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Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter

Luigi Palatella1,* and Anna Trevisan2

1Istituto di Scienze dell’Atmosfera e del Clima ISAC–CNR, UOS di Lecce, Str. Prov. Lecce-Monteroni km 1,200,
I-73100 Lecce, Italy; INFN sede di Lecce

2Istituto di Scienze dell’Atmosfera e del Clima ISAC–CNR, via Gobetti 101, I-40129 Bologna, Italy
(Received 4 December 2014; published 9 April 2015)

When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence
due to the difficulty of correctly forecasting the forecast error probability density function. In operational
forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as
covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution
of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF
with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with
non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted
to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated
EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction
among the leading Lyapunov vectors and account for all directions where the error growth may take place.
Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the
algorithm on the Lorenz96 model, showing very promising results.
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I. INTRODUCTION

State estimation is a classical problem in control theory:
The Kalman filter estimates the state of a system by combining
forecasts with incoming observations in a sequential way and
it is optimal in the sense of minimizing the error variance when
the system dynamics and the observation operator are linear.
The extended Kalman filter (EKF) [1] is the extension of the
linear results to the nonlinear case and is based on the tangent
linear evolution of the errors.

The range of applications of the Kalman filter and EKF is
enormous and involves researchers coming from very different
scientific communities. Without any claim of completeness,
the most common applications relate to navigation and control
(GPS, localization, target tracking) [2], geophysical sys-
tems [3,4], pattern recognition [5,6], electrochemical systems
dynamics [7,8], biomedical signal processing [9], manufac-
turing processes [10], and many others. For a comprehensive
review including also techniques alternative to the Kalman
filter see Refs. [11,12].

When the dynamics is nonlinear but the error distribution is
Gaussian the EKF can capture the linear evolution of the error
by evolving and updating its covariance: Under the hypothesis
of linearity and Gaussianity of the error the EKF provides
the optimal solution. However, even small nonlinearities that
unavoidably occur when the observations are not sufficiently
dense and accurate can cause filter divergence; this is because
the error covariance and its linear evolution prescribed by
the EKF equations is no more adequate to describe the
characteristics of the real error distribution.

One way in which this discrepancy can manifest itself is
the following. The real error cannot be controlled by the EKF
because it is not confined in the subspace spanned by the
estimated covariance; in other words, the EKF error covariance
is rank deficient. In fact, Palatella and Trevisan [13] have
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shown that the rank of error covariance of the full EKF
converges to the number of positive and neutral Lyapunov
exponents as a consequence of the linearity assumption. It then
follows that the EKF and a square-root [14] implementation
that restricts the assimilation to the unstable subspace (EKF-
AUS) lead to the same solution. For the original introduction
of the AUS we refer the reader to Refs. [15–19].

In synthesis, let n be the phase-space dimension and m

the number of unstable and neutral directions. By restricting
the assimilation of observations to the unstable and neutral
directions of the nonlinear estimated trajectory, EKF-AUS
only needs m perturbations and n × m covariance matrices
instead of the full n × n EKF matrices. This can be useful
in many applications. In fact, when the dimension of the
unstable and neutral subspace is significantly smaller than the
total number of degrees of freedom, the problem becomes
computationally tractable even for very high dimensional
systems [15].

Building upon these results, this paper presents an algorithm
that accounts for nonlinearities in the error evolution by
taking into account higher-order terms in the expansion and
expressing them in terms of interactions among the Lyapunov
directions. This algorithm is referred to as EKF-AUS-NL.
In the case of quadratic nonlinearities in the equations of
motions the nonlinear terms in the error evolution are perfectly
described. The algorithm is demonstrated in the Lorenz96 [20]
model to show that it is possible to avoid filter divergence in
a wide range of observation errors and time intervals between
observations when the EKF fails to do so.

Extensive use of the EKF in many fields of application
that appears in the literature indicates that it works well when
the instability and nonlinearity are not too strong [11]. The
formulation of the EKF in terms of covariances, second-order
moments of the error PDF, is obtained by linearizing the
dynamics. The authors of Ref. [21] introduced higher-order
terms in an extension of the EKF that includes third- and
fourth-order moments.
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In geophysical literature ensemble Kalman filters (EnKF)
are very popular algorithms [22–25] that can be applied to
models with a very large number of degrees of freedom; they
are based on a Monte Carlo approach aimed to deal with
non-Gaussianity and nonlinearity of the error distribution.
They use the full nonlinear model to propagate the members
forward in time, but no matter how these spread in phase
space, the Gaussian approximation is kept in the analysis
update. However, with a notable exception [26], various
empirical strategies often need to be introduced in EnKFs, such
as covariance localization and multiplicative and/or additive
covariance inflation [23–25].

The minimum number of ensemble members necessary to
control the EnKF error was found [27] to be in agreement
with the theoretical result by Trevisan and Palatella for the
EKF [13]. When the error dynamics is linear, the minimum
number of perturbations is equal to the number of unstable and
neutral directions: Nonlinearity can only increase the number
of possible directions of error growth. The same result was
obtained in the context of four-dimensional (4D) variational
assimilation by Trevisan et al., who introduced 4DVar with
assimilation in the unstable subspace (4DVar-AUS) [28]; this
algorithm uses a number of perturbations that are linearly
evolved and converge to the Lyapunov vectors with positive
and neutral exponents along the assimilation cycle. This
number of perturbations, used in place of the adjoint model
in the 4DVar-AUS algorithm [29,30], is sufficient to produce
an analysis error that is smaller than that of the full 4DVar.
For the same reasons discussed for the EKF, also in the case
of 4DVar-AUS, when nonlinearity becomes important it is
necessary to increase the number of perturbations in order to
increase the dimension of the subspace where the assimilation
is confined.

In this paper we introduce the formalism that extends the
EKF-AUS to account for nonlinearity; to this end we introduce
second-order derivatives in the perturbative equations and
quadratic interactions among Lyapunov vectors. The outline
of the paper is the following: In Sec. II we briefly review the
EKF and EKF-AUS algorithm, and then we present the new
EKF-AUS-NL algorithm in Sec. III. In Sec. IV we demonstrate
its performance on the Lorenz96 model [20]. We investigate
how, with the introduction of nonlinear terms in a range of
parameter values that causes failure of the EKF, one can avoid
filter divergence in the Lorenz96 model. We also show the
geometrical interpretation of our approach with an example of
analysis-forecast cycle on the Lorenz63 model [31]. Finally,
the conclusions follow in Sec. V.

II. THE BACKGROUND: EKF AND EKF-AUS

The EKF-AUS filter is a particular square-root implemen-
tation [14] of the EKF and was formally presented in Ref. [13].
Here we briefly summarize how it works. Given a dynamical
system driven by the differential equation

dx
dt

= F (x), (1)

where x is an n-dimensional vector, the assimilation exper-
iment is set up by performing the time evolution between
the times tk−1 and tk (not necessarily equally spaced) of two

trajectories according to Eq. (1). One trajectory, the solution
of Eq. (1), is identified as the truth, while the other is obtained
as a sequence of analysis states. The truth is used to build up
an artificial p-dimensional measurement at time tk given by

yo
j = Hj (xk) + σoηj , j ∈ [1,p], (2)

where H() is the observation operator and ηj are Gaussian
uncorrelated variables with zero mean and unitary variance.
σo is the observation error standard deviation. The analysis is
performed at observation times, based on observations and the
forecast xf

k that starts from analysis state.
The EKF equations that are used to construct the sequence

of analysis states are

forecast: xf

k = M
(
xa

k−1

)
,

(3)
analysis: xa

k = xf

k − KkH
(
xf

k

) + Kkyo
k,

for the trajectory, while the error covariance matrices obey

forecast: Pf

k = MkPa
k−1MT

k ,
(4)

analysis: Pa
k = (I − KkH)Pf

k ,

where M is the nonlinear evolution operator solving Eq. (1),
M is the Jacobian of M, Kk is the gain matrix

Kk = Pf

k HT
(
HPf

k HT + R
)−1

, (5)

and H is the Jacobian of the observation operator H. In the
present formulation, we assumed that the evolution equations
given by Eq. (1) are known, an approach referred to as the
“perfect model scenario.”

If the dynamical system of Eq. (1) is chaotic, then its
tangent space can be divided into stable, neutral, and unstable
manifolds of dimension given by the numbers N+, N0,
and N− of positive, null, and negative Lyapunov exponents,
respectively (N+ + N0 + N− = n).

The EKF-AUS algorithm is obtained by performing the
assimilation in a manifold of dimension m. When m is equal
to the number n of degrees of freedom of the system, the
algorithm solves the standard EKF equations. When m =
N+ + N0, the reduced form, with assimilation in the unstable
subspace (EKF-AUS) is obtained. In the following we omit
the time index k for clarity.

The analysis error covariance matrix is expressed as

Pa = XaXT
a , (6)

with Xa a square root of Pa defined below in Eq. (14).
We then have that during the forecast step the time evolution

acts on the columns of Pa (the perturbations) as

Pf = MXa(MXa)T = Xf XT
f . (7)

After the time evolution, we orthonormalize the perturbations
δxf

i , i.e., the columns of Xf , obtaining

δxf

i → ef

i Graham − Schmidt algorithm
(8)

Xf = [
δxf

1 ,δxf

2 , . . . ,δxf
m

]
, Ef = [

ef

1 ,ef

2 , . . . ,ef
m

]
.

We cast the forecast error covariance matrix in the form

Pf = Xf XT
f = Ef ET

f Xf XT
f Ef ET

f = Ef �f ET
f , (9)
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where �f = ET
f Xf XT

f Ef and noting that Ef ET
f is the identity

matrix in the subspace spanned by ef

i .
The analysis step is given by

xa = xf + K[yo − H(xf )]

K = Ef �f ET
f HT

(
HEf �f ET

f HT + R
)−1

(10)

Pa ≡ Ef �
′
aET

f = (I − KH)Ef �f ET
f ,

collecting Ef and ET
f from the left and the right in the third of

Eq. (10), after substituting the expression for K, we obtain

�
′
a = �f − �f ET

f HT
(
R + HEf �f ET

f HT
)−1

HEf �f (11)

and

Pa ≡ Ef �
′
aET

f = Ef U�aUT ET
f , (12)

where U is orthogonal and diagonalizes �
′
a in �a = diag[γ 2

i ].
A new set of orthonormal vectors Ea is obtained

Ea = Ef U = [
ea

1,e
a
1, . . . ,e

a
m

]
. (13)

Thus we have

Pa = Ea�aET
a = XaXT

a = ∑m
i=1 δxiδxT

i , (14)

with Xa = [δxa
1,δxa

2, . . . ,δxa
m] = [γiea

1,γiea
2, . . . ,γiea

m]. The
vectors δxa

i , columns of Xa , are the new (orthogonal) pertur-
bations. Using the analogy with the algorithm of Ref. [32], the
authors of Ref. [13] showed that, asymptotically, δxa

i and δxf

i

span the same subspace as the leading (N+ + N0) Lyapunov
vectors because errors in the stable subspace decay along the
assimilation cycle so only errors in the unstable and neutral
subspace survive the filtering process.

As a consequence, the rank of the EKF covariance matrix,
initially equal to the total number of degrees of freedom of
the system, asymptotically reduces to the dimension of the
unstable and neutral subspace. Therefore, the EKF equations
and the reduced form of the algorithm, EKF-AUS, provide the
same solution.

These results hold when observations are sufficiently
dense and accurate that error dynamics is linear, a necessary
condition for the EKF to work properly without being subject
to divergence episodes.

III. THE NONLINEAR EXTENSION OF EKF-AUS:
THE EKF-AUS-NL ALGORITHM

We are now ready to show how to include the nonlinear
behavior of error evolution during the forecast step in the
framework of EKF-AUS. The nonlinear term may have
two effects. It can change the magnitude of the m vectors,
altering the size of the error in the space spanned by the
linear error perturbations. In addition, it can also induce the
presence of error in directions that are outside the unstable and
neutral subspace. This second effect is surely more important.
Indeed, the mere change of magnitude of the linear error is
typically associated to a worsening of the filter performance
but not necessarily to its divergence. The worst case is when
nonlinearity introduces additional directions where errors may
grow; if this happens the filter is almost always prone to
divergence. This is because the estimated analysis error in

these directions is zero and the filter is not able to correct
it; recall that, due to the linear assumption Eq. (7), the rank
of the error covariance matrix is reduced to the numbers of
non-negative Lyapunov exponents also in the EKF [13].

The nonlinear evolution of the actual error � ≡ x(t) − xt(t)
in the interval between the analysis time t = 0 and the forecast
time t = τ is

d

dt
�i = Fi(xa) − Fi(xt)

= ∂Fi

∂xj

�j + 1

2

∂Fi

∂xj ∂xk

�j�k + O(�3), (15)

where

x(0) = xa, x(τ ) = xf . (16)

Consequently, �(0) is the actual analysis error, while �(τ )
is the actual forecast error. Where not specified we use the
Einstein’s convention on summation for repeated indexes. The
Taylor expansion can be calculated at xa obtaining

d

dt
(xt − xa)i = Fi,j |x=xa (xt − xa)

+ 1

2
Fi;jk(xt − xa)j (xt − xa)k, (17)

where we use the notation

Fi,j ≡ ∂Fi(x)

∂xj

, Fi;jk ≡ ∂2Fi(x)

∂xj∂xk

. (18)

Remembering the definition of � we have

d

dt
�i(t) = Fi,j x|x=xa�j (t) − 1

2
Fi;jk�j (t)�k(t). (19)

When the second order is the highest nonlinearity, as typical
in many geophysical applications where advection is the only
nonlinear term, this equation for the time evolution of the
error �(t) is exact. For this reason we drop the argument x
in the second-order derivative, because in the case of second-
order nonlinearity this term becomes constant. The first term
in Eq. (19) is nothing but the tangent linear evolution of the
error and M is the linear operator that solves this differential
equation without the nonlinear term. The second term is the
term involving nonlinearities.

Following the notation of Ref. [13], let us write the actual
analysis error �(0) as

�i(0) =
m∑

s=1

αsXa
is , (20)

i.e., as a linear combination of the columns of the matrix Xa ,
as shown in Sec. II. The coefficients αs are unknown because
we obviously do not know the actual error. Indeed Eq. (20)
can be intended as a definition of αs .

We can separate the time derivative of the error in a linear
and in a nonlinear part, namely (Einstein notation except for
r,s ∈ [1,m])

d

dt
�i(t) = Fi,j

m∑
s=1

αsXa
js + 1

2
Fi;jk

m∑
s=1

αsXa
js

m∑
r=1

αrXa
kr .

(21)
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We then have for the actual error at forecast time τ ,

�(τ ) = �(0) +
∫ τ

0
dt

[
Fi,j

m∑
s=1

αsXa
js

+ 1

2
Fi;jk

m∑
s=1

αsXa
js

m∑
r=1

αrXa
kr

]
. (22)

The actual forecast error is unknown but our goal is to calculate
the forecast error covariance matrix that can be expressed as

Pf

ij = 〈�i(τ )�j (τ )〉
= 〈LiLj 〉 + 〈NiNj 〉 + 〈NiLj 〉 + 〈LiNj 〉, (23)

where the vectors L,N are given by

Li = �i(0) +
∫ τ

0
dtFi,j

m∑
s=1

αsXa
js

(24)

Ni =
∫ τ

0
dt

1

2
Fi;jk

m∑
s=1

αsXa
js

m∑
r=1

αrXa
kr .

The brackets 〈〉 represent a statistical average that can be
computed if the distributions of αj , with j ∈ [1,m], are known.
The calculation of the different terms of Eq. (23) uses the
hypothesis that the actual analysis error is Gaussian with
covariance given by Pa . If the filter is working well, we
then have that the direction and the magnitude of the vectors
given by Xa are a good representation of the actual analysis
error. This means that the unknown coefficient αj , under
these hypotheses, are Gaussian distributed with zero mean
and unitary variance. The detailed calculation of the different
terms is shown in Appendix A. After the steps described in
Appendix A, we obtain that the error “perturbations” (columns
of) X evolve from Xa at t = 0 to Xf at t = τ according to the
differential equation

d

dt
Xis = Fi,j Xjs, s � m

d

dt
Xis(q,r) = Fi,j Xjs(q,r) + 1

2
ᾱFi;jkXjqXkr , (25)

q � r; q,r ∈ [1,ml]; s(q,r) = m +
ml∑
r=1

q�r∑
q=1

1,

where ml is the number of linear vectors that we involve in
the nonlinear interactions. One may of course consider all the
possible nonlinear interactions of the m perturbation vectors.
This leads to other m(m + 1)/2 vectors to be handled. In
several instances this approach cannot be followed because
the number of vectors to be considered becomes much too
large. For this reason we may limit the nonlinear interactions
to the leading (most unstable) ml vectors. The condition on the
indexes s,ml,t is nothing but a convention to keep the vectors
evolving according to the nonlinear terms separated from the
first m = N+ + N0 vectors already involved in the EKF-AUS
algorithm.

As discussed in Appendix A, the analytical calculations
lead to a slightly different form of the equations driving the
evolution of Xa . The main difference is the choice to let
each nonlinear interaction drive a single perturbation vector,

while in the exact calculations the interaction of each vector
with itself is summed up in a single term. The calculations
lead to different prefactors in front of the self-interactions
(of the kind Fi;jkXjqXkq with prefactor

√
3) with respect to

cross-interaction terms (like Fi;jkXjqXkr with q 	= r , giving√
2). The exact prefactors are deeply based on the Gaussian

assumption on the analysis error at time t = 0. For this reason
we decide to use a common prefactor ᾱ = √

3 for all the terms.
We performed some tests with different values of ᾱ without
substantial changes in the results. In any case these numerical
factors can be tuned according to the need of higher precision
(smaller ᾱ) or to avoid filter divergence (larger ᾱ).

We point out again that the main, and slightly more subtle,
effect of the nonlinear terms is to distort the ellipsoid error and
increase the dimension of the space in which the error spans.
This effect is due both to nonlinear interaction of each column
of Xa

s with itself and to interaction between different columns.
This aspect is important because in ensemble approaches to
the Kalman filter, one could argue that the nonlinear terms are
considered by evolving the full model and studying the depar-
ture of different ensemble members. This effect corresponds
only to the self-interaction terms (like Fi;jkXjqXkq) while
the cross-interaction terms like Fi;jkXjqXkr are generally not
considered in a standard ensemble approach. In Appendix B
we show how to take into account cross terms when we are not
given the tangent linear and second-order derivative of Eq. (1).

In summary, in EKF-AUS-NL, we evolve the vectors Xa to
Xf according to Eq. (25), used in place of Eq. (7). Then we
follow the same steps of the EKF-AUS algorithm. Namely we
orthonormalize the columns of Xf as in Eq. (8) and then we
reconstruct Pf by computing �f Eq. (9).

Indeed, we stress that in the analysis step the algorithm
we are proposing is still the linear EKF-AUS algorithm. We
still use a forecast error covariance Pf as if the distribution
were Gaussian, but this time the error has nonzero components
also in the directions generated by the nonlinear terms of
Eq. (25). This means that, from a geometrical point of view,
we circumscribe the actual error distribution that can be
quite peculiar and strongly non-Gaussian (see, for example,
Fig. 1) with an ellipsoid with augmented dimension due to
the nonlinear terms. To achieve this goal the best way is to
maintain separated the linear error vectors and the other vectors
generated by the nonlinear terms of Eq. (25).

IV. RESULTS

For an illustration of the effect of increasing the dimension
of the space spanned by the forecast error due to nonlinearities
we first show an example of application to the Lorenz63 model.

A. An illustrative example in the Lorenz63 model

The model is the standard Lorenz63 model [31] given by

dx

dt
= σ (y − x)

dy

dt
= rx − y − xz (26)

dz

dt
= xy − bx

with, as usual, σ = 10,r = 28,b = 8/3.
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FIG. 1. (Color online) Left panel: The black filled circle denotes the analysis. The black filled square denotes the truth. The two orthogonal
black solid vectors starting from the analysis are the two leading error vectors after the analysis (the two first columns of Xa : δxa

1,δxa
2). The

third column (i.e., the nonlinear vector) is not visible, as its magnitude is very small. The clouds of red dots are 10 000 ensemble copies of the
analysis distributed according to the analysis error. Right panel: The black filled circle is the forecast, i.e., the time evolution of the analysis
(same symbol) of the left panel. The black filled square is the time evolution of the truth, so it is the truth at this time. The black solid vector
pointing to the right is the first column of the forecast error matrix, namely the evolution of δxa

1. The evolution of δxa
2 is very small and cannot

be seen. The black solid vector pointing to the left is the cumulative nonlinear vector. The red dots (distributed along a sort of parabola) are the
time evolution of the clouds of red dots of the left panel and represent a sampling of the forecast error distribution.

We perform a data assimilation experiment in the perfect
model scenario with a truth trajectory used to construct the
observations. The observation operator H is the identity (we
measure all three variables) and the measurement error σo is
supposed to be Gaussian. The number of neutral and unstable
vectors in this case is m = 2. The number of possible nonlinear
terms is, consequently, m(m + 1)/2 = 3. As the total number
of dimensions is 3 in this case we are forced to sum together all
the nonlinear terms of Eq. (25) to obtain a single cumulative
nonlinear vector.

In order to illustrate how the algorithm operates, we choose,
along the assimilation cycle, a condition in which, without
the nonlinear terms, filter divergence occurred. In particular,
we use σo = 0.2 and the time interval between analysis and
forecast τ = 0.375. Looking for an analysis-forecast interval
in which the nonlinear term becomes relevant in magnitude,
we selected the condition shown in Fig. 1.

In the left panel, we show the analysis step: The black filled
circle indicates the analysis and the black filled square the
truth. The two orthogonal solid black vectors starting from
the analysis are the two leading perturbation vectors after the
analysis (the first two columns of Xa: δxa

1,δxa
2). The third

column (i.e., the cumulative nonlinear vector) is not visible, as
its magnitude is very small. The cloud of red dots are obtained
adding to the analysis xa a linear combination α1δxa

1 + α2δxa
2,

where α1,2 are Gaussian random numbers with zero mean and
unitary variance. The cloud so represents the “ellipsoid” of
the analysis error. As shown the truth is inside this ellipsoid.
This means that nothing “pathological” can be diagnosed at
this moment.

In the right panel we show the forecast step obtained after
a time integration interval τ . The black filled circle is the
forecast, the time evolved from the analysis (same symbol) of
the left panel. The black filled square is evolved from the truth
so it is the truth at this time. The black solid vector pointing
to the right is obtained by linearly evolving δxa

1, the leading
Lyapunov vector. The vector obtained by evolving δxa

2 is very

small and cannot be seen. The black vector pointing to the left
is the cumulative nonlinear vector. The red dots result from
the time evolution of the cloud of red dots of the left panel.
The ellipsoid has evolved, due to nonlinearity, into a sort of
parabola, the “line” of red dots in the 3D space and the truth
is on this line.

This means that the linear error vectors (the one pointing
to the right tangent to the parabola and the other that is
negligibly small) cannot account for the error component
outside the forecast ellipsoid. Only with the help of the
cumulative nonlinear vector that points toward the focus of
the parabola can the filter take into account the actual error
and correct it in the analysis step.

In practice, the algorithm uses, with the aid of the
cumulative nonlinear vector, a corrected ellipsoid, containing
the parabola composed by the red dots, representing the
forecast error covariance. This means that for what concerns
the analysis step the technique is still based on a Gaussian
distribution but we use a Gaussian forecast error distribution
that includes the nonlinear directions obtained from the error
evolution and thus “contains” the actual forecast error.

In synthesis an accurate description of the directions that
captures the distribution where the truth lies is obtained
with just two vectors, the leading Lyapunov vector and the
cumulative nonlinear vector. With an ensemble approach, a
very large number of ensemble members would be necessary
in order to obtain an equivalent description of the distribution.

B. An evaluation of the algorithm on the Lorenz96 model

The divergence of a data assimilation algorithm can be
considered a stochastic property since it may be due to
a combination of large measurement errors (an intrinsic
stochastic property) and particularly unstable conditions. This
suggests that a correct way to evaluate the capability of an
algorithm to avoid divergence due to nonlinearity in the error
dynamics is to estimate the mean divergence time. We will
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TABLE I. The index arrangement for the Lorenz96 test with m =
14, n = 40, ml = 4.

s 15 16 17 18 19 20 21 22 23 24

r 1 2 2 3 3 3 4 4 4 4
q 1 1 2 1 2 3 1 2 3 4

compare the divergence times of the nonlinear algorithm with
those of its linear counterpart in the Lorenz96 model [20].

The governing equations are

d

dt
xj = (xj+1 − xj−2)xj−1 − xj + F (27)

with j = 1, . . . ,n. The variables xj represent the values of a
scalar meteorological quantity at n equally spaced geographic
sites on a periodic longitudinal domain. The model has chaotic
behavior for the value of the forcing, F = 8, used in most
studies, and with the value of n used in this paper. The
number of variables n of the model is varied to obtain
different systems with a different number of degrees of
freedom and, consequently, a different number of positive
Lyapunov exponents. With n = 40,60,80 the systems have
13,19,25 positive Lyapunov exponents, respectively. In this
paper we test the algorithm using n = 40 and, consequently,
m = N+ + N0 = 14.

Obviously, if the number of linear perturbation is m, then the
number of new vectors is m(m + 1)/2, which, in the present
case, exceeds the total dimension of the state vector n. A
reasonable approach is to select only the ml first (i.e., the
largest) linear vectors and compute the nonlinear terms using
only these vectors. We set ml = 4, thus obtaining 10 extra
vectors in addition to the 14 orthogonalized Lyapunov vectors
of the 40-variables model. In our case this means that we use a
total of 24 perturbations. The indexes of the nonlinear vectors
thus become those shown in Table I.

We consider a time interval between assimilation steps
τ = 4,5,6,7,8,10,12,14,16 × dt with dt = 0.0125. The ob-
servation error is σo ∈ [0.05,0.60]. We observe all 40 degrees
of freedom. We performed several assimilation runs to cover
the selected ranges of parameter values, each run lasting a time

interval T = 4000. If a filter divergence is observed, defined
as a condition when the root-mean-square analysis error is
larger than 3 times the observation error σo, then the time
elapsed from the previous filter divergence is recorded; then
the run is restarted by artificially repositioning the analysis
near the truth. At the end of the run the average divergence
time 〈Td〉 is computed. If no divergence is observed we set
〈Td〉 = 4000. As shown in Fig. 2, in the nonlinear case it
happens for some parameters values that no divergence is
observed in the whole duration of the assimilation run. An
example of comparison of the rms between the EKF-AUS and
the EKF-AUS-NL algorithm is shown in Fig. 3 for τ = 0.125
and σo = 0.2,0.3,0.4 and ml = 4.

It is worth noticing that in Fig. 3, before the first divergence
of the linear algorithm EKF-AUS, the two approaches lead
practically to the same result. This is an important property
of our algorithm and the consequence of not using any
artificial or empirical procedure, such as covariance inflation
to avoid divergence. This type of empirical procedures have
as a drawback that the filter performance is reduced (i.e., the
average analysis error is increased). In our approach, when
nonlinear growth is actually taking place, filter divergence
is avoided thanks to the nonlinear vectors that modify the
estimate of the forecast error.

In order to permit a numerical comparison between the
results of EKF-AUS-NL with other possible approaches, in
Table II we show the rms of the analysis error averaged over
the total time window of length 4000 in those cases where
there is no divergence.

The results presented so far refer to the case when the
number of measurements p = n, i.e., all state variables are
observed. In most practical applications, in addition to the
difficulties due to the chaoticity of the system, the observation
network is largely incomplete. Therefore, we consider the
case where only a small fraction of the state variables are
observed every time interval. The results obtained by reducing
the number of observations are presented in Fig. 4, which
shows the average divergence time 〈Td〉 for τ = 0.125 and
σo = 0.10,0.15,0.20,0.25. In detail, we report 〈Td〉 as function
of the ratio n/p, intending that we measure all the variables
when n/p = 1, every other variable when n/p = 2, one over
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FIG. 2. (Color online) Comparison of average divergence time 〈Td〉 as a function of time distance τ between assimilation steps and of the
measurement error σo. Left panel: the EKF-AUS-NL algorithm with m = 14 and ml = 4; right panel: the EKF-AUS algorithm with m = 14.
Lighter (darker) shades indicate larger (shorter) divergence time.

042905-6



INTERACTION OF LYAPUNOV VECTORS IN THE . . . PHYSICAL REVIEW E 91, 042905 (2015)

0

 0.2

 0.4

0  100  200  300  400  500

R
M

S

Time

0

 0.2

 0.4

R
M

S

0

 0.2

 0.4

R
M

S

EKF-AUS-NL
EKF-AUS

FIG. 3. (Color online) Time evolution of the rms analysis error in a sequence of 500 assimilation intervals: comparison between the
EKF-AUS (blue empty square) and the EKF-AUS-NL algorithm (red filled circle) with ml = 4 for τ = 0.125 and σo = 0.2,0.3,0.4 from top
to bottom. It is evident the lower rate of divergence of the nonlinear algorithm and that, before divergence, the two algorithms lead essentially
to the same results.

three when n/p = 3, and so on. Obviously, when p decreases
the divergence time also decreases because the smaller number
of observed variables degrades the analysis accuracy making
the system more prone to divergence. It is remarkable that
even with a small number of observations (n/p = 2,3) no
divergence occurs, showing that, provided the measurement
noise and the observation interval are not too large, the
EKF-AUS-NL algorithm is very effective in controlling the
stability of the filter.

V. CONCLUSIONS

In this paper we have addressed the theoretical question of
accounting for nonlinearities in the EKF. When error dynamics
is nonlinear the use of incorrect forecast error covariance
matrices deteriorates the EKF performance and it may also

TABLE II. Time-averaged rms analysis error for different values
of σo and τ = 0.05 or 0.125; all the cases reported refer to runs
without filter divergence (〈Td〉 = 4000). We observe all the variables,
thus p = n.

τ σo Averaged rms

0.05 0.05 0.00744
0.05 0.10 0.01514
0.05 0.15 0.02312
0.05 0.20 0.03137
0.05 0.25 0.04020
0.05 0.30 0.04882
0.05 0.35 0.05765
0.05 0.40 0.06783
0.05 0.45 0.07777
0.125 0.05 0.01130
0.125 0.10 0.02322
0.125 0.15 0.03579
0.125 0.20 0.04928
0.125 0.25 0.06312
0.125 0.30 0.07804

lead to filter divergence. Forecasting the correct PDF of the
forecast error is a difficult task and empirical methods, such as
covariance inflation, are often used, in operational practice, to
control filter divergence, with the drawback of increasing the
overall analysis error [24].

We here showed how the estimate of the forecast error can
be improved by extending the EKF to account for nonlinear
error dynamics. This could be done in the framework of a solu-
tion of the EKF equations that made it possible to include the
nonlinearities in a rigorous way. Previous works by the authors
of the present paper have in fact shown that, when the error
dynamics is linear, the EKF equations can be solved within the
unstable and neutral manifold of the system with an algorithm,
referred to as EKF-AUS. EKF-AUS is a square-root filter
implementation that uses a limited number of perturbation
vectors, the Lyapunov vectors with non-negative exponents.

 10
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1 2 3 4 5

〈Τ
d
〉

n/p

σo = 0.10
σo = 0.15
σo = 0.20
σo = 0.25

FIG. 4. Average divergence time 〈Td〉 as a function of the ratio
n/p and σo = 0.10,0.15,0.20.0.25. Notice that for σo = 0.10 and
n/p � 3 there is still no divergence in the time interval considered
(4 × 104 assimilation steps). Like in the previous figures the number
of Lyapunov vectors considered for nonlinear interaction is ml = 4;
n = 40 and τ = 0.125.
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We here introduced nonlinear terms in the time evolution
of the error: The additional directions that are a result of
the interaction among the leading Lyapunov vectors are
considered and used in the construction of the forecast error
covariance. The important point is that with this approach
we not only estimate the different magnitude of the error
covariance along the unstable manifold but we are also able to
evaluate in which directions the nonlinear terms are causing
the error to grow. We provide an illustrative example in the
Lorenz63 model, where we show that a strongly nonlinear
and non-Gaussian error distribution can be dealt with by
the filter by means of the leading Lyapunov vector and one
nonlinear vector. Compared with previous studies performed
with the same system that involved huge numbers of ensemble
members [24] or onerous computations [21] this is a substantial
improvement.

We then tested the performance of the method in the
Lorenz96 model showing the great improvement obtained
in a wide range of parameter values where the nonlinear
EKF-AUS-NL can prevent divergence when the EKF fails to
do so. Besides its theoretical interest, this method constitutes
an improvement in terms of computational efficiency. In fact,
as shown in Appendix B, even when the tangent linear and
second-order perturbation equations are not available, the
nonlinear terms can be easily computed by breeding with
linear and nonlinear renormalization amplitudes. The results
we presented are important in practical implementations: The
possibility to take into account the nonlinear evolution of the
forecast error presented in this paper can be extended to other
data assimilation schemes, such as EnKFs or 4DVar, used in
operational forecasting models.
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APPENDIX A

Before showing the detailed calculations of the nonlinear
terms in the error evolution we briefly review the main idea
behind the square-root implementation of the Kalman filter.
The main idea is to parametrize the matrices Pa and Pf .
Indicating with P the generic covariance matrix, we define
its square root X with the condition

P = XXT . (A1)

We notice that the square root X is not uniquely defined. In
Ref. [13] and in this paper we have chosen X to be a set of
orthogonalized vectors. All the formalism of Sec. II describes
the time evolution of the columns of X, called “perturbations,”
that were shown in Ref. [13] to asymptotically span the same
space as the Lyapunov vectors with non-negative exponents.

The correspondence between the columns or perturbations
and the covariance matrix P can be written in two ways. The
perturbations can be interpreted as the columns of P. For

example, with two perturbations v1,v2 we have

P = XXT = (v1v2)
(
vT

1 vT
2

)
. (A2)

Going to the index representation and using the Einstein’s
notation we have

Pij = XikXjk = vs
i v

s
j =

∑
s

vs
i v

s
j

=
∑

s

∫
dtf s

i (vs ,vt , . . .)
∫

dt ′f s
j (vs ,vt , . . .), (A3)

where the vectors vs obey a differential equation of the form

dvs
i

dt
= f s

i (vs ,vt , . . .). (A4)

We are now ready to calculate the different terms of Eq. (23).
Let us start from the mixed term 〈NiLj 〉. We obtain

〈NiLj 〉 =
〈
�j (0)

∫ τ

0

1

2
Fi;jk

m∑
s=1

αsXa
js

m∑
r=1

αrXa
kr

〉

+
〈∫ τ

0
dt ′Fj,k

m∑
s=1

αsXa
ks

∫ τ

0

1

2
Fi;jk

×
m∑

s=1

αsXa
js

m∑
r=1

αrXa
kr

〉
. (A5)

The second term is zero, thanks to the hypothesis that the α

are Gaussian and the third moment of a Gaussian variable is
null. The first term becomes, using that 〈αsαr〉 = δsr ,

〈NiLj 〉 = �j (0)
∫ τ

0

1

2
Fi;jk

m∑
s=1

Xa
jsX

a
ks

= �j (0)
∫ τ

0
dt ′Di(t

′). (A6)

Here and in the following we use the notation

Ci,sr ≡ 1

2
Fi;lkXa

lsX
a
kr , Di ≡ 1

2
Fi;lk

m∑
s=1

Xa
lsX

a
ks =

m∑
s=1

Ci,ss .

(A7)

Let us calculate the term 〈NiNj 〉. We have

〈NiNj 〉 = 1

4

∫ τ

0
dt ′

∫ τ

0
dt ′′Fi;lkFj ;np

m∑
s1=1

m∑
t1=1

m∑
s2=1

×
m∑

t2=1

Xa
ls1

Xa
kt1

Xa
ns2

Xa
pt2

〈αs1αt1αs2αt2〉. (A8)

If the error distribution at time t is approximately Gaussian,
αi are with zero mean and unitary variance. Notice that αi

are constant in time while the column vectors of Xa evolve to
become those of Xf . Noticing that

m∑
s1=1

m∑
t1=1

m∑
s2=1

m∑
t2=1

Xa
ls1

Xa
kt1

Xa
ns2

Xa
pt2

〈αs1αt1αs2αt2〉=
m∑

s=1

m∑
r=1

Xa
lsX

a
ksX

a
nrXa

pr +
m∑

s=1

m∑
r=1

Xa
lsX

a
nsX

a
krXa

pr +
m∑

s=1

m∑
r=1

Xa
lsX

a
psX

a
krXa

nr , (A9)
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and using the property that Fi;np = Fi;pn, we have

〈NiNj 〉 =
∫ τ

0
dt ′

∫ τ

0
dt ′′

{
Fi;lk

m∑
s=1

Xa
lsX

a
ksFj ;np

m∑
r=1

Xa
nrXa

pr + 2Fi;lkFj ;np

m∑
s=1

m∑
r=1

Xa
lsX

a
nsX

a
krXa

pr

}

=
∫ τ

0
dt ′

∫ τ

0
dt ′′

{
DiDj + 2

m∑
s=1

m∑
r=1

Ci,srCj,sr

}
=

∫ τ

0
dt ′

∫ τ

0
dt ′′

⎧⎨
⎩3DiDj + 2

m∑
s=1

m∑
r=1,r 	=s

Ci,srCj,sr

⎫⎬
⎭

=
∫ τ

0
dt

√
3Di

∫ τ

0

√
3dtDj +

m∑
s=1

m∑
r=1,r 	=s

∫ τ

0

√
2Ci,sr

∫ τ

0

√
2Cj,sr . (A10)

We can now write down the complete form of the Pf . Remembering that the product 〈LiLj 〉 is the linear evolution given by
Eq. (7) we obtain

Pf = MXa(MXa)T + �j (0)
∫ τ

0
dt ′Di(t

′) +
∫ τ

0
dt

√
3Di

∫ τ

0

√
3dt ′Dj +

m∑
s=1

m∑
r=1,r 	=s

∫ τ

0
dt

√
2Ci,sr

∫ τ

0
dt ′

√
2Cj,sr . (A11)

Up to this point the calculations have been exact. To perform
the assimilation to preserve the square-root structure of the
filter we decided to neglect the second term. Indeed, this term
is the only one that cannot easily be arranged as a factorized
term, i.e., in term of a square root.

Moreover, we want to stress that when the importance of the
nonlinear terms in avoiding filter divergence is more relevant,
then the relative contribution of the analysis error at time t = 0,
�(0) is negligible with respect to the error terms that are
growing due to the nonlinear time evolution.

All the other terms are exactly in the form given by Eq. (A3),
so we may easily write down the differential equation driving
the time evolution of all the columns of the covariance matrix
from Pa to Pf as

d

dt
Xis = Fi,j Xjs s � m,

d

dt
Xim+1 = Fi,j Xjm+1 +

√
3

2
Fi;lk

m∑
r=1

Xa
lrXa

kr , (A12)

d

dt
Xim+1+r = Fi,j Xjm+1+s +

√
2

2
Fi;lkXa

lrXa
kq,

where r,q ∈ [1,m] with r < q (to avoid to repeat the r = q

case) while s in the last equation increases of a unit for
each different couple of indexes p,q. This means that each
couple of index r,q leads to a separate vector of index
m + 1 + s.

We must stress now that the exact division in terms of Di

and cross-term Ci,rq together with the precise prefactors
√

3
or

√
2 in front of each term strongly depends on the Gaussian

assumption. For a practical implementation we decided to put
a constant prefactor ᾱ in front of all the nonlinear terms.
Moreover, as discussed in the text, the main effect of the
nonlinear terms is to take into account all the new directions
in the phase-space along which the error is distributed. From
a theoretical point of view, to keep the terms Ci,rr together
with the term Di or separated is equivalent, as all the vectors
are processed with the Graham-Schmidt algorithm in Eq. (8).

This corresponds to the fact the the square root of a symmetric
matrix is not unique.

For this reason, to keep the span of the nonlinear vectors as
“large” as possible from a numerical point of view, we decided
to consider all the vectors driven by the terms Ci,rq (also when
r = q) separated considering all the nonlinear interactions for
the first (largest) ml linear vectors. Also, the prefactor

√
3 or√

2, which deeply depends on the Gaussian assumption, is
substituted with a fixed factor ᾱ equal for all the nonlinear
vectors. After these changes we obtain the Eq. (25) used in
this paper.

APPENDIX B

Very often it can happen that the differential equation

dx
dt

= F (x) (B1)

that drives the dynamical system is known but there are
difficulties to define or calculate the first and second derivative
of F (x). In this appendix we generalize our method to this
case.

As a first step we have to find a typical scale η (in the
phase space, not in the physical space of the model) at which
the evolution of the difference between two trajectories is
essentially linear. There are different techniques to estimate
η and we refer the reader to the literature like, for example,
Refs. [33,34].

As in the standard case we have a trajectory that defines the
analysis xa(0). The nonlinear operator driving the trajectory
from the analysis time t = 0 to the forecast time t = τ is called
M(xa). We thus have

xf (τ ) = M[xa(0)]. (B2)

Given at time t = 0 the m + ml(ml + 1)/2 perturbations Xa ,
let us define the k-th column of Xa as δxa

k . We obtain the first
m trajectories in this way:

xk(0) = xa(0) + η
δxa

k

‖δxa
k‖

, k ∈ [1,m], (B3)
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and then the remaining ml(ml + 1)/2 trajectories are obtained
as

xs(0) = xa(0) + 1

2

[
δxa

r + δxa
q

]
,

r,q ∈ [1,ml], q � r; s(q,r) = m +
ml∑
r=1

q�r∑
q=1

1. (B4)

At this point all the trajectories are evolved up to time t = τ

using the full nonlinear system:

xk(τ ) = M(xk(0)), k ∈ [1,m + ml(ml + 1)/2]. (B5)

To obtain the perturbations Xf to be inserted in Eq. (8) we
proceed as follows. For the first m vectors,

δxf

k (τ ) =
∥∥δxa

k (0)
∥∥

η
[xk(τ ) − xf (τ )], k ∈ [1,m], (B6)

while for the remaining columns we have

δxf
s (τ ) = ᾱ

{
xs(τ ) − xf (τ ) − 1

2

[
δxf

r (τ ) + δxf
q (τ )

]}
,

r,q ∈ [1,ml], q � r; s(q,r) = m +
ml∑
r=1

q�r∑
q=1

1, (B7)

where δxf
r (τ ),δxf

q (τ ) are given by Eq. (B6), being r,q < m.
The meaning of the last equation is simply to assign to
the nonlinear perturbations the difference between the linear
(the terms inside the square brackets) and the nonlinear time
evolution, multiplied by the factor ᾱ. After these steps the
algorithm restarts from Eq. (8).
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