|a|, q2 → q̃2/

√
2|c|. The main

purpose of our paper is to show that the Eqs. (1) can be reduced
to the basic models in arbitrary a,b,c parametric cases. It is
then possible to use this fact to construct previously known BB,
DD solitons in a rather easy and straightforward way. At the
same time, we construct a mixed quasibreather-dark (QBD)
solution with unusual space- and time-density oscillations in
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TABLE I. The type of the resulting model for various domains of
the parameters a, b, c.

Case a Constraint on b and c Symmetry of resulting model

(a) a > 0 |b|2 < ac U (2,0)
(b) a > 0 |b|2 > ac U (1,1)
(c) a < 0 |b|2 > ac U (1,1)
(d) a < 0 |b|2 < ac U (0,2)

this way. We find that even though XPM and SPM coefficients
are negative (positive), Eqs. (1) would nevertheless admit
BB (DD) solitons, unlike the basic models. We also briefly
discuss the collision properties, the role of FWM terms, and
the existence conditions of these solutions.

The paper is organized as follows. In Sec. II, the reduction
procedure is presented. The HBM is illustrated in Sec. III.
The BB and DD soliton solutions are obtained in Secs. IV
and V, respectively. Section VI is devoted to the QBD solution.
Finally, our conclusion is given in Sec. VII.

II. REDUCTION TO THE BASIC MODELS

First, let us consider the function Q(q1,q2) in system (1) as
a Hermitian form,

Q(q) = q†B q

with q = col(q1,q2) and

B =
(

a b∗
b c

)
, det B = ac − |b|2 (2)

(† denotes the conjugate transpose). Suppose a �= 0 and c, b

are arbitrary; then the self-adjoint matrix B is transformed into
diagonal matrix C of the same size according to the congruent
transformation C = S†BS, where

S =
(

1 −b∗
0 a

)
and C =

(
a 0
0 a2c − a|b|2

)
.

Now we set functions ψ1,ψ2 from transformation matrix S

as

q1 = ψ1 − b∗ψ2, q2 = aψ2, (3)

By using transformation (3) from Eqs. (1), after some
algebra we arrive at

i
∂ψ1

∂t
+ ∂2ψ1

∂x2
+ 2a(|ψ1|2 + σ |ψ2|2)ψ1 = 0, (4a)

i
∂ψ2

∂t
+ ∂2ψ2

∂x2
+ 2a(|ψ1|2 + σ |ψ2|2)ψ2 = 0, (4b)

where FWM terms are effectively absent and σ = ac − |b|2.
Continuing this line of reasoning, we see that the basic
models can be obtained by using the scaling transforma-
tion ψ1 → ψ̃1/

√
2|a|, ψ2 → ψ̃2/

√
2|aσ |, but we retain all

parameters here to conveniently define the existing regions
of the solutions. The resulting system’s type depends on
values of SPM, XPM, and FWM parameters, as shown
in Table I. We must admit that the transformation (3) is
incomplete. By putting a = 0 and c �= 0 we can see that
it does not achieve the intended goal. In this case in an

analogous manner we find q1 = cψ2, q2 = ψ1 − bψ2, which
leads to the U (1,1)-vector model: i∂ψj/∂t + ∂2ψj/∂x2 +
2Q̃(ψ1,ψ2)ψj = 0, where Q̃ = c(|ψ1|2 − |b|2|ψ2|2). We note
that the parametric choice a = 0, c = 0 is not trivial [21,31]. In
this situation the resultant reducing system will be of the same
form as the above equations, with the only difference in Q̃ =
(b + b∗)(|ψ1|2 − |ψ2|2)/2, and the corresponding transforma-
tion is given by q1 = ψ1/

√
2 + ψ2/

√
2, q2 = bb∗−1ψ1/

√
2 −

ψ2/
√

2. We also note that the problem is greatly simplified
if the Hermitian form Q is degenerate (|b|2 = ac). Thus we
cover all possible cases of parameters, and in this paper we
will consider the more general case (a �= 0; b, c are arbitrary)
and omit here the special cases.

Taking into account the above mentioned considerations,
from now on we will focus our attention on constructing
solutions of Eqs. (4), and solutions of Eqs. (1) will be recovered
via the transformation (3).

III. HIROTA’S BILINEARIZATION METHOD

In this section we briefly present the standard HBM [32]
for the Eqs. (4).

To obtain the bilinear form of system (4), we introduce the
transformation ψj = Gj/F where Gj are complex functions,
while F is a real function. Then the bilinear form of Eqs. (4)
can be presented as(

iDt + D2
x − λ

)
Gj · F = 0, (5a)(

D2
x − λ

)
F · F = 2a[|G1|2 + σ |G2|2], (5b)

where Hirota’s bilinear operators Dt and D2
x are defined by

Dm
ζ U · V = (∂/∂ζ − ∂/∂ζ ′)mU (ζ )V (ζ ′)|ζ ′=ζ . The real con-

stant λ is determined from the boundary conditions.

IV. BRIGHT-BRIGHT SOLITON SOLUTIONS

In order to obtain the BB n-soliton solution of system (4)
we expand Gj and F with respect to the formal expansion
parameter ε as follows:

Gj =
n∑

m=1

ε2m−1gj,2m−1, F = 1 +
n∑

m=1

ε2mf2m. (6)

From the boundary condition of the BB soliton solution
lim|x|→∞ ψj = 0 it follows that λ is zero.

One-soliton solution. We substitute the above expansions
into the bilinear equations (5), then equate powers of the
arbitrary parameter ε. After solving the resulting set of
partial differential equations for n = 1 recursively, we obtain
the explicit BB one-soliton solution of Eqs. (4) as ψj =
gj,1/(1 + f2), where gj,1 = αje

θ , f2 = reθ+θ∗
, r = [a|α1|2 +

aσ |α2|2]/(k + k∗)2, θ = kx + ik2t , and k,αj are arbitrary
complex parameters. Combining this solution and transforma-
tion (3), after some simplification the BB one-soliton solution
of Eqs. (1) can be written as

qj = 1
2Aje

i[kI x+(k2
R−k2

I )t] sech[kR(x − 2kI t) + d], (7)

where d = ln
√

r represents the localization position of
the soliton and the complex amplitudes Aj are de-
fined as follows: A1 = [|α1| exp(iφ1) − b∗|α2| exp(iφ2)]/

√
r ,
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FIG. 1. (Color online) The dependence of amplitudes of solu-
tion (7) on bAm (left) and bPh (right). The red (solid) and blue (dashed)
curves correspond to |A1| and |A2|, respectively. In the left plot bPh

is fixed to −π/3 and in the right plot bAm is fixed to 1.51. The other
parameters are chosen as in the text.

A2 = a|α2| exp(iφ2)/
√

r with φj = arg αj . The soliton’s ve-
locity and width in each mode are determined by kI and kR ,
respectively. Here and elsewhere, suffixes R and I indicate the
real and imaginary parts. The solution (7) is valid only when
the nonsingularity condition r > 0 is satisfied. This condition
cannot be reached only in case (d) of Table I. Suppose SPM
and XPM parameters are negative and |b|2 > ac. Then, from
case (c) it can be seen that, with the choices of parameters
αj under the nonsingularity condition, the GCNLS system (1)
admits vector BB solitons, even in the a < 0,c < 0 case, in
contrast to the defocusing Manakov model.

It should be noted that if we accept α̃1 = α1 − b∗α2, α̃2 =
aα2 as the new independent parameters and rewrite r in terms
of α̃j , then solution (7) exhibits exactly the same form as the
soliton solution reported in Ref. [26].

Now, it is fascinating to analyze the role of the FWM
parameter in this solution. It is clear from (7) that b only
affects the amplitudes. For definiteness, we set a = −2, c = 5,
α1 = 4 − 3i, α2 = −3 − 2i, k = 1 − i and take b = bAmeibPh ,
where bAm > 0 and bPh ∈ [−π,π ]. In this parametric choice,
for any values of b it follows that r > 0. We illustrate the effect
of bAm and bPh in Fig. 1.

Two-soliton solution. Likewise, if we take n = 2 in the
power series expansions (6) by using Eqs. (5) and (3) we get
the BB two-soliton solution as

q1 = g1,1 + g1,3 − b∗(g2,1 + g2,3)

1 + f2 + f4
, (8a)

q2 = a(g2,1 + g2,3)

1 + f2 + f4
, (8b)

where functions gi,j , fj are defined as

gj,1 = αj,1e
θ1 + αj,2e

θ2 , θj = kjx + ik2
j t,

gj,3 = βj,1e
θ1+θ∗

1 +θ2 + βj,2e
θ2+θ∗

2 +θ1 ,

f2 = r1,1e
θ1+θ∗

1 + r1,2e
θ1+θ∗

2 + r2,1e
θ∗

1 +θ2 + r2,2e
θ2+θ∗

2 ,

f4 = μeθ1+θ∗
1 +θ2+θ∗

2 ,

ri,j = aα1,iα
∗
1,j + aσα2,iα

∗
2,j

(ki + k∗
j )2

,

βi,j = (kj − k3−j )

(
r3−j,jαi,j

kj + k∗
j

− rj,jαi,3−j

k3−j + k∗
j

)
,

μ = (k∗
2 − k∗

1 )[r1,2β1,1(k∗
1 + k2) − r1,1β1,2(k2 + k∗

2 )]

α1,1(k2 + k∗
2 )(k∗

1 + k2)
,

FIG. 2. (Color online) The collisional dynamics of the BB two-
soliton solution (8) on the (x,t) plane. (a) Transmissional scenario of
soliton collision. Parameters: a = 1, c = 4, b = −1.9 − 0.1i, k1 =
−2 + i, k2 = 3 − i, α1,1 = 2 − i, α1,2 = 1, α2,1 = 1.25 + i, α2,2 =
−1 + i. (b) Reflectional scenario of soliton collision. Parameters:
a = −2, c = 10.5, b = 1.8 − i, k1 = 4 − 0.8i, k2 = −4 + i, α1,1 =
2.2 + i, α1,2 = −5.93 + 0.82i, α2,1 = −3 + 2i, α2,2 = 1.5 − i.

and αj , kj are arbitrary complex parameters. Figure 2 shows
the interaction of two solitons which are well separated
before and after collision. As pointed out in Ref. [21] the
BB two-soliton solution possesses the intersecting behavior
[soliton transmission, see Fig. 2(a)] as well as the repulsive
behavior [soliton reflection, see Fig. 2(b)]. Soliton reflection
is the special case of shape-changing collision when left and
right solitons in each components visually do not pass through
but bounce off each other when they approach. It is known
that the transmission and reflection scenario of collision is
an inherent property of U (2,0)- and U (1,1)-vector models,
respectively [33,34]. On this basis and taking into account
that q2 is proportional to ψ2, we have concluded that soliton
transmission appears in case (a) from Table I. Accordingly,
cases (b) and (c) lead to soliton reflection. Furthermore, for
the ideal reflection it is necessary that the profile of the left
soliton before collision and the profile of the right soliton
(and vice-verse) after collision must be equal to each other.
We analyzed the asymptotic profile of the solution (8) and
obtained the constraints

k1R = −k2R,

k1 + k∗
1

k1 + k∗
2

= (|α1,1|2 + σ |α2,1|2)(b∗α∗
1,1α2,2 − bα1,2α

∗
2,1)

(α∗
1,1α1,2 + σα∗

2,1α2,2)(bα1,1α
∗
2,1 − b∗α∗

1,1α2,1)

for the ideal reflectional scenario of collision.

V. DARK-DARK SOLITON SOLUTION

To construct the DD soliton solutions of Eqs. (1) we will
consider the solution of basic models (4) with the nonvanishing
large-x asymptotics as limx→±∞ |ψj |2 = |gj,0|2, where gj,0 =
ρj exp[i(sjx − pj t + ξ 0±

j )]. Similar to Sec. III we expand Gj

and F as

Gj = gj,0

(
1 +

n∑
m=1

εmgj,m

)
, F = 1 +

n∑
m=1

εmfm. (9)
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FIG. 3. (Color online) (a) The DD soliton (10) on the (x,t) plane.
(b) Snapshots of the density profile for t = −7. Parameters: a = 1,
c = 1, k = 4, s1 = 1, s2 = 1.2, b = 3.54 − 0.5i, ω = 1, ρ1 = 2, ρ2 =
0.927, ξ0,1 = 4, ξ0,2 = 3.1, θ0 = 1.

By substitution these series into Eqs. (5), and then collecting
the coefficients of ε0, it is easy to get λ = −2aρ2

1 − 2aσρ2
2 .

One-soliton solution. If we take the first-order case, n = 1
in Eq. (9), then by solving Eqs. (5) and using (3) we get the
following expressions for qj :

q1 = 1

1 + f1
[g1,0(1 + g1,1) − b∗g2,0(1 + g2,1)], (10a)

q2 = a

1 + f1
[g2,0(1 + g2,1)], (10b)

where

f1 = eθ , θ = kx + ωt + θ0,

gj,0 = ρje
iξj , ξj = sjx − (

s2
j + λ

)
t + ξj,0,

gj,1 = Bje
θ , Bj = (−k2 + 2iksj + iω)/(k2 + 2iksj + iω).

All parameters k, ω, ρj , sj , ξj,0, θ0 are real, and must satisfy
the following condition:

ρ2
1

k4 + (ω + 2ks1)2
+ σρ2

2

k4 + (ω + 2ks2)2
= − 1

4ak2
. (11)

This equality can be achieved in cases (b), (c), (d) of Table I.
In Fig. 3 we illustrate this solution.

Reference [30] raised the question of the existence
of the DD solution with background asymptotics differ-
ent from the monochromatic plane wave. Without loss
of generality we assume that k > 0; then it is easy to
find large distance (x → ±∞) asymptotics of above so-
lution: limx→+∞ q1 = ρ1B1e

iξ1 − b∗ρ2B2e
iξ2 , limx→+∞ q2 =

aρ2B2e
iξ2 , limx→−∞ q1 = ρ1e

iξ1 − b∗ρ2e
iξ2 , limx→−∞ q2 =

aρ2e
iξ2 . We see that the component q1 resides on the superpo-

sition of two monochromatic plane waves: ∼eiξ1 and ∼eiξ2 (it
can be clearly seen from Fig. 3).

Now let us prove that the traditional DD soliton on a
monochromatic plane-wave background is a special case of
the solution (10). The component q1 is built on top of one
plane-wave background iff s1 = s2 = s, which leads to B1 =
B2. Using this constraint the solution (10) can be rewritten in

FIG. 4. (Color online) The dependence of the grayness of solu-
tion (12) on bAm. The left and right plots correspond to the density
profile of component q1 and q2, respectively. The dashed curves
correspond to the black soliton. The parameter bPh is fixed to π/3.
Other parameters are chosen as in the text.

terms of hyperbolic and trigonometric functions,

qj = Aj {i sin β + cos β tanh[(kx + ωt + θ0)/2]}
×eisx−i(s2+λ)t+iξ̃0 , (12)

where β = − arctan{(ω + 2ks)/k2}, A1 = ρ1 − b∗ρ2, A2 =
aρ2, and ξ̃0 is a certain real parameter. Now the connecting
identity (11) can be rewritten as

4ρ2
1a cos2 β + 4ρ2

2aσ cos2 β = −k2. (13)

From the exact form of the DD soliton solution (12) one can
easily note that components q1 and q2 are proportional to each
other. This proportionality is a necessary condition to obtain
the DD soliton which is set on the top of one plane-wave
background [30].

Let us now examine the effect of the FWM term on the basic
characteristics of solution (12) as a peak power (maximum
value of |qj |2) and a grayness (depth of the pulse relative to
background). It is clear that the peak powers of each com-
ponent qj are |Aj |2 (|A1|2 = ρ2

1 + b2
Amρ2

2 − 2ρ1ρ2bAm cos bPh

and |A2|2 = a2ρ2
2 ).

The relationship between the grayness and FWM parameter
is less obvious, since many of solution’s parameters are
closely related to each other by the implicit relationship (13).
For definiteness we chose the parameters from solution (12)
as a = 2, c = 0.6, ω = 4, k = 3, ρ1 = 2, ρ2 = 0.8, ξ̃0 =
θ0 = 0. For illustrative purposes we plot the density of
the profile of qj in Fig. 4 for the various values of bAm.
For the black (or fundamental) soliton, bAm is fixed to√

k2 + 4aρ2
1 + 4a2cρ2

2/(2
√

aρ2) ≈ 3.03. It should be men-
tioned that if the above statement is not real then the black
soliton cannot be reached.

Two-soliton solution. Taking into account the next ε2 terms
in expansions (9), the DD two-soliton solution can be obtained
analogously. We do not present its explicit form here because
of its cumbersome nature.

VI. QUASIBREATHER-DARK SOLUTION

Finally, let us present a mixed-type solution of Eqs. (1). To
reach this goal we will consider the BD soliton solution of
Eqs. (4). In this situation, the appropriate boundary conditions

042909-4



BRIGHT, DARK, AND MIXED VECTOR SOLITON . . . PHYSICAL REVIEW E 91, 042909 (2015)

FIG. 5. (Color online) (a) The QBD soliton solution (15) on
the (x,t) plane. (b) Snapshots of the density profile for t = 0.3.
Parameters: a = 3, c = 1.5, k = 1 + 6i, s = 1.4, ρ = 0.5, α = 2 −
2i, ξ0 = 1, b = 1 − 1.3i.

are defined as lim|x|→∞ |ψj | = δ2,j ρ, where ρ is real parameter
and δi,j is Kronecker delta, and the power series are defined as

G1 =
n∑

m=1

ε2m−1g1,2m−1,

G2 = g2,0

(
1 +

n∑
m=1

ε2mg2,2m

)
, (14)

F = 1 +
n∑

m=1

ε2mf2m.

In this case λ is determined as λ = −2aσρ2.
One-soliton solution. Suppose that n = 1 in expan-

sions (14). Then, using the route as in the previous sections,
we can get the next five-parametric spatially localized solution

q1 = 1

1 + f2
[g1,1 − b∗g2,0(1 + g2,2)], (15a)

q2 = a

1 + f2
[g2,0(1 + g2,2)], (15b)

where

g1,1 = αeθ , θ = kx + i(k2 − λ)t,

g2,0 = ρeiξ , ξ = sx − (s2 + λ)t + ξ0,

g2,2 = γ reθ+θ∗
, γ = −(k − is)/(k∗ + is)

f2 = reθ+θ∗
, r = a|α|2[(k + k∗)2 − λ(γ + γ ∗ − 2)/2]−1.

Here α,k are complex and ρ,s, ξ0 are real parameters. This
solution is depicted in Fig. 5. The condition of nonsingularity
r > 0 can be satisfied in all cases of Table I.

It can be seen that the component q1 of this solution has
propagating and oscillating behavior (breather-like), while the
other component q2 is a dark soliton. We call this solution
the quasibreather-dark (QBD) soliton. Let us now make some
remarks on this solution:

(i) In the limit b → 0 the first component (15a) turns into
the bright soliton, since it represents the overlay of dark and
bright solitons:

q1 = α

2
√

r
e(θ−θ∗)/2 sech η − b∗

a
q2,

q2 = aρeisx−i(s2+λ)t+iξ̃0{i sin β + cos β tanh η},

where β = arctan{(kI − s)/kR}, η = (θ + θ∗ + ln r)/2 and ξ̃0

is a certain real parameter.
(ii) This solution has the following asymptotics:

lim
x→+∞ q1 = −b∗ργ eiξ , lim

x→+∞ q2 = aργ eiξ ,

lim
x→−∞ q1 = −b∗ρeiξ , lim

x→−∞ q2 = aρeiξ .

(iii) The localized space and time oscillations of density in
the first component are ensured by its interference structure,
while the second component does not possess similar pattern:

|q1|2 = I 2
1 + I 2

2 − 2I1I2 cos(� − �0),

|q2|2 = a2|b|−2I 2
2 ,

where

I1 = |α|/
√

4r sech η,

I2 = |bρ cos β|
√

tan2 β + tanh2 η,

� = k̃x + �t, �0 = arctan{tan β/ tanh η} + φ0,

k̃ = kI − s, � = k2
R − k2

I + s2,

and φ0 is a certain real constant. The upper and lower envelopes
[dashed lines in Fig. 5(b)] of the interference pattern are given
by I 2

1 + I 2
2 ± 2I1I2.

(iv) There are two types of the QBD soliton: standing (kI =
0) or traveling (kI �= 0) ones. In the stationary case the density
of component (15a) is periodic in time. Its oscillation period
is T = 2π/�.

It should be noted that similar bound states were found in the
basic mixed model [35]. However, in contrast to the solution
from Ref. [35], the density of the QBD soliton is space and time
oscillated with frequencies k̃ = kI − s and � = k2

R − k2
I + s2,

correspondingly. To the best of our knowledge, such a solitonic
“atom” with oscillating internal structure has not been reported
before.

We note that Eqs. (1) admit the quasibreather-bright soliton
solution also. It can be obtained by taking a dark-bright soliton
solution of Eqs. (4) instead of the BD soliton.

Two-soliton solution. Now to understand the nature of such
mixed soliton solutions, and their propagation and collision
dynamics, we obtain the solution for the n = 2 case in
expansions (14). In the same way as before we get

q1 = g1,1 + g1,3 − b∗g2,0(1 + g2,2 + g2,4)

1 + f2 + f4
, (16a)

q2 = ag2,0(1 + g2,2 + g2,4)

1 + f2 + f4
, (16b)
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FIG. 6. (Color online) (a) The collisional dynamics of the QBD
two-soliton solutions (16) on the (x,t) plane. (b),(c) Snapshots of
density profile, before (t = −0.34) and after (t = 0.5) collision.
Parameters are chosen as in the text.

where

g1,1 = α1e
θ1 + α2e

θ2 , θj = kjx + i
(
k2
j − λ

)
t,

g2,0 = ρeiξ , ξ = sx − (s2 + λ)t + ξ0,

f2 = r1,1e
θ1+θ∗

1 + r1,2e
θ1+θ∗

2 + r2,1e
θ∗

1 +θ2 + r2,2e
θ2+θ∗

2 ,

ri,j = aαiαj (ki − is)(k∗
j + is)

[ikis + s2 − λ/2 + (ki − is)k∗
j ](ki + k∗

j )2
,

g2,2 = β1,1e
θ1+θ∗

1 + β1,2e
θ1+θ∗

2 + β2,1e
θ∗

1 +θ2 + β2,2e
θ2+θ∗

2 ,

βi,j = −(ki − is)/(is + k∗
j ),

g1,3 = σ1e
θ1+θ∗

1 +θ2 + σ2e
θ2+θ∗

2 +θ1 ,

σj = (k2 − k1)[k1r1,j α2 − k2r2,j α1 + (r1,j α2 − r2,j α1)k∗
2 ]

(kj + k∗
j )(k3−j + k∗

j )
,

f4 = μeθ1+θ∗
1 +θ2+θ∗

2 ,

μ = (k∗
2 − k∗

1 )(k2r1,2δ1 − k2r1,1δ2) + r1,2δ1k
∗
1 − r1,1δ2k

∗
2

α1(k2 + k∗
1 )(k2 + k∗

2 )
,

g2,4 = γ eθ1+θ∗
1 +θ2+θ∗

2 , γ = (−ik∗
2 + s)β∗

1,1(s + ik2)−1/r1,1.

In above formulas αj ,kj are complex and ρ,s, ξ0 are real
parameters. Similarly to one-soliton case, k̃j = kjI − s and
�j = k2

jR − k2
jI + s2 correspond to frequencies of the space

and time oscillations of the j th soliton in the first component,
respectively. One can check that as t → ±∞ the QBD two-
soliton solution (16) has the asymptotic form of a superposition
of the QBD one-soliton solutions with velocities vj = 2kjI .
The dynamics of two solitons which move in opposite
directions and collide is presented in Fig. 6. Parameters are
chosen as a = 5, c = 1, k1 = 1.8 + 8i, k2 = −1 − 6i, s = 1,
α1 = 2.3 + 5i, α2 = 3 + 2i, b = 2 − 1.4i, ρ = 0.5, ξ0 = 0.2.
Figure 6(c) shows the fact that the collision among dark soli-
tons is shape-preserving, as the profiles of colliding solitons
remain the same before and after interaction; Fig. 6(b) shows
that the quasibreathers remain confined and propagate without
changing their forms and dynamical structures. Therefore the
vector soliton (16) exhibits an elastic collision. We connect
this elastic behavior with two facts: (i) the transformation (3)
is linear and (ii) the BD soliton of U (2,0)-, U (0,2)-vector
Manakov and U (1,1)-pseudovector Makhankov models do not
exhibit shape-changing collision [12,20].

VII. CONCLUSION

In this paper, we have developed the procedure for reducing
the GCNLS system to the family U (n,m)-vector models. The
resulting models have been classified into three classes U (0,2),
U (2,0), and U (1,1) based on the values of XPM, SPM, and
FWM parameters. By this reduction we have obtained the
BB soliton solution, which had been previously proposed in
the literature. Further, we have given the DD soliton with a
superposition of plane-wave background, which reduces to
the standard DD soliton in a particular case. As one of the
interesting results we have presented a mixed quasibreather-
dark solution with unconventional properties; namely, the first
component’s density oscillates while the second one does not.
We also have studied their collisional dynamics and the effect
of the FWM parameter briefly.

In conclusion, it should also be noted that the proposed
method enables us to construct a broad class of exact solutions
for Eqs. (1). For instance, it is interesting to consider the cases
where the solution of Eqs. (4) is rational [36–38]. The details
of such a study will be presented elsewhere. We hope that our
results will be useful in the study of soliton theory and its
applications.
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[26] M. Wang, W. R. Shan, X. Lü, Y. S. Xue, Z. Q. Lin, and B. Tian,

Appl. Math. Comput. 219, 11258 (2013).
[27] N. V. Priya, M. Senthilvelan, and M. Lakshmanan, Phys. Rev. E

89, 062901 (2014).
[28] N. V. Priya and M. Senthilvelan, Commun. Nonlin. Sci. Numer.

Simul. 20, 401 (2015).
[29] N. V. Priya and M. Senthilvelan, Wave Motion 54, 125 (2015).
[30] Y. Ohta, D. S. Wang, and J. K. Yang, Stud. Appl. Math. 127,

345 (2011).
[31] V. G. Makhankov, Y. P. Rybakov, and V. I. Sanyuk, Phys. Usp.

37, 113 (1994).
[32] R. Hirota, The Direct Method in Soliton Theory (Cambridge

University Press, Cambridge, 2004).
[33] T. Kanna, M. Lakshmanan, P. T. Dinda, and N. Akhmediev,

Phys. Rev. E 73, 026604 (2006).
[34] J. Yang, Nonlinear Waves in Integrable and Nonintegrable

Systems (SIAM, Philadelphia, 2010).
[35] V. G. Makhankov, N. V. Makhaldiani, and O. K. Pashaev, Phys.

Lett. A 81, 161 (1981).
[36] V. E. Zakharov and A. A. Gelash, Phys. Rev. Lett. 111, 054101

(2013).
[37] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Phys.

Rev. Lett. 109, 044102 (2012).
[38] C. Kalla, J. Phys. A: Math. Theor. 44, 335210 (2011).

042909-7

http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1088/0031-8949/29/3/016
http://dx.doi.org/10.1088/0031-8949/29/3/016
http://dx.doi.org/10.1088/0031-8949/29/3/016
http://dx.doi.org/10.1088/0031-8949/29/3/016
http://dx.doi.org/10.1016/0375-9601(79)90663-7
http://dx.doi.org/10.1016/0375-9601(79)90663-7
http://dx.doi.org/10.1016/0375-9601(79)90663-7
http://dx.doi.org/10.1016/0375-9601(79)90663-7
http://dx.doi.org/10.1103/PhysRevE.71.036614
http://dx.doi.org/10.1103/PhysRevE.71.036614
http://dx.doi.org/10.1103/PhysRevE.71.036614
http://dx.doi.org/10.1103/PhysRevE.71.036614
http://dx.doi.org/10.1007/BF01014793
http://dx.doi.org/10.1007/BF01014793
http://dx.doi.org/10.1007/BF01014793
http://dx.doi.org/10.1007/BF01014793
http://dx.doi.org/10.1016/0167-2789(82)90068-9
http://dx.doi.org/10.1016/0167-2789(82)90068-9
http://dx.doi.org/10.1016/0167-2789(82)90068-9
http://dx.doi.org/10.1016/0167-2789(82)90068-9
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1103/PhysRevE.55.4773
http://dx.doi.org/10.1103/PhysRevE.55.4773
http://dx.doi.org/10.1103/PhysRevE.55.4773
http://dx.doi.org/10.1103/PhysRevE.55.4773
http://dx.doi.org/10.1134/1.1528692
http://dx.doi.org/10.1134/1.1528692
http://dx.doi.org/10.1134/1.1528692
http://dx.doi.org/10.1134/1.1528692
http://dx.doi.org/10.1103/PhysRevA.77.013820
http://dx.doi.org/10.1103/PhysRevA.77.013820
http://dx.doi.org/10.1103/PhysRevA.77.013820
http://dx.doi.org/10.1103/PhysRevA.77.013820
http://dx.doi.org/10.1063/1.2209169
http://dx.doi.org/10.1063/1.2209169
http://dx.doi.org/10.1063/1.2209169
http://dx.doi.org/10.1063/1.2209169
http://dx.doi.org/10.1103/PhysRevE.58.6752
http://dx.doi.org/10.1103/PhysRevE.58.6752
http://dx.doi.org/10.1103/PhysRevE.58.6752
http://dx.doi.org/10.1103/PhysRevE.58.6752
http://dx.doi.org/10.1103/PhysRevE.63.016608
http://dx.doi.org/10.1103/PhysRevE.63.016608
http://dx.doi.org/10.1103/PhysRevE.63.016608
http://dx.doi.org/10.1103/PhysRevE.63.016608
http://dx.doi.org/10.1103/PhysRevA.90.062314
http://dx.doi.org/10.1103/PhysRevA.90.062314
http://dx.doi.org/10.1103/PhysRevA.90.062314
http://dx.doi.org/10.1103/PhysRevA.90.062314
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevLett.86.5043
http://dx.doi.org/10.1103/PhysRevLett.86.5043
http://dx.doi.org/10.1103/PhysRevLett.86.5043
http://dx.doi.org/10.1103/PhysRevLett.86.5043
http://dx.doi.org/10.1140/epjst/e2009-01067-9
http://dx.doi.org/10.1140/epjst/e2009-01067-9
http://dx.doi.org/10.1140/epjst/e2009-01067-9
http://dx.doi.org/10.1140/epjst/e2009-01067-9
http://dx.doi.org/10.1063/1.3290736
http://dx.doi.org/10.1063/1.3290736
http://dx.doi.org/10.1063/1.3290736
http://dx.doi.org/10.1063/1.3290736
http://dx.doi.org/10.1063/1.4772611
http://dx.doi.org/10.1063/1.4772611
http://dx.doi.org/10.1063/1.4772611
http://dx.doi.org/10.1063/1.4772611
http://dx.doi.org/10.1103/PhysRevE.59.2373
http://dx.doi.org/10.1103/PhysRevE.59.2373
http://dx.doi.org/10.1103/PhysRevE.59.2373
http://dx.doi.org/10.1103/PhysRevE.59.2373
http://dx.doi.org/10.1007/s11071-013-0795-x
http://dx.doi.org/10.1007/s11071-013-0795-x
http://dx.doi.org/10.1007/s11071-013-0795-x
http://dx.doi.org/10.1007/s11071-013-0795-x
http://dx.doi.org/10.1016/j.amc.2013.04.013
http://dx.doi.org/10.1016/j.amc.2013.04.013
http://dx.doi.org/10.1016/j.amc.2013.04.013
http://dx.doi.org/10.1016/j.amc.2013.04.013
http://dx.doi.org/10.1103/PhysRevE.89.062901
http://dx.doi.org/10.1103/PhysRevE.89.062901
http://dx.doi.org/10.1103/PhysRevE.89.062901
http://dx.doi.org/10.1103/PhysRevE.89.062901
http://dx.doi.org/10.1016/j.cnsns.2014.06.001
http://dx.doi.org/10.1016/j.cnsns.2014.06.001
http://dx.doi.org/10.1016/j.cnsns.2014.06.001
http://dx.doi.org/10.1016/j.cnsns.2014.06.001
http://dx.doi.org/10.1016/j.wavemoti.2014.12.001
http://dx.doi.org/10.1016/j.wavemoti.2014.12.001
http://dx.doi.org/10.1016/j.wavemoti.2014.12.001
http://dx.doi.org/10.1016/j.wavemoti.2014.12.001
http://dx.doi.org/10.1111/j.1467-9590.2011.00525.x
http://dx.doi.org/10.1111/j.1467-9590.2011.00525.x
http://dx.doi.org/10.1111/j.1467-9590.2011.00525.x
http://dx.doi.org/10.1111/j.1467-9590.2011.00525.x
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1103/PhysRevE.73.026604
http://dx.doi.org/10.1103/PhysRevE.73.026604
http://dx.doi.org/10.1103/PhysRevE.73.026604
http://dx.doi.org/10.1103/PhysRevE.73.026604
http://dx.doi.org/10.1016/0375-9601(81)90051-7
http://dx.doi.org/10.1016/0375-9601(81)90051-7
http://dx.doi.org/10.1016/0375-9601(81)90051-7
http://dx.doi.org/10.1016/0375-9601(81)90051-7
http://dx.doi.org/10.1103/PhysRevLett.111.054101
http://dx.doi.org/10.1103/PhysRevLett.111.054101
http://dx.doi.org/10.1103/PhysRevLett.111.054101
http://dx.doi.org/10.1103/PhysRevLett.111.054101
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1088/1751-8113/44/33/335210
http://dx.doi.org/10.1088/1751-8113/44/33/335210
http://dx.doi.org/10.1088/1751-8113/44/33/335210
http://dx.doi.org/10.1088/1751-8113/44/33/335210



