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Symmetries and exact solutions of a class of nonlocal nonlinear Schrödinger equations
with self-induced parity-time-symmetric potential
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A class of nonlocal nonlinear Schrödinger equations (NLSEs) is considered in an external potential with a
space-time modulated coefficient of the nonlinear interaction term as well as confining and/or loss-gain terms.
This is a generalization of a recently introduced integrable nonlocal NLSE with self-induced potential that is
parity-time-symmetric in the corresponding stationary problem. Exact soliton solutions are obtained for the
inhomogeneous and/or nonautonomous nonlocal NLSE by using similarity transformation, and the method is
illustrated with a few examples. It is found that only those transformations are allowed for which the transformed
spatial coordinate is odd under the parity transformation of the original one. It is shown that the nonlocal NLSE
without the external potential and a (d + 1)-dimensional generalization of it admits all the symmetries of the
(d + 1)-dimensional Schrödinger group. The conserved Noether charges associated with the time translation,
dilatation, and special conformal transformation are shown to be real-valued in spite of being non-Hermitian.
Finally, the dynamics of different moments are studied with an exact description of the time evolution of the
“pseudowidth” of the wave packet for the special case in which the system admits a O(2,1) conformal symmetry.
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I. INTRODUCTION

Ever since it was realized that parity-time-symmetric (PT -
symmetric) non-Hermitian systems may exhibit real spectra
[1], a great deal of investigation has been carried out in this field
[2–8]. As theoretical understanding proceeds, attempts have
been made to realize non-Hermitian PT -symmetric systems
experimentally. Since the paraxial equation of diffraction
is similar in structure to the Schrödinger equation, it was
believed that optics may be a testing ground forPT -symmetric
systems [9]. In fact, the phase transition between broken
and unbroken phases of a non-Hermitian system has been
observed experimentally [10], stimulating a great deal of
research [11–13] in optical systems with PT symmetry.

The nonlinear Schrödinger equation (NLSE) admits soliton
solutions and finds applications in many diverse branches of
modern science, such as Bose-Einstein condensation (BEC)
[14], plasma physics [15], gravity waves [16], α-helix protein
dynamics [17], etc., and especially optics where it describes
wave propagation in nonlinear media [18]. The study of
solitons in the NLSE was mainly confined to homogeneous
and autonomous systems during the earlier years of its
development, where time merely played the role of a parameter
in the nonlinear evolution equation. However, it became
apparent that integrability of the NLSE may be preserved
[19] if different coefficients appearing in it are given specific
space-time dependences. This led to the concept of nonau-
tonomous solitons [20]. A great deal of research [21–23]
work has been carried out recently on the inhomogeneous
and/or nonautonomous NLSE in an external potential due
to its physical and experimental relevance. Such systems
appear in the study of Bose-Einstein condensation, soliton
lasers, ultrafast soliton switches, and logic gates [24]. The
time dependence of different coefficients may arise due to
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time-dependent external forces, whereas inhomogeneity may
be introduced through optical control of Feshback resonances
[25]. One may use the method of similarity transformation
[26,27] to find exact solutions of such inhomogeneous and
nonautonomous NLSEs, and there are many such exactly
solvable systems.

An integrable nonlocal NLSE was introduced in Ref. [28]
for which exact solutions were obtained through the inverse
scattering method. In contrast to the standard formulation of
the NLSE, the Schrödinger field and its parity (P) -transformed
complex conjugate are treated as two independent fields. The
self-induced potential in the corresponding stationary problem
is non-Hermitian but PT -symmetric. It was shown later [29]
that this nonlocal NLSE admits both dark and bright solitons
for the case of attractive interaction. Several periodic soliton
solutions of this equation have been obtained analytically [30].
A two-component generalization of the nonlocal NLSE is
considered in Ref. [30], while a nonlocal NLSE on a one-
dimensional lattice is introduced in Refs. [29,30]. Nonlocal
nonlinearity arises whenever the nonlinear effect at a particular
point depends on the influences from other points [31]. This
kind of nonlinearity manifests itself in many natural events;
for example, Bose-Einstein condensation in a system having
long-range interaction is reported in Refs. [32,33]. This kind of
nonlinearity is also observed in transport processes associated
with heat conduction in media having a thermal influence,
and during diffusion of charge carriers, atoms, or molecules
in atomic vapors [34,35]. The propagation of highly nonlocal
solitons in nematic liquid crystals is mentioned in Ref. [36].

The purpose of this paper is to introduce and study an
inhomogeneous and nonautonomous version of the integrable
nonlocal NLSE of Ref. [28]. In particular, we consider a
class of nonlocal NLSEs in an external potential with a
space-time modulated coefficient of the nonlinear interaction
term as well as confining and/or loss-gain terms. We find
exact soliton solutions for this generalized class of nonlocal
NLSEs by using a similarity transformation. We find that only
those transformations are allowed for which the transformed
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spatial coordinate is odd under the parity transformation of
the original one. This is in contrast to the findings of similar
studies for the local NLSE, for which no such restriction is
necessary. Although such a condition puts restrictions on the
possible types of external potentials, loss-gain terms, space-
time modulated coefficients, etc., the choices are still infinitely
many, including most of the physically interesting cases. We
consider a few examples with the explicit expressions for
the external potential and space-time modulated coefficient
of the nonlinear interaction term. It is worth mentioning here
that integrability of the nonlocal NLSE with spatiotemporally
varying coefficients of the dispersion as well as the nonlinear
term has been considered recently by using the Lax-pair
formulation [37]. However, the integrability condition in
Ref. [37] restricts the spatial dependence of the coefficients to
a specific form, and it cannot reproduce the class of nonlocal
NLSE considered in this paper.

We introduce a (d + 1)-dimensional homogeneous and
autonomous nonlocal NLSE without any external potential
and study its Schrödinger invariance. The system is invariant
under all the symmetry transformations associated with the
(d + 1)-dimensional Schrödinger group. We find that the
formal expressions for the corresponding conserved Noether
charges are non-Hermitian. However, the conserved charges
associated with the time translation, dilatation, and special
conformal transformation are shown to be real-valued only.
On the other hand, the total momentum as well as the boost are
complex in any spatial dimensions. Consequently, the angular
momentum turns out to be real in odd spatial dimensions and is
complex in even spatial dimensions. The conserved charges are
shown to satisfy the (d + 1)-dimensional Schrödinger algebra.

Finally, we consider an inhomogeneous and nonau-
tonomous version of this higher-dimensional nonlocal NLSE.
We introduce different moments and study their dynamics.
Although the formal expressions for these moments are non-
Hermitian, they are shown to be real-valued. We find an exact
description of the time evolution of the “pseudowidth” of the
wave packet for the special case in which the system admits a
O(2,1) conformal symmetry.

II. EXACT SOLUTION OF THE NONLOCAL NLSE

An integrable nonlocal NLSE in 1+1 dimensions was
introduced in [28]:

iψt (x,t) = − 1
2ψxx(x,t) + G ψ∗(−x,t)ψ(x,t)ψ(x,t), G ∈ R.

(1)

The self-induced potential in the corresponding stationary
problem has the form V (x) = ψ∗(−x)ψ(x), which is PT -
symmetric, i.e., V ∗(−x) = V (x). The equation is nonlocal in
the sense that the value of the potential V (x) at x requires the
information on ψ at x as well as at −x. It has been shown in
Ref. [28] that this equation possesses a Lax pair and an infinite
number of conserved quantities, and therefore it is integrable.
In contrast to the usual local NLSE, Eq. (1) admits dark as
well as bright soliton solutions for g < 0 [29]. Several periodic
soliton solutions of this equation have also been found [30]. It
is interesting to note that Eq. (1) admits a solution with a special
shift in coordinate x, but not with an arbitrary shift [29,30]. The

occurrence of nonlocal nonlinearity is not rare in nature. For
example, it appears in the case of diffusion of charge carriers,
atoms, or molecules in atomic vapors [34,35]. In the study of
BEC with a long-range interaction, the BEC with magnetic
dipole-dipole forces was considered in Ref. [32] and BEC
of chromium was investigated in Ref. [33]. The optical spatial
soliton in a highly nonlocal medium was observed in Ref. [36].
The nonlinearity occurring in Eq. (1) has the possibility to be
realized in the case of a coupled waveguide or in an infinite
array of waveguide system [29].

In this section, we investigate the possible exact solutions
of the following nonautonomous NLSE:

iψt = − 1
2ψxx + [V (x,t) + iW (x,t)]ψ + g(x,t)ψ∗p

× (−x,t)ψp(x,t)ψ(x,t), p ∈ N, (2)

where g(x,t) is the space-time-dependent strength of the
nonlinear interaction. There are many applications of the
corresponding local nonautonomous NLSE of this kind with
space-time modulated coefficients, e.g., in the study of
Bose-Einstein condensation, soliton lasers, ultrafast soliton
switches, logic gates [24], etc. It may be noted that the nonlin-
ear interaction term is nonlocal as well as PT -symmetric. The
external potential v(x,t) = V (x,t) + iW (x,t) is chosen to be
complex, with V (x,t) and W (x,t) being the real and imaginary
parts, respectively. The effect of V (x,t) is to confine the
particle, whereas W (x,t) is considered to be a gain-loss coef-
ficient. The external potential v(x,t) becomes PT -symmetric
for V (x,t) = V (−x, − t) and W (x,t) = −W (−x, − t). It
is worth mentioning here that the PT -symmetric periodic
potential was investigated in Refs. [9,12] in the realm of optics
with the possibility of double refraction, power oscillation,
and secondary emissions. In the corresponding local analysis,
the situation p > 1 arises in the realization of BEC in lower
dimensions, in which case the Gross-Pitaevskii equation needs
to be modified by taking p > 1 [38,39].

The above equation reduces to a homogeneous nonlocal
NLSE,

iψt = − 1
2ψxx + Gψ∗p(−x,t)ψp(x,t)ψ(x,t) (3)

for V (x,t) = W (x,t) = 0, g(x,t) = G. A further choice of
p = 1 reproduces the nonlocal NLSE in Eq. (1), which is
exactly solvable. We find an exact solution of Eq. (3) for
arbitrary p,

ψ(x,t) = �0 e
i A2

2p2 t
sech

1
p (Ax), (4)

where

G = −A2(1 + p)

2p2�
2p

0

(5)

is necessarily negative. It may be noted that unlike the
soliton solutions of the corresponding local NLSE, an arbitrary
constant shift of the transverse coordinate in ψ(x) does not
produce an exact solution of (3). The known bright soliton
solutions of the nonlocal NLSE with cubic nonlinearity may
be reproduced by setting p = 1 in Eqs. (4) and (5).

We use the similarity transformation [27]

ψ(x,t) = ρ(x,t)eiφ(x,t)�(X), X ≡ X(x,t) (6)
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to map Eq. (2) to the following equation:

μ�(X) = − 1
2�XX(X) + G�∗p(−X)�p(X)�(X). (7)

Consequently, the known exact solution of Eq. (3) may be used
to construct a large class of exactly solvable nonautonomous
nonlocal NLSEs of the type of Eq. (2). We find that Eq. (2)
reduces to the stationary nonlocal NLSE (7) only when X(x,t)
is an odd function of x, i.e.,

X(−x,t) = −X(x,t), (8)

and the following additional consistency conditions hold
simultaneously:

2ρρt + (ρ2φx)x = 2ρ2W (x,t), (9)

(ρ2Xx)x = 0, (10)

Xt + φxXx = 0, (11)

V (x,t) = ρxx

2ρ
− φt − φ2

x

2
− μX2

x, (12)

g(x,t) = G

ρp(−x,t)ρp(x,t)eip[φ(x,t)−φ(−x,t)]
X2

x. (13)

The above conditions are obtained by exploiting the facts that
ψ and � satisfy Eqs. (2) and (7), respectively, and they are
related by transformation in Eq. (6). It may be noted that
the oddness of X(x,t) in x, as in Eq. (8), is not necessary
for the similarity transformation from the local NLSE to its
inhomogeneous counterpart. Condition (8) arises solely due
to the nonlocal nature of the nonlinear interaction and forbids
any purely time-dependent shift in the choice of X in terms
of x and t . This is consistent with the fact that the solutions
of the nonlocal NLSE are not invariant under any shift of the
transverse coordinate x [29]. All the consistency conditions in
Eqs. (9)–(13), except for the expression of g(x,t), are identical
with the corresponding expressions [27] obtained for the
mapping of the local NLSE to its inhomogeneous counterpart.
Further, it is evident that g(x,t) becomes a complex function
if φ(x,t) is not an even function of x, while the consistency
conditions stated above are based on the assumption of real
g(x,t). This apparent contradiction is removed by the use of
Eq. (8), which reduces g(x,t) to be real. Toward that end, we
solve Eqs. (10) and (11) to obtain ρ and φ:

ρ(x,t) =
√

δ(t)

Xx

, φ(x,t) = −
∫

dx
Xt

Xx

+ φ0(t), (14)

where δ(t) and φ0(t) are two integration constants. It imme-
diately follows that both ρ and φ(x,t) are even in x, which
allows us to rewrite g(x,t) in Eq. (13) as

g(x,t) = Gδ2(t)

ρ2(p+2)
. (15)

A choice of X will determine ρ and φ through Eq. (14)
up to two integration constants that may be fixed by using
appropriate conditions on V (x,t). The expressions of X, ρ,
and φ may be used to determine W (x,t), V (x,t), and g(x,t)
from Eqs. (9), (12), and (15), respectively.

A. Inhomogeneous autonomous nonlocal NLSE

Consider a special class of similarity transformation by
considering

ρ(x,t) ≡ ρ(x), φ(x,t) ≡ −Et, X ≡ X(x) (16)

in Eq. (6). In this case, Eq. (11) is satisfied automatically, and
the consistency condition of Eq. (9) determines W (x,t) = 0,
which implies that no gain-loss term can be generated under
this similarity transformation. From Eqs. (10), (12), and (15),
X(x), g(x), and V (x) can be determined as

X(x) =
∫ x

o

ds

ρ2(s)
, (17)

g(x) = G

ρ2(p+2)
, (18)

V (x) = ρxx

2ρ
+ E − μ

ρ4
, (19)

Equation (17) implies that ρ must have a definite parity as X

is an odd function of x. It immediately follows from Eqs. (18)
and (19) that both g(x) and V (x) must be an even function of
x. In particular,

ρ(−x) = ±ρ(x), g(−x) = g(x), V (−x) = V (x). (20)

The reality of ρ(x), g(x), and V (x) ensures that these functions
are also PT -symmetric. It may be noted that for the similarity
transformation of the local NLSE to its inhomogeneous
counterpart [26], no conditions such as those in Eqs. (8) and
(20) are necessary. Thus, we have the important result that the
similarity transformation technique [26] is applicable to the
nonlocal NLSE only when both the confining potential V (x)
and the space-modulated nonlinear interaction term g(x) are
even in x.

The expressions for X(x) and g(x) can be obtained once an
explicit form of ρ(x) is known. We use Eq. (19) to find ρ(x)
for a given V (x). We rewrite Eq. (19) as

1

2
ρxx + [E − V (x)] ρ = μ

ρ3
, (21)

which is the Ermakov-Pinney equation [26]. The solution of
this equation may be written as

ρ = [
aφ2

1(x) + 2bφ1(x)φ2(x) + cφ2
2(x)

] 1
2 , (22)

where a, b, and c are constants, and φ1(x) and φ2(x) are the
two linearly independent solutions of the equation

− 1
2φxx + V (x)φ(x) = Eφ(x). (23)

The constant μ is determined as μ = (ac − b2)[φ′
1(x)φ2(x) −

φ1(x)φ′
2(x)]2. The confining potential V (x) has even parity.

Thus, φ1,2(x) can always be chosen to be either even
or odd. The requirement of a definite parity for ρ(x)
can always be ensured by suitably choosing the constants
a,b,c for a given set of linearly independent solutions φ1

and φ2.
We consider a few specific examples, as follows.

1. Vanishing external potential

The first example deals with the case of no external
potential, i.e., V (x) = 0. There are two cases, depending on
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whether E > 0 or E < 0, which are treated separately. For
E > 0, Eqs. (17)–(23) can be solved consistently, leading
to the following expressions for the function ρ(x) and the
space-modulated coefficient g(x):

ρ(x) = [1 + α cos(ωx)]
1
2 ,

(24)
g(x,t) = G[1 + α cos(ωx)]−(p+2),

where ω = 2
√

2|E| and μ = (1 − α2)E. The transformed
coordinate X(x) is determined as

X+(x) = 2

ω
√

1 − α2
tan−1

[√
1 − α

1 + α
tan

(ωx

2

)]

for |α| < 1,
(25)

X−(x) = 1

ω
√

α2 − 1
ln

⎡
⎣ tan

(
ωx
2

) +
√

α+1
α−1

tan
(

ωx
2

) −
√

α+1
α−1

⎤
⎦

for |α| > 1,

where the subscripts refer to the fact that μ is positive for the
solution X+(x), whereas it is negative for X−(x). A solution of
Eq. (2) for G < 0, V = W = 0, and g(x,t) given by Eq. (24)
reads

ψ(x,t) = e−iEt

(
E(α2 − 1)(p + 1)

|G|
) 1

2p

[1 + α cos(ωx)]
1
2

× sech
1
p (p

√
2E(α2 − 1)X−(x)). (26)

For p = 1, under the same conditions as stated above, Eq. (2)
also admits the following solution:

ψ(x,t) = e−iEt

(
E(1 − α2)

|G| [1 + α cos(ωx)]

) 1
2

× tanh(
√

(1 − α2)EX+(x)). (27)

It may be noted that Eq. (27) is also a solution of the
corresponding local NLSE, but for G > 0.

For E < 0, Eqs. (17)–(23) can be solved consistently with
the following expressions for the function ρ(x), the space-
modulated coefficient g(x), and the transformed coordinate
X(x):

ρ(x) = cosh
1
2 (ωx),

g(x) = G cosh−(p+2)(ωx), (28)

X(x) = − 1

ω
cos−1[tanh(ωx)],

where μ is determined as μ = 2|E|, which is positive-definite.
Unlike x, which is defined on the whole line, X is bounded
within the range 0 � X � π

ω
, and any solution of Eq. (7)

must vanish at the end points. There are many exact periodic
solutions [30] of Eq. (7) for p = 1 in terms of Jacobi elliptic
functions. The type-V and type-VIII solutions of Ref. [30] are
of particular interest to the present problem. In particular,

ψV = e−iEt

(
2mμ

|G|(1 + m)
cosh(ωx)

) 1
2

sn

(√
2μ

1 + m
X,m

)

(29)

is an exact solution of Eq. (2) with p = 1 and G < 0, where
1
2 < μ � 1. The value of m within the range 0 < m � 1 is
determined from the condition

4nK(m)
√

am = π, K(m) ≡
∫ π

2

0
(1 − m sin2 θ )−

1
2 dθ, (30)

where n is any positive integer and am = m + 1. The above
equation determining the allowed values of m arises from

the condition that sn(
√

2μπ

(1+m)ω ,m) = 0, and for every n it has

a unique solution [26]. The boundary condition at X = 0 is

automatically satisfied by the elliptic function sn(
√

2μ

1+m
X,m).

A second solution of Eq. (2) with p = 1 and G > 0 is

ψVIII = e−iEt

(
2mμ(1 − m)

|G|(2m − 1)
cosh(ωx)

) 1
2 sn

(√ 2μ

1−2m
X,m

)
dn

(√ 2μ

1−2m
X,m

) ,

(31)

where the values of m within the range 0 < m < 1
2 are

again determined from Eq. (30) with am = 1 − 2m. Both ψV

and ψVIII describe bound states of multisoliton states. The
inhomogeneous local NLSE corresponding to Eq. (2) also
admits these novel states [26], but for G < 0.

2. Harmonic confinement

We choose V (x) = 1
2x2 and E = 0, for which (17)–(23)

can be solved consistently with the following solutions:

ρ(x) = e
x2

2 , g(x) = Ge−(p+2)x2
, X(x) =

√
π

2
erfx.

(32)

Note that μ = 0 and −
√

π

2 � X �
√

π

2 . We choose p = 1 for
which solutions of type-II and type-VIII of Ref. [30] with
m = 1

2 are relevant for the present discussion. In particular,

ψn
II = 2nK

(
1
2

)
√

2π |G|e
−iEt e

x2

2 cn

(
θn,

1

2

)
, n = 1,3, . . . ,

(33)

ψn
VIII = nK

(
1
2

)
√

π |G|e
−iEt e

x2

2
sn

(
θn,

1
2

)
dn

(
θn,

1
2

) , n = 2,4, . . .

are solutions of Eq. (2) for G < 0 and G > 0, respectively,
where θn is defined as

θn(x) = nK

(
1

2

)
erfx, n = 1,2, . . . . (34)

It may be recalled that both ψII and ψVIII are solutions of
the corresponding local NLSE for G < 0 [26]. The difference
between the local and the nonlocal cases arises due to the fact
that cn(X) and dn(x) are even functions of X, while sn(X) is an
odd function of its argument. Both ψII and ψVIII are localized
in space, and each of them has n − 1 zeros for a fixed n [26].

3. Reflectionless potential

We choose E = 0 and the potential

V (x) = 1
2A2 − 1

2A(A + 1)sech2x, A ∈ N, (35)
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for which

ρ(x) = (cosh x)A, g(x) = G(sechx)2A(p+2),
(36)

X(x) =
A−1∑
k=0

(−1)k

2k + 1
A−1Ck(tanh x)2k+1

are consistent with Eqs. (17)–(23) and μ is determined as
μ = 0. The range of X is given by −L � X � L, L =∑A−1

k=0
(−1)k

2k+1
A−1Ck . We choose p = 1, for which

ψn
II = nK

(
1
2

)
L

√
2|G|e

−iEt (cosh x)A cn

(
χn,

1

2

)
, n = 1,3, . . . ,

ψn
VIII = nK

(
1
2

)
L2

√|G|e
−iEt (cosh x)A

sn
(
χn,

1
2

)
dn

(
χn,

1
2

) , n = 2,4, . . .

(37)

are solutions of Eq, (2) for G < 0 and G > 0, respectively,
where χn is defined as

χn(x) =
√

πnK
(

1
2

)
2L

X(x), n = 1,2, . . . . (38)

Both of the solutions are localized in space, and each of them
has n − 1 zeros for fixed n.

B. Nonautonomous nonlocal NLSE

Condition (8) can be implemented in several ways. We
discuss two different classes of X(x,t) depending on its
separability or nonseparability in terms of its arguments x

and t . It turns out that for the nonseparable case, the gain-loss
coefficient is essentially zero, while it may be chosen to be
nonzero for the separable case.

1. Nonseparable X(x,t)

One may choose the following ansatz:

X(t,x) = F (ξ ), ξ (t,x) ≡ γ (t)x, F (−ξ ) =−F (ξ ), (39)

where γ (t) is an arbitrary function of t . Note that unlike in
the case of the local NLSE [27], a purely time-dependent term
cannot be added to the ansatz for X(x,t) due to condition (8).
Further, the consistency of Eqs. (12)–(14) fixes W (x,t) = 0.
Thus, the above ansatz is not suitable for systems with a loss-
gain term. We obtain the following expressions:

φ(x,t) = − γt

2γ
x2 + φ0(t),

ρ(x,t) =
√

γ

F ′(ξ )
,

g(x,t) = Gγ 2−p[F ′(ξ )]p+2,

V (x,t) = γ 2

8[F ′(ξ )]2
[3{F ′′(ξ )}2 − 2F ′′(ξ )F ′′′(ξ )

− 8μ{F ′(ξ )}4] + 1

2
ω(t)x2 − φ0t , (40)

where we have assumed δ = γ 2, and for a given ω(t), u = γ −1

is determined from the equation

utt + ω(t)u = 0. (41)

The above ansatz leads to harmonic confinement irrespective
of the choice of F (ξ ). It may happen that the first term in V (x,t)
contains a term proportional to ξ 2 for specific choices of F (ξ )
for which Eq. (41) gets transformed into the Ermakov-Pinney
equation of [27].

The example considered in Ref. [27] for the case of a
corresponding local NLSE with p = 1 is that of exponentially
localized nonlinearity with a combination of harmonic and
dipole traps. The motivation behind such a choice is the
experimental scenario related to Bose-Einstein condensation.
It may be noted that F (ξ ) = ∫

e−ξ 2
dξ is an odd function of its

arguments and satisfies the conditions (39). Thus, the results of
Ref. [26] are equally valid for the nonlocal NLSE with p = 1
also, except for the following differences:

(i) The discussions in Ref. [26] for the local NLSE are for
attractive interaction (G = −1), whereas the same results are
valid for the nonlocal NLSE under consideration for repulsive
interaction (G = 1) only.

(ii) The nonlocal NLSE admits resonant solitons, breathing
solitons, and quasiperiodic solutions. However, moving soli-
tons are not allowed for the nonlocal NLSE due to the condition
(8), which forbids the addition of a purely time-dependent term
to the ansatz for X(x,t).

2. Separable X(x,t)

We choose an expression for X(x,t) that is separable in
terms of its arguments, and the spatial part is an odd function
of x:

X(x,t) ≡ α(t)f (x), f (−x) = −f (x). (42)

With this choice of X, Eqs. (12)–(14) take the following form
in terms of α(t) and f (x):

ρ(x,t) =
√

δ(t)

α(t)f ′(x)
,

φ(x,t) = − αt

α(t)

∫
dx

f (x)

f ′(x)
, (43)

g(x,t) = Gαp+2

δp
(f ′)p+2

,

W (x,t) = 1

2α(t)δ(t)
(δtα − 2αtδ) + αt

α

(
f ′′f
f ′2

)
, (44)

V (x,t) = −
(

2f ′′′f ′ − 3f ′′2

8f ′2

)
+ αttα − α2

t

α2

∫
f (x)

f ′(x)
dx

− α2
t f

2

2α2f ′2 − μα2f ′2, (45)

where f ′(x) = df

dx
. We have chosen φ0(t) to be zero since its

sole effect is to add a purely time-dependent term to V (x,t),
which can always be removed through a phase rotation. The
following points are in order at this point:

(i) PT -symmetry. It may be noted that W is odd and
V is even under PT symmetry whenever both α(t) and
δ(t) have definite parity. Thus, this is also the condition
for the external potential v(x,t) to be PT -symmetric. The
space-time modulated nonlinear interaction g(x,t) becomes
PT -symmetric when additional conditions are imposed. In
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particular, it becomes PT -symmetric when both δ(t) and α(t)
have the same parity or p is even.

(ii) Parameter fixing. A purely time-dependent part W0(t) =
1

2α(t)δ(t) (δtα − 2αtδ) of W can be gauged from Eq. (2) through
a redefinition of g(x,t):

ψ(x,t) → ψ(x,t) e
∫ t

0 W0(t ′)dt ′ , g(x,t) → g(x,t)e2p
∫ t

0 W0(t ′)dt ′ .

(46)

Thus, without any loss of generality, we may choose δ(t) =
α2(t) so that W0(t) = 0. The expression for V and φ remains
unchanged for this particular choice, while ρ, g, and W read

ρ(x,t) =
√

α

f ′(x)
,

g(x,t) = Gα2−p(f ′)p+2, (47)

W (x,t) = αt

α

(
f ′′f
f ′2

)
.

The system described by Eq. (3) has a conformal symmetry
for p = 2 for which g(x,t) becomes independent of time.

(iii) Harmonic confinement. The loss-gain term W (x,t)
is purely time-dependent for f (x) satisfying the following
equation:

f ′′f = f0(f ′)2, f0 ∈ R. (48)

The odd solution of the above equation with f0 = 2n
2n+1 is

f (x) = x2n+1, n ∈ N0. For the special choice of n = 0, V (x,t)
becomes a purely time-dependent harmonic potential:

V (x,t) = 1
2ω(t)x2 − μα2, (49)

with W (x,t) = 0 and g(x,t) = Gα2−p. Note that Eq. (41) can
be used to determine ω(t) for a given u = α−1 or vice versa.
The system described by Eq. (3) has a conformal symmetry
for p = 2 for which g(x,t) becomes space-time-independent.

A particular choice may be the constant ω(t) = ω2
0. The

general solution of Eq. (41) in this case yields

α(t) = [C1 cos(ω0t) + C2 sin(ω0t)]
−1 , (50)

where C1,C2 are two arbitrary constants. In this case, g(x,t),
φ(x,t), ρ(x,t), and X(x,t) have the following expressions:

g(x,t) = G[C1 cos(ω0t) + C2 sin(ω0t)]
p−2,

φ(x,t) = −ω0[C1 sin(ω0t) − C2 cos(ω0t)]

2[C1 cos(ω0t) + C2 sin(ω0t)]
x2,

(51)
ρ = [C1 cos(ω0t) + C2 sin(ω0t)]

− 1
2 ,

X(x,t) = [C1 cos(ω0t) + C2 sin(ω0t)]
−1x.

We use the type-V solution of Ref. [30] to obtain a solution
of Eq. (2) with p = 1 and G < 0,

ψV =
(

2μm

G(1 + m) [C1 cos(ω0t) + C2 sin(ω0t)]

) 1
2

× e
−i

ω0[C1 sin(ω0 t)−C2 cos(ω0 t)]
2[C1 cos(ω0 t)+C2 sin(ω0 t)] x2

sn

(√
2μ

1 + m
X,m

)
,

where 1
2 < μ � 1, and the value of m within the range

0 < m � 1 is determined from the condition given in
(30).

Another solution of Eq. (2) for G < 0 and arbitrary p as
given by Eqs. (4) and (6) reads

ψ = �0ρeiφsech
1
p (AX), (52)

where ρ, φ, and X are given by Eq. (51) and

A = −2μp2, φ0 =
(

μ(1 + p)

|G|
) 1

2p

. (53)

(iv) Nonpolynomial external potential. A space-time-
dependent W (x,t) can be produced with nonpolynomial f (x).
We choose f (x) = sinh x, for which g(x,t), W (x,t), and
V (x,t) have the following expressions:

g(x,t) = Gα2−p coshp+2 x, W (x,t) = �(t) tanh2 x,

V (x,t) = −1

4
+ 3

8
tanh2 x +

(
d�

dt

)
ln(cosh x)

− �2

2
tanh2 x − μα2 cosh2 x, (54)

where �(t) = αt

α
. The function ψ(x,t) reads

ψ(x,t) = �0
√

α sech
1
2 x exp[−i�(t) ln(cosh x)]sech

1
p

× [Aα(t) sinh x], (55)

where A2 = −2μp2, �0 = (μ(1+p)
|G| )

1
2p .

III. SCHRÖDINGER INVARIANCE OF
NONLOCAL NLSE

A (d + 1)-dimensional generalization of (1) may be written
as

iψt (x,t) = − 1
2∇2ψ(x,t) + g{ψ∗(Px,t)ψ(x,t)}pψ(x,t).

(56)

The potential in the corresponding stationary problem has the
form V (x) = [ψ∗(Px)ψ(x)]p, which is PT -symmetric in any
spatial dimensions. It may be recalled that x → −x describes a
rotation in even space dimensions, while it is parity transforma-
tion in odd spatial dimensions. Thus, ψ∗(−x,t) is replaced with
ψ∗(Px,t) for the higher-dimensional generalization of (1).
The parity transformation in higher dimensions is not unique
and may be parametrized in terms of d − 1 parameters. All
such parity transformations are related to each other through
rotations in d-dimensional space. One may choose N set of
values of these d − 1 parameters and define the corresponding
parity operations as Pi , i = 1,2, . . . ,N . The corresponding
PT -symmetric potentials,

Ṽi(x) = {ψ∗(Pix)ψ(x)}p, (57)

are related to each other through spatial rotation. However,
for systems without rotational invariance, Ṽi(x)’s are to be
treated as independent of each other. For example, if Eq. (56)
is considered in an external potential with a space-modulated
coefficient of the nonlinear interaction term that is not invariant
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under spatial rotation, then each Ṽi(x) corresponds to different
systems. As mentioned earlier, case p > 1 becomes important
in lower-dimensional analysis of BEC [38,39]. The choice
d > 1 arises in the study of BEC in more than one dimension
[40,41]. It should be mentioned here that the integrability of
Eq. (56) with arbitrary d and/or p is still not known.

A Lagrangian formulation of Eq. (56) may be given in terms
of the Lagrangian density,

L = iψ∗(Px,t)∂tψ(x,t) − 1

2
∇ψ∗(Px,t) · ∇ψ(x,t)

− g

p + 1
{ψ∗(Px,t)ψ(x,t)}p+1, (58)

where ψ(x,t) and ψ∗(Px,t) are treated as two independent
fields. The conjugate momentum associated with ψ(x,t) is
�ψ (x,t) = iψ∗(Px,t) and the equal-time Poisson bracket
between them leads to the relation

{ψ(x,t),ψ∗(Py,t)} = −iδd (x − y). (59)

It may be recalled that in the Lagrangian formulation of the
usual local NLSE and other field theoretical models involving a
complex scalar field, ψ(x,t) and its complex conjugate ψ∗(x,t)
are treated as independent fields. The equal-time Poisson
bracket relation between ψ(x,t) and ψ∗(x,t) in the standard
formulation is similar to Eq. (59), i.e., {ψ(x,t),ψ∗(y,t)} =
−iδd (x − y).

The action A = ∫
Lddxdt is invariant under space-time

translations, spatial rotation, Galilean transformation, and a
global gauge transformation. The action A is invariant under
dilatation and special conformal transformation for the special
case pd = 2. The symmetries of the action are discussed in
the following subsections.

A. Global U(1) invariance

The action A is invariant under a global U(1) transforma-
tion, ψ(x,t) → ψ ′(x,t) = eisψ(x,t), where s is a real constant.
The corresponding conserved charge is the total number N ,

N =
∫

ρ(x,t)ddx, ρ(x,t) ≡ ψ∗(Px,t)ψ(x,t). (60)

Note that N is neither Hermitian nor a semipositive-definite
quantity. Thus, N is identified as quasipower in the literature
[28]. We now show that N is real-valued. It is always possible
to decompose ψ(x,t) as a sum of parity-even and parity-odd
terms:

ψ(x,t) = ψe(x,t) + ψo(x,t), (61)

where

ψe(x,t) = ψ(x,t) + ψ(Px,t)

2
,

(62)
ψo(x,t) = ψ(x,t) − ψ(Px,t)

2
.

With this decomposition of ψ(x,t), the density ρ can be
expressed in terms of the redefined field variables as sum of
a real-valued parity-even term and a parity-odd term that is
purely imaginary. In particular,

ρ(x,t) = ρr (x,t) + ρc(x,t) (63)

with

ρr (x,t) = |ψe(x,t)|2 − |ψo(x,t)|2,
(64)

ρc(x,t) = ψ∗
e (x,t)ψo(x,t) − ψ∗

o (x,t)ψe(x,t).

Note the following properties of ρr (x,t) and ρc(x,t):

ρ∗
r (x,t) = ρr (x,t), Pρr (x,t) = ρr (x,t),

(65)
ρ∗

c (x,t) = −ρc(x,t), Pρc(x,t) = −ρc(x,t).

The density is a complex-valued function. However, the total
number N , as defined by Eq. (60), does not receive any
contribution from the parity-odd purely imaginary term ρc(x,t)
and is real, N = ∫

ddxρr (x,t). This result is valid for any
spatial dimensions, and we have illustrated it in Appendix A
for one and two spatial dimensions. Note that unlike the local
NLSE, N can take positive as well as negative values. Thus, a
proper interpretation is required for the total number operator
N in the corresponding quantum theory.

The continuity equation for Eq. (56) reads

∂ρ

∂t
+ ∇ · J = 0,

J = i

2
[ψ(x,t)∇ψ∗(Px,t) − ψ∗(Px,t)∇ψ(x,t)],

(66)

where the current density J can be rewritten in terms of the
fields ψe(x,t) and ψ0(x,t) as a sum of a parity-odd real term
and a parity-even purely imaginary term, J = Jr + Ji , with

Jr = i

2
[ψe(x,t)∇ψ∗

e (x,t) − ψo(x,t)∇ψ∗
o (x,t)

−ψ∗
e (x,t)∇ψe(x,t) + ψ∗

o (x,t)∇ψo(x,t)], (67)

Ji = i

2
[ψo(x,t)∇ψ∗

e (x,t) − ψe(x,t)∇ψ∗
o (x,t)

+ψ∗
o (x,t)∇ψe(x,t) − ψ∗

e (x,t)∇ψo(x,t)]. (68)

The following properties of Jr and Ji may be noted:

Jr (x,t)∗ = Jr (x,t), PJr (x,t) = −Jr (x,t),
(69)

J∗
i (x,t) = −Ji(x,t), PJi(x,t) = Ji(x,t),

which will be useful in showing real-valuedness of some of
the conserved charges and moments to be defined below.

B. Spatial translation

The action is invariant under the spatial translation x′ =
x + δx with

ψ
′
(x′,t) = ψ(x,t), ψ

′∗(−x′,t) = ψ(−x,t), (70)

giving rise to the momentum P = ∫
Jddx as the conserved

charge. The exact solutions of Eq. (56) for d = 1 are not
invariant under an arbitrary shift of the coordinate. Thus, these
solutions explicitly break the translational invariance. Defining
the center-of-mass location as

X = 1

Nd

∫
xρ(x,t)ddx, (71)
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it is easy to verify by using the continuity equation that

N
dX
dt

= P, (72)

where | dX
dt

| may be identified as the speed of the center of
mass. The total momentum P is complex-valued in even spatial
dimensions and is purely imaginary in odd spatial dimensions.
This result is presented in Appendix A for d = 1,2. Similarly,
one can show that the center of mass X is purely imaginary
in odd spatial dimensions, while it is complex in even spatial
dimensions. Thus, neither the total momentum nor the center
of mass can be considered physical.

C. Time translation

The invariance of A under time translation leads to the
conserved quantity

H =
∫ [

1

2
∇ψ∗(Px,t) · ∇ψ(x,t)

+ g

p + 1
{ψ∗(Px,t)ψ(x,t)}p+1

]
ddx, (73)

which is identified as the Hamiltonian of the system. Note
that H is not semipositive-definite, since semipositivity is not
ensured for any of the terms appearing in H. The Hamiltonian
is also non-Hermitian with the standard definition of norm.
This should be contrasted with the Hamiltonian corresponding
to the usual local NLSE, for which H is Hermitian, and for the
defocusing case it is semipositive-definite.

We now show that the total Hamiltonian H is real-valued
in spite of it being non-Hermitian. The kinetic-energy term in
the Hamiltonian density can be decomposed as a parity-even
real term and a parity-odd purely imaginary term:

∇ψ∗(Px,t) · ∇ψ(x,t)

= [|∇ψe(x,t)|2 − |∇ψo(x,t)|2]

+ [∇ψ∗
e (x,t) · ∇ψo(x,t) − ∇ψ∗

o (x,t) · ∇ψe(x,t)]. (74)

The first term is real and even under parity transformation,
while the second term is purely imaginary and odd under parity
transformation. Thus, the second term does not contribute toH
and the contribution of the kinetic term to H is real. Similarly,
the interaction term in H can be shown to be real-valued. In
particular,

g

p + 1

∫
ddx ρp+1

= g

p + 1

∫
ddx

p+1∑
j=0

p+1Cjρ
j
c ρp+1−j

r

= g

p + 1

∫
ddx

[ p+1
2 ]∑

k=0

(−1)k p+1C2k|ρc|2kρp+1−2k
r , (75)

where [n] denotes the integral part of n, and nCr = n!
r!(n−r)! .

It may be recalled that ρ
j
c is odd under parity transformation

for odd j , while ρ
p+1−j
r is a parity-even term for any j . Thus,

the summation over odd j terms does not contribute to the

interaction term. The Hamiltonian H can be rewritten as

H = 1

2

∫
ddx[|∇ψe(x,t)|2 − |∇ψo(x,t)|2]

+ g

p + 1

∫
ddx

[ p+1
2 ]∑

k=0

(−1)k p+1C2k|ρc|2kρp+1−2k
r , (76)

which is real-valued and can take positive as well as negative
values.

D. Spatial rotation

The action is invariant under rotation and the corresponding
conserved charge is the angular momentum whose d(d − 1)/2
components are given by

Lij =
∫

(xiJj − xjJi)d
dx, i,j = 1,2, . . . ,d, (77)

where Ji is the ith component of the current density J. It
may be verified by using Eq. (69) that Lij ’s are real in odd
spatial dimensions, while they are complex in even spatial
dimensions.

E. Galilean transformation

The action is invariant under the Galilean transformation.
In particular, the fields ψ(x,t), ψ∗(Px,t) transform under the
Galilean transformation x′ = x − vt as

ψ ′(x′,t) = e−iv·(x′+ 1
2 vt)ψ(x,t), (78)

ψ ′∗(Px′,t) = eiv·(x′+ 1
2 vt)ψ∗(Px,t). (79)

It may be recalled that the exact solutions of Eq. (56) for
d = 1 are not invariant under a purely time-dependent shift
of the coordinate. Thus, these solutions break the Galilean
invariance explicitly. The conserved charge associated with
the Galilean symmetry is boost,

B = t P − X, (80)

which is complex-valued in even spatial dimensions and purely
imaginary for odd d. The conservation of B directly follows
from Eq. (72).

F. Conformal symmetry for pd = 2

Consider the following transformations:

x → xh = τ̇− 1
2 (t)x, t → τ = τ (t),

ψ(x,t) → ψh(xh,τ ) = τ̇
d
4 exp

(
−i

τ̈

4τ̇
x2

h

)
ψ(x,t),

ψ∗(Px,t) → ψ∗
h (Pxh,τ ) = τ̇

d
4 exp

(
i

τ̈

4τ̇
x2

h

)
ψ∗(Px,t),

where

τ (t) = αt + β

γ t + δ
, αδ − βγ = 1. (81)

The particular choices τ (t) = t + β, τ (t) = α2t , and τ (t) =
t

1+γ t
correspond to time translation, dilatation, and special con-

formal transformation, respectively. The action A is invariant
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under time translation in arbitrary d, and the corresponding
conserved quantity is given in Eq. (73). The action A is
invariant under dilatation and special conformal transforma-
tions for pd = 2. This corresponds to a quintic NLSE in
1 + 1 dimensions and cubic NLSE in 2 + 1 dimensions. The
conserved charges corresponding to dilatation (D) and special
conformation transformation (K) are

D = tH − I2, (82)

K = −t2H + 2tD + I1, (83)

where the moments I1 and I2 are defined as

I1(t) = 1

2

∫
ddx x2 ρ(x,t),

(84)
I2(t) = 1

2

∫
ddx x · J,

where x2 = x · x. I1 may be considered as the “pseudowidth”
of the wave packet, and I2 represents the growth speed of the
system. It may be noted that neither I1 nor I2 is Hermitian and
semipositive-definite. However, both I1 and I2 can be shown to
be real-valued. For example, the moment I1 may be rewritten
by using Eqs. (63) and (64) as

I1 = 1

2

∫
ddx x2 ρr (x,t)

= 1

2

∫
ddx x2[|ψe(x,t)|2 − |ψo(x,t)|2]. (85)

The moment I1 can be expressed as the difference of two
semipositive-definite moments, I1 = I1e − I1o, where I1e ≡
1
2

∫
ddx x2 |ψe(x,t)|2 and I1o ≡ 1

2

∫
ddx x2 |ψo(x,t)|2. Unlike

the case of local NLSE, I1 can be positive as well as negative,
which restricts the analysis of its dynamics by using the
moment method. The reality of I2 is explained in Appendix A
for d = 1,2. The dynamics of I1e and I1o are described in
Appendix B. Finally, it is worth mentioning here that both D

and K are real, since H , I1, and I2 are all real.
Following Refs. [42,43], the time development of I1(t) can

be determined as

I1(t) =
(√

I1(0) +
˙I1(0)

2
√

I1(0)
t

)2

+ Q

I1(0)
t2,

(86)

Q ≡ I1H −
(

1

2

dI1

dt

)2

,

where I1(0) and İ1(0) are the values of I1(t) and dI1
dt

at t = 0.
The Casimir operator Q of the underlying O(2,1) group is a
constant of motion and can take real values only. The moment
I1 vanishes at a finite real time t∗ for Q < 0 only,

t∗ = 4I1(0)

Q + {İ1(0)}2

[
− İ1(0)

2
±

√
−Q

]
. (87)

Note that t∗ can be made positive by appropriately choosing
I1(0), İ1(0), and H . Unlike the case of the local NLSE, the
vanishing of I1 at a real finite time does not necessarily
imply the collapse of the condensate. The vanishing of I1

rather signifies a transition from positive I1 to a negative
value or vice versa. It is not clear at this point whether this

transition has any physical significance or not. The vanishing
of I1 at a finite real time can be achieved when any of the
following four conditions is satisfied: (i) I1(0) > 0,H < 0; (ii)
I1(0) > 0,H > 0,İ1(0) � −2

√
I1(0)H ; (iii) I1(0) < 0,H > 0;

and (iv) I1(0) < 0,H < 0,İ1(0) � −2
√|I1(0)H |. The first

two conditions are applicable to the local NLSE also. However,
the last two conditions are valid for the nonlocal NLSE only.

The action is invariant under a duality symmetry. Consider
a particular τ (t),

α = δ = 0, γ = − 1

β
, τ = −β2

t
, (88)

which may be thought of as a combined operation of translation
in time by β, followed by a special conformal transformation
and again a time translation by β. The transformation of the
spatial coordinate and the fields reads

x → xh = t

β
x = −β

τ
x,

ψ(x,t) → ψh(xh,τ )=
(

β

t

) d
2

exp

(
i
tx2

2β2

)
ψ(x,t), (89)

ψ∗(Px,t) → ψ∗
h (Pxh,τ )=

(
β

t

) d
2

exp

(
−i

tx2

2β2

)
ψ∗(Px,t),

which is known as lens transformation [44] for the case of a
critical local NLSE. The parameter β being real, the theory at
τ > 0 is mapped to a theory at a time t < 0 and vice versa with
τ = 0 = t separating the two regions. We choose the following
convention,

β > 0, 0 � t � ∞, − ∞ � τ � 0. (90)

Following Ref. [43], we find that the system admits explosion-
implosion duality either for (a) H > 0,I1(0) > 0 or (b) H <

0,I1(0) < 0 such that Q > 0, i.e.,

|H | �
(

İ1(0)

2
√|I1(0)|

)2

. (91)

The pseudowidth explodes in the physical problem and
implodes in the dual problem for both cases. The physical
problem for the first case describes the growth of I1 from
its initial positive value to ∞ at t = ∞. On the other hand,
for the second case, the initial negative value of I1 in the
physical problem decreases to −∞ at t = ∞. The second
case described above is not allowed for the local NLSE, since
I1 is a semipositive-definite quantity.

The Noether charges satisfy the (d + 1)-dimensional
Schrödinger algebra:

{H,D} = H, {H,K} = 2D, {D,K} = K,

{P,D} = 1

2
P, {P,K} = B,

{Pi,Ljk} = −(δijPk − δikPj ), (92)

{Lij ,Lkl} = (δikLjl − δilLjk − δjkLil + δjlLik),

{H,B} = P, {D,B} = B
2

, {Pi,Bj } = δijN,

{Bi,Ljk,} = −(δijBk − δikBj ).
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All other Poisson brackets vanish identically. It may be recalled
that all the conserved charges are non-Hermitian. Only H,D,K

are real-valued in any dimensions, and Lij are real only in odd
spatial dimensions. Further analysis is required to understand
the significance of this algebra in the context of the nonlocal
NLSE.

IV. DYNAMICS OF MOMENTS

It is hard to find exact solutions of the higher-dimensional
NLSE or its various generalizations in its generic form.
The exact solution may be found only for particular cases.
The qualitative nature of solutions of such systems may
be described in terms of the dynamics of various moments
[42,43,45,46]. In particular, the moments satisfy a set of
coupled first-order differential equations with time as the
independent variable. However, in general, this is not a
close system of differential equations, and it involves spatial
integrals involving fields. An exact time development of some
of the moments may be described analytically for systems
with dynamical conformal symmetry [42,43]. Consequently,
important information regarding the time development of the
field for different initial conditions may be inferred.

Consider the following nonautonomous NLSE in d + 1
dimensions:

iψt (x,t) = − 1
2∇2ψ(x,t) + V (x,t)ψ(x,t)

+ g(x,t)ψ∗p(Px,t)ψp(x,t)ψ(x,t). (93)

This is a generalization of Eq. (56) where the system is
considered in an external potential and the constant coefficient
of the nonlinear term is allowed to become space-time-
dependent. We define a moment H in addition to the moments
I1 and I2 defined in Eqs. (84):

H = 1

2

∫
∇ψ∗(Px,t) · ∇ψ(x,t)ddx +

∫
G(ρ,x,t) ddx,

(94)

where G(ρ,x,t) = g(x,t)
1+p

ρp+1. Defining g′ = gρp, ∂G
∂ρ

= g′.
Following the standard technique [45,46], it is straightforward
to show that the moments satisfy the following set of equations:

dI1

dt
= 2I2,

dI2

dt
= −1

2

∫
ρ(x,t) (x · ∇V ) ddx + H̃

− 1

2

∫
ρ(x,t)(x · ∇g′)ddx,

dH

dt
= −

∫
∇V · Jddx +

∫
∂G

∂t
ddx, (95)

where H̃ is the first part of Eq. (94). If we restrict to
the quadratic potential of the form V = 1

2ω2x · x and G =
g0ρ

1+ 2
d , Eqs. (95) give a close system of equations:

dI1

dt
= 2I2,

dI2

dt
= −ω2I1 + H,

(96)
dH

dt
= −2ω2I2,

It may be noted that the condition pd = 2 is essential in
deriving the above set of equations, which corresponds to
conformal symmetry for the system described by H . A
decoupled equation for the pseudowidth X = √

I1 satisfies
Hill’s equation [47]:

d2X
dt2

+ ω2X = Q

X 3
. (97)

Equation (97) has the same form of a particle moving in an
inverse-square potential plus a time-dependent harmonic trap.
The general solution of Eq. (97) may be written as

X 2(t) = u2 + Q

W 2
v2(t), W (t) ≡ uv̇ − vu̇, (98)

where u(t) and v(t) are two independent solutions of the
following equation:

ẍ + ω(t)x = 0,

u(t0) = X (t0), u̇(t0) = Ẋ (t0), (99)

v̇(t0) = 0, v(t0) 
= 0,

and W is the corresponding Wronskian. We conclude this
section with the following comments:

(i) The system admits explosion-implosion duality [43] for
the special choice of the time-dependent frequency ω(t) =
(ω0β

t
)2, ω0 ∈ R, and Q > 0.

(ii) The system exhibits parametric instability [45] for
periodic ω(t) with period T when the condition δ =
|u(T ) + v̇(T )| > 2 is satisfied with the normalization X (0) =
0, Ẋ (0) = 1, v(0) = 1. The system is stable for δ < 2.

V. SUMMARY AND DISCUSSIONS

We have considered a generalization of the recently intro-
duced integrable nonlocal NLSE with self-induced potential
that isPT -symmetric in the corresponding stationary problem.
In contrast to the standard formulation of complex scalar
field theory, the Schrödinger field and its parity-transformed
complex conjugate are treated as two independent fields. We
have studied a class of nonlocal NLSE in an external potential
with a space-time-modulated coefficient of the nonlinear
interaction term as well as confining and/or loss-gain terms. We
have obtained exact soliton solutions for the inhomogeneous
and/or nonautonomous nonlocal NLSE by using similarity
transformation, and the method is illustrated with a few specific
examples. We have found that only those transformations
are allowed for which the transformed spatial coordinate is
odd under the parity transformation of the original one. This
puts some restrictions on the types of external potentials,
loss-gain terms, and space-time-modulated coefficients for
which the method is applicable. Nevertheless, the choices are
infinitely many and most of the physically relevant examples
are included. It is interesting to note that all the solutions of
the local NLSE are also solutions of the corresponding non-
local NLSE with identical space-time-modulated coefficients,
external potential, loss-gain terms, nonlinear interaction, etc.
The difference is that the range of the coupling constant
of the nonlinear interaction term for which the solutions
exist is different for an odd solution of local NLSE and

042908-10



SYMMETRIES AND EXACT SOLUTIONS OF A CLASS OF . . . PHYSICAL REVIEW E 91, 042908 (2015)

the corresponding nonlocal NLSE. However, the ranges are
identical for an even solution.

We have studied the invariance of the action of a (d + 1)-
dimensional generalization of the nonlocal NLSE under
different symmetry transformations. We have found that the
action is invariant under space-time translation, rotation, global
U(1) gauge transformation, and Galilean transformation. The
system is invariant under dilatation and special conformal
transformations when pd = 2. It is shown that H , D, K , and
L are real-valued, although the formal expressions of these
conserved Noether charges are non-Hermitian. The conserved
momentum and the total boost are complex-valued in any
spatial dimensions. Further, the conserved charges satisfy
the (d + 1)-dimensional Schrödinger algebra. We have also
studied the dynamics of different moments with an exact
description of the time evolution of the “pseudowidth” of the
wave packet for the special case in which the action admits a
O(2,1) conformal symmetry.
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APPENDIX A: REAL-VALUEDNESS OF SOME OF
THE NON-HERMITIAN NOETHER CHARGES

Parity is a discrete transformation with the determinant
of the transformation matrix equal to −1. Thus, in odd
spatial dimensions, a parity transformation can be realized
by flipping the signs of all the coordinates. On the other
hand, the sign of only an odd number of coordinates can
be reversed in the case of even spatial dimensions. Thus,
for example, we have Pψ(x,t) = ψ(−x,t) in one spatial
dimension. However, in two spatial dimensions, we have
either Pψ(x,y,t) = ψ(−x,y,t) or Pψ(x,y,t) = ψ(x, − y,t).
We choose the first relation as our convention for illustrating
results related to the real-valuedness of some of the conserved
Noether charges that are non-Hermitian.

(i) N in d = 1 dimension. We use the following properties
of ρr (x,t) and ρc(x,t):

ρ∗
r (x,t) = ρr (x,t), Pρr (x,t) = ρr (x,t),

(A1)
ρ∗

c (x,t) = −ρc(x,t), Pρc(x,t) = −ρc(x,t),

which allows us to write N = ∫ ∞
−∞ dx ρ(x,t) =∫ ∞

−∞ dx[ρr (x,t) + ρc(x,t)] = ∫ ∞
−∞ dxρr (x,t).

(ii) N in d = 2 dimensions. Similarly, in two dimensions
we have

Pρr (x,y,t) = ρr (−x,y,t) = ρr (x,y,t),
(A2)

Pρc(x,y,t) = ρc(−x,y,t) = −ρc(x,y,t),

N =
∫ ∞

−∞
[ρr (x,y,t) + ρc(x,y,t)] dx dy

=
∫ ∞

−∞

[ ∫ ∞

0
[ρr (x,y,t) − ρc(x,y,t)] dx

+
∫ ∞

0
[ρr (x,y,t) + ρc(x,y,t)] dx

]
dy

=
∫ ∞

−∞

∫ ∞

0
2ρr (x,y,t)dx dy. (A3)

Thus it turns out that N is real.
(iii) P in d = 1 dimension. We shall use the following

relations:

Jr (Px,t) = Jr (−x,t) = −Jr (x,t),
(A4)

Ji(Px,t) = Ji(−x,t) = Ji(x,t),

to evaluate the integral

P =
∫ ∞

−∞
[Jr (x) + Ji(x)]dx, (A5)

which turns out to be

P =
∫ ∞

0
[−Jr (x) + Ji(x)] dx +

∫ ∞

0
[Jr (x) + Ji(x)] dx

= 2
∫ ∞

0
Ji(x)dx. (A6)

(iv) P in d = 2 dimensions. We shall use the following
relations:

PJrx(x,y,t) = Jrx(−x,y,t) = −Jrx(x,y,t),

PJix(x,y,t) = Jix(−x,y,t) = +Jix(x,y,t),
(A7)

PJry(x,y,t) = Jry(−x,y,t) = +Jry(x,y,t),

PJiy(x,y,t) = Jiy(−x,y,t) = −Jiy(x,y,t),

and the expression of P is given as

P =
∫ ∞

−∞
{Jr (x,y,t) + Ji(x,y,t)}dx dy

= x̂
∫ ∞

−∞
{Jrx(x,y,t) + Jix(x,y,t)}dx dy + ŷ

∫ ∞

−∞
{(Jry(x,y,t) + Jiy(x,y,t)}dx dy

= x̂
∫ ∞

−∞

∫ ∞

0
{Jrx(−x,y,t) + Jix(−x,y,t) + Jrx(x,y,t) + Jix(x,y,t)} dx dy

+ ŷ
∫ ∞

−∞

∫ ∞

0
{Jry(−x,y,t) + Jiy(−x,y,t) + Jry(x,y,t) + Jiy(x,y,t)}dx dy
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= x̂
∫ ∞

−∞

∫ ∞

0
{−Jrx(x,y,t) + Jix(x,y,t) + Jrx(x,y,t) + Jix(x,y,t)}dx dy

+ ŷ
∫ ∞

−∞

∫ ∞

0
{Jry(x,y,t) − Jiy(x,y,t) + Jry(x,y,t) + Jiy(x,y,t)}dx dy

= 2
∫ ∞

−∞

∫ ∞

0
[x̂Jix(x,y,t) + ŷJry(x,y,t)] dx dy. (A8)

(v) I1 in d = 1 dimension.

I1 = 1

2

∫ ∞

−∞
x2ρ(x,t) = 1

2

∫ ∞

−∞
x2[ρr (x,t) + ρc(x,t)]dx

= 1

2

∫ ∞

0
{x2ρr (−x,t) + x2ρr (x,t) + x2ρc(−x,t)dx + x2ρc(x,t)}dx

=
∫ ∞

0
x2ρr (x,t)dx, (A9)

where we have used Eqs. (63) and (A1).
(vi) I1 in d = 2 dimensions.

I1 = 1

2

∫ ∞

−∞
[x2ρ(x,y,t) + y2ρ(x,y,t)]dx dy = 1

2

∫ ∞

−∞
(x2 + y2)(ρr + ρc)dx dy

= 1

2

∫ ∞

−∞

∫ ∞

0
{x2ρr (−x,y,t) + x2ρr (x,y,t) + x2ρc(−x,y,t) + x2ρc(x,y,t)}dx dy

+ 1

2

∫ ∞

−∞

∫ ∞

0
{y2ρr (−x,y,t) + y2ρr (x,y,t) + y2ρc(−x,y,t) + y2ρc(x,y,t)}dx dy

=
∫ ∞

−∞
dy

[∫ ∞

0
x2ρr (x,y,t) + y2ρr (x,y,t)

]
dx, (A10)

where we have used Eq. (A2).
(vii) I2 in d = 1 dimension.

I2 = 1

2

∫ ∞

−∞
dx xJ =

∫ ∞

−∞
dx x [Jr (x,t) + Ji(x,t)]

= 1

2

∫ ∞

0
{(−x)Jr (−x,t) + xJr (x,t) + (−x)Ji(−x,t) + xJi(x,t)} dx

=
∫ ∞

0
dx xJr (x,t), (A11)

where we have used Eq. (A4).
(viii) I2 in d = 2 dimensions.

I2 = 1

2

∫ ∞

−∞
dx dy(xJx + yJy)

= 1

2

∫ ∞

−∞
dx dy [x {Jrx(x,y,t) + Jix(x,y,t)} + y {Jrx(x,y,t) + Jix(x,y,t)}]

= 1

2

∫ ∞

−∞
dy

∫ ∞

0
{−xJrx(−x,y,t) + xJrx(x,y,t) − xJix(−x,y,t) + xJix(x,y,t)} dx

+ 1

2

∫ ∞

−∞
dy

∫ ∞

0
{yJry(−x,y,t) + yJry(x,y,t) + yJiy(−x,y,t) + yJiy(x,y,t)}dx

=
∫ ∞

−∞
dy

[∫ ∞

0
xJrx(x,y,t) +

∫ ∞

0
yJry(x,y,t)

]
, (A12)

where we have used Eq. (A7).
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APPENDIX B: DYNAMICS OF I1e, I1o, I2e, AND I2o

In this appendix, we show that the time derivative of I1 and
I2 admits a partial splitting in terms of ψe and ψo. We present
our results for d = 1. However, they can be easily generalized
to higher dimensions. The time developments of I1e and I1o

are described by the equations

dI1e

dt
= 2I2e − ig

2

∫ ∞

−∞
x2ρ2(ψ∗

e ψo + ψeψ
∗
o )dx, (B1)

dI1o

dt
= 2I2o − ig

2

∫ ∞

−∞
x2ρ2(ψ∗

e ψo + ψeψ
∗
o )dx, (B2)

where the moments I2e and I2o are defined as

I2e = 1

2

∫ ∞

−∞
dx x

i

2

(
ψe

∂ψ∗
e

∂x
− ψ∗

e

∂ψe

∂x

)
, (B3)

I2o = 1

2

∫ ∞

−∞
dx x

i

2

(
ψo

∂ψ∗
o

∂x
− ψ∗

o

∂ψo

∂x

)
. (B4)

If we subtract Eq. (B2) from Eq. (B1), then the left-hand side
gives dI1

dt
and the last terms on the right-hand sides cancel,

leading to the equation dI1
dt

= 2I2.
The equations satisfied by I2e and I2o are

dI2e

dt
= Hke − g

4

∫ ∞

−∞
x

∂ρ2

∂x

(
2ψ∗

e ψe + ψoψ
∗
e − ψ∗

o ψe

)
dx + g

4

∫ ∞

−∞
xρ2

(
ψo

∂ψ∗
e

∂x
− ψ∗

o

∂ψe

∂x
+ ψe

∂ψ∗
o

∂x
− ψ∗

e

∂ψo

∂x

)
dx,

(B5)

dI2o

dt
= Hko − g

4

∫ ∞

−∞
x

∂ρ2

∂x
(2ψ∗

o ψo − ψoψ
∗
e + ψ∗

o ψe)dx + g

4

∫ ∞

−∞
xρ2

(
ψo

∂ψ∗
e

∂x
− ψ∗

o

∂ψe

∂x
+ ψe

∂ψ∗
o

∂x
− ψ∗

e

∂ψo

∂x

)
dx,

(B6)

where Hke and Hko are given by

Hke = 1

2

∂ψ∗
e

∂x

∂ψe

∂x
, Hko = 1

2

∂ψ∗
o

∂x

∂ψo

∂x
. (B7)

If we subtract Eq. (B6) from Eq. (B5), then the left-hand
side gives dI2

dt
while the second terms on the right-hand side

generate the potential part of the total Hamiltonian and the

last terms cancel out. Thus, we recover the equation dI2
dt

= H .
Note that none of the moments I1e, I1o, I2e, and I2o satisfies a
decoupled equation like I1 and I2.
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