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Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between
normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred
resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of
quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an
avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a
consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized
on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and
confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.
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I. INTRODUCTION

Eigenfunctions localized on unstable periodic orbits of
classical dynamics [1,2] in a stadium-shaped billiard [3] were
named scars by Heller [4]. Since then, scars were observed in
various chaotic systems such as quantum dots, microwave, and
atomic and molecular systems [5–10]. In deformed dielectric
microcavities, scarred resonances, localized on periodic orbits,
were also observed [11,12]. Even in nonchaotic systems
such as an elliptic and a rectangular dielectric microcavity,
nontrivial resonances, named scarlike resonances (SLRs),
were found [13,14], which occur through an avoided resonance
crossing (ARC) caused by the openness of the cavity. These
SLRs were experimentally confirmed in an elliptic microcavity
laser and were shown to be localized on the nonisolated
periodic orbits [15].

It was also found that scars in a molecular system are
the phenomenon of Fermi resonance [8]. The phenomenon
was confirmed in a hydrogen atom in a magnetic field [7]
and in several molecular systems [8–10]. In these systems,
when two eigenstates are coupled, the Fermi resonance occurs
through an avoided level crossing [7–10] and another pair of
eigenstates are generated, which are scars. The transition is
describable as a linear combination of a pair of parent modes,
i.e., quantum mechanical superposition. In these systems,
Fermi resonance is caused by coupling between two nearly
degenerated eigenstates [7–9]. It was also shown that the
scarred states in molecular systems are always generated due
to broad avoided level crossing [16].

However, Fermi resonance has not been yet studied in di-
electric microcavities despite it being a common phenomenon
for the formation of scars in atomic and molecular systems.
In this paper we show that SLRs and scarred resonances in
dielectric microcavities are Fermi resonances and confirm it
first in an elliptic and a rectangular dielectric microcavity as
integrable systems and then in a stadium-shaped dielectric
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microcavity as a chaotic system. Through the study, we
find that a pair of SLRs or a pair of scarred resonances
is caused by the interaction between a pair of quasinormal
modes through an ARC, whereby the scarred resonances are
localized on unstable periodic orbits, while SLRs are localized
on nonisolated periodic orbits.

This paper is organized as follows. In Sec. II we derive the
Fermi resonance relation in a two-dimensional microcavity.
In Sec. III we demonstrate Fermi resonance in an elliptic
microcavity. In Sec. IV we demonstrate Fermi resonance in
a rectangular and a stadium-shaped microcavity. We discuss
the phenomenon of Fermi resonance in several microcavities
and summarize our results in Sec. IV.

II. FERMI RESONANCE RELATION

In dielectric microcavities, the nonzero off-diagonal terms
in a Hamiltonian for an ARC [13] are the coupling between two
nearly degenerated quasinormal modes for Fermi resonance.
Then we can obtain the relation between the quantum number
difference of a pair of quasinormal modes, i.e., quantum
mechanical superposition, and the periodic orbits supporting
scarred resonances in two-dimensional optical microcavities.
In these cavities, the Hamiltonians of two quasinormal modes
can be described by H (I1,I2) and H (I ′

1,I
′
2), where Ii and I ′

i are
the action variables and the subscripts 1 and 2 are the degrees of
freedom. Because |I ′

i − Ii | � 1 in nearly degenerated states,
we can obtain the following condition by expanding H (I ′

1,I
′
2):

(I1 − I ′
1)ω1 + (I2 − I ′

2)ω2 = 0, (1)

where ωi = ∂H/∂Ii is the frequency associated with the
action Ii . Since Ii = (ni + αi/4), we can obtain the relation
|n1 − n′

1|ω1 = |n2 − n′
2|ω2 for two eigenstates (n1,n2) and

(n′
1,n

′
2), where αi is the Maslov index. According to Berry

and Tabor, when the winding number ω1/ω2 is rational, the
orbit is periodic [17]. Then we can obtain the following relation
for Fermi resonance:

(|�n1|,|�n2|) = (m2,m1), (2)
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FIG. 1. (Color online) Eigenvalues in an elliptic microcavity
depending on the eccentricity: (a) the real eigenvalues and (b) the
imaginary eigenvalues. Curves 1, 2, 3, and 4 exhibit resonance
trapping for bow-tie SLRs and their pairs through ARCs.

where (m2,m1) is the classical periodic orbit, which should
be determined according to the cavity morphology, and
(|�n1|,|�n2|) is the quantum number difference of two
quantum states (n1,n2) and (n′

1,n
′
2). Here |�n1| = |n1 − n′

1|
and |�n2| = |n2 − n′

2| are the quantum number differences
on each degree of freedom and m1 and m2 are the integer
numbers associated with frequencies ω1 and ω2, respectively,
which indicates the repeating numbers on each degree of
freedom for a periodic orbit. Because the Fermi resonance
relation indicates that the quantum number difference equals
the periodic orbit, the quantum state (|�n1|,|�n2|), which is
the superposed state of parent quasinormal modes, should be
localized on the periodic orbit (m2,m1). Then the superposed
state is a scarred resonance or an SLR and this is the
phenomenon of Fermi resonance in dielectric microcavities.

III. FERMI RESONANCE IN AN ELLIPTIC MICROCAVITY

For a deeper understanding of Fermi resonance, first we
focus on bow-tie SLRs and their pairs in an elliptic dielectric
microcavity. The region of the nonisolated bow-tie orbits
supporting the bow-tie SLRs and their pairs is about ε > 0.71
[18–21]. Here ε is the eccentricity given by ε =

√
1 − (b/a)2,

where a and b are the major and the minor radius of the ellipse,
respectively. When the transverse-magnetic (TM) polarized
resonances are obtained in the region kR < 15 and ε < 0.95
depending on ε by preserving the cavity area, complicated
ARCs occur, where k is the vacuum wave number and
R = √

ab.
Figures 1(a) and 1(b) are the real and the imaginary

eigenvalue of even-odd modes in the region 0.74 < ε < 0.88,
respectively, which are obtained by solving the Helmholtz
equation by the boundary element method [22] for the effective
refractive index of 3.3. Among the curves we choose four
arbitrary ones, whose parent modes are bouncing-ball-type
quasinormal modes. Curve 2 is of interest, which interacts
with the others three times. Curve 2 starting at point A
interacts with curve 1 around ε = 0.793 by level crossing.
Next it interacts with curve 3 around ε = 0.820 and with

(a) (e)

(f)(b) (d)

(c)

FIG. 2. (Color online) Intensity plots and Husimi functions of
resonances in an elliptic microcavity depending on ε. (a) and (b)
Bouncing-ball-type quasinormal modes before an ARC at ε = 0.76.
(c) and (d) Bow-tie SLR and its pair, respectively, at ε = 0.793.
(e) and (f) Recovered bouncing-ball-type resonances after the ARC
at ε = 0.81. (g) and (h) Husimi functions of (c) and (d), respectively.
In the Husimi functions, thick solid elliptic lines are resonant tori
corresponding to the (4,1) periodic orbit. Here χ is the incident angle,
S is the arc length from the x axis, and Smax is the total boundary
length.

curve 4 around ε = 0.854 by level repulsion. Several more
curves (thick violet) are presented to show similar multiple
interactions. When ARCs take place, the distance between the
imaginary eigenvalues of the pairs is maximized, which is
resonance trapping appearing in open systems [23–25]. When
interaction occurs, the quasinormal modes transit to a bow-tie
SLR and its pair of SLRs.

In order to show ARCs for the bow-tie SLRs and their
pairs, we obtain the intensity plots and Husimi functions of
the resonances around ε = 0.793. The resonances in Figs. 2(a)
and 2(b) are bouncing-ball-type quasinormal modes at points
A and B, respectively. When an ARC takes place due to
interaction of curves 1 and 2, a bow-tie SLR and its pair
are generated as shown in Figs. 2(c) and 2(d), respectively.
Figure 2(c) shows a bow-tie SLR at point C and Fig. 2(d) its
pair at point D, which is of a superposed shape of V and �, as
shown by the trajectories superimposed on the wave functions.
The pair of SLRs belongs to the same SLR family, which is
localized on the nonisolated periodic orbits [15]. After the
ARC, the parent modes of the bouncing-ball-type quasinormal
modes are recovered around ε = 0.81 without exchanging
their patterns due to a weak ARC as shown in Figs. 2(e) and
2(f), respectively. Similarly, the resonances at points E and G
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in Fig. 1 are bow-tie SLRs and those at points F and H in
Fig. 1 are their pairs. After the ARCs, their parent modes are
recovered with exchanging their patterns due to a strong ARC.
As the two bouncing-ball-type quasinormal modes interact
with each other, a recovered quasinormal mode interacts again
with another one for another pair of SLRs. Hence multiple
interactions take place for the bow-tie SLRs and their pairs.

In order to show the localization of the SLRs in Figs. 2(c)
and 2(d) on the bow-tie SLR and its pair of periodic orbits, the
Husimi functions superimposed on the classical trajectories
are obtained as shown in Figs. 2(g) and 2(h), respectively. The
thick solid ellipsis (red) in each figure is the (4,1) resonant
torus. Each figure clearly shows that the four bright spots are
localized on the (4,1) resonant torus and that the positions
of the bright spots in Figs. 2(g) and 2(h) coincide with the
trajectory shown in Figs. 2(c) and 2(d), respectively. Hence,
the four bright spots of each Husimi function are evidence of
the localization on each nonisolated periodic orbit.

Because Fermi resonance is a quantum mechanical su-
perposition defined by a quantum number difference, we
obtain the quantum number difference of a pair of bouncing-
ball-type quasinormal modes. When the degrees of freedom
denoted by the subscripts 1 and 2 are replaced with e and
h, which are the elliptic and the hyperbolic axis in the elliptic
coordinate, the quantum numbers of the quasinormal modes in
Figs. 2(a) and 2(b) are (ne,nh) = (11,5) and (7,6), respectively,
where ne and nh are the elliptic and the hyperbolic quantum
number, respectively. Then the quantum number difference
is (|�ne|,|�nh|) = (4,1), which is the Fermi resonance.
Similarly, the (15,4) and (11,5) quasinormal modes interact
with each other around ε = 0.854 and a bow-tie SLR and its
pair, whose quantum number difference is (|�ne|,|�nh|) =
(4,1), are generated. Also the (19,3) and (15,4) quasinormal
modes interact with each other and a bow-tie SLR and its pair
are generated. According to the relation in Eq. (2), the bow-tie
SLRs and their pairs should be localized on the (mh,me) =
(4,1) periodic orbits. In an elliptic cavity, because mh and me

are the number of reflections of an orbit on the boundary and
its libration number between two hyperbolic caustics [18],
respectively, the periodic orbit is (mh,me) = (4,1), whereby
the bow-tie SLR and its pair of SLRs are localized on the
periodic orbits. The period of the nonisolated periodic orbit in
Figs. 2(g) and 2(h), where the bow-tie SLR and its pair of SLRs
are localized, is (mh,me) = (4,1). In our further investigation,
all the pairs of bow-tie SLRs in an elliptic cavity satisfy the
relation (|�ne|,|�nh|) = (mh,me) = (4,1).

Other evidence of Fermi resonance is the quantum me-
chanical superposition of parent quasinormal modes. To
show it, a pair of bouncing-ball-type quasinormal modes
of (ne,nh) = (11,5) and (7,6) are superposed. As shown in
Figs. 3(a) and 3(b), the superposed states [(11,5) + (7,6)]/

√
2

and [(11,5) − (7,6)]/
√

2 are a bow-tie SLR and its pair,
whose patterns are the same as those in Figs. 2(c) and 2(d),
respectively. This result indicates that SLRs localized on
nonisolated periodic orbits are caused by Fermi resonance.

The generation of a bow-tie SLR and its pair of SLRs is of
high interest because they are localized on the same resonant
torus. According to the Birkhoff-Poincaré theorem, when a
resonant torus is destroyed, a stable and an unstable periodic
orbit are generated as a pair. In a soft chaotic system, when

(a) (b)

FIG. 3. (Color online) Intensity plots of superposed resonances:
(a) the addition of two bouncing-ball-type quasinormal modes
[(11,5) + (7,6)]/

√
2 whose shape is a bow tie and (b) the subtraction

[(11,5) − (7,6)]/
√

2.

an ARC takes place, a pair of eigenfunctions is localized on
the pair of periodic orbits. An eigenfunction localized on the
unstable periodic orbit is a scar and its pair is localized on
the stable periodic orbit. This phenomenon was demonstrated
in the Harper map [26]. In our case, because a resonant torus
is not destroyed, the generation of a pair of SLRs cannot be
explained in such terms. However, because the trajectories of
a pair of SLRs are on the same resonant torus, we can say that
they are a pair. This phenomenon is caused by the openness of
the system [13].

IV. FERMI RESONANCE IN OTHER MICROCAVITIES

We also confirm Fermi resonance in a rectangular dielectric
microcavity for the effective refractive index of 3.3. When a
square microcavity deforms to a rectangular one, we obtain
the real and imaginary eigenvalues of even-odd modes in
the region 0.0 < ε = 1 − b/a < 0.16 and 9.0 < k < 9.6 by
preserving the cavity area, where k is the vacuum wave number
and a and b are the horizontal and the vertical cavity length,
respectively. The eigenvalues and resonances are obtained
by solving the Helmholtz equation by the boundary element
method [22].

Figures 4(a) and 4(b) are the real and imaginary eigenval-
ues, respectively, which also show complicated interactions
among the resonances. Of these, we choose four arbitrary
curves from 1–4, whose parent modes are the (nx,ny) = (6,3),
(14,5), (10,11), and (12,9) quasinormal modes, respectively,
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FIG. 4. (Color online) Eigenvalues in a rectangular microcavity
depending on the deformation parameter ε: (a) the real eigenvalues
and (b) the imaginary eigenvalues.
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FIG. 5. (Color online) Pairs of SLRs in a rectangular dielectric
microcavity at (a) and (b) points A and B, respectively, around ε =
0.046; (c) and (d) points C and D, respectively, around ε = 0.051; and
(e) and (f) points E and F, respectively, around ε = 0.119 in Fig. 4.
The lines are the trajectories of the nonisolated periodic orbits where
the SLRs are localized.

where x and y are the orthogonal axes in Cartesian coordinates.
Curves 1 and 2 interact with each other around ε = 0.051,
curves 3 and 4 around ε = 0.046, and curves 2 and 3
around ε = 0.119. The imaginary eigenvalues indicate that
the interactions are resonance trapping. In each interaction, a
pair of parent quasinormal modes is recovered after ARCs
by exchanging their property for the next ARCs. During
the interactions SLRs are generated, satisfying the Fermi
resonance relation.

Three pairs of TM polarized resonances are taken as
examples as shown in Fig. 5. Figures 5(a) and 5(b) are
the SLRs at ε = 0.046, where curves 3 and 4 interact with
each other. Because the SLRs are localized on a diamond-
shaped and an X-shaped orbit, respectively, the trajectories
superimposed on the resonances bounce twice for a single
round-trip. Since the (my,mx) periodic orbit is defined by the
total bouncing number on each axis, the nonisolated periodic
orbit is (my,mx) = (2,2). Because the SLRs are the result of
the interaction between the (10,11) and (12,9) quasinormal
modes, the quantum number difference is (|�nx |,|�ny |) =
(2,2). Hence the SLRs satisfy the Fermi resonance relation
such that (|�nx |,|�ny |) = (my,mx) = (2,2). Similarly, since
the SLRs shown in Figs. 5(c) and 5(d) are caused by the
interaction between the (6,13) and (14,5) quasinormal modes
around ε = 0.051, the quantum number difference of the
SLRs is (|�nx |,|�ny |) = (8,8), which equals the nonisolated
periodic orbit (my,mx) = (8,8) as the trajectories are shown
in the figures. Also, the SLRs shown in Figs. 5(e) and 5(f)
are caused by the interaction between the (6,13) and (12,9)
quasinormal modes at ε = 0.119. The SLRs satisfy the relation
(|�nx |,|�ny |) = (my,mx) = (6,4).

As an example of Fermi resonance in chaotic dielectric
microcavities, we take a stadium-shaped one. As the defor-
mation parameter ε = L/R increases, the real and imaginary
eigenvalues of transverse electric polarized resonances are
obtained for a refractive index of 3.3, where L is the linear
section length and R the radius of a circle. Among the
resonances we focus on the interaction of the (nr,nθ ) = (2,m)
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FIG. 6. (Color online) Eigenvalues and the resonances in a
stadium-shaped microcavity depending on ε. (a) and (b) Real and
imaginary eigenvalues of the (2,36) and (3,32) quasinormal modes.
(c) and (d) The (2,36) and (3,32) quasinormal modes at ε = 0.0,
respectively. (e) and (f) The diamond-shaped scarred resonance and
its pair of rectangular-shaped resonances at ε = 0.01, respectively.
(g) and (h) Superposed states of [(2,36) − (3,32)]/

√
2 and [(2,36) +

(3,32)]/
√

2, respectively. The insets in (a) and (b) are the eigenvalues
in the region of small deformation.

and (3,m − 4) quasinormal modes for the quantum number
difference (|�nr |,|�nθ |) = (1,4), where nr and nθ are the
radial and the angular quantum number in a circular cavity,
respectively. Figures 6(a) and 6(b) are the real and imaginary
eigenvalues of the (2,36) and (3,32) quasinormal modes
depending on ε. Both the real and imaginary eigenvalues
exhibit a level repulsion, which is one of the ARCs in open
systems. The figure shows that while the two real eigenvalues
interact at the beginning of deformation, the two imaginary
ones interact around ε = 0.01. When we obtain resonances,
they transit to scarred resonances when ε = 0.001.

The intensity plots of the (2,36) and (3,32) quasinormal
modes at ε = 0.0 are shown in Figs. 6(c) and 6(d), respectively.
When the two quasinormal modes interact with each other,
a diamond-shaped and a rectangular scarred resonance are
generated as shown in Figs. 6(e) and 6(f), respectively. The
resonances are localized on the unstable period-4 orbits, which
are (mθ,mr ) = (1,4) as shown by the orbits superimposed on
the resonances. Here mθ and mr are the number of rotations
of the orbit around the center and its reflection number on
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the boundary, respectively. The trajectory, when it travels one
revolution on the angular axis, bounces four times on the radial
axis. Hence the scarred resonances satisfy the periodic orbit
(mθ,mr ) = (1,4). In the figures we can see a slight mismatch
between the orbit and the resonances, which is caused by
an optical property of the Goos-Hänchen shift in a dielectric
microcavity [27]. In the resonances, we can see two outer
circles where the probability density is low. We attribute
this phenomenon to interference. In our further investigation,
when each pair of (l,m) and (l + 1,m − 4) quasinormal modes
interact with each other, scarred resonances of the similar
patterns are generated.

In this cavity, the original quasinormal modes are not
recovered after an ARC because of the destruction of invariant
curves supporting the quasinormal modes. In order to show
that the scarred resonances are the result of Fermi resonance,
we obtain the superposed states of [(2,36) − (3,32)]/

√
2

and [(2,36) + (3,32)]/
√

2 as shown in Figs. 6(g) and 6(h),
respectively. As shown in the figures, the superposed states
are the same as the scarred resonances, which are of a
diamond-shaped and a rectangular pattern, respectively.

In dielectric microcavities, when the quasinormal modes
of a pair interact with each other through an ARC, Fermi
resonance occurs. The off-diagonal terms in a Hamiltonian for
an ARC are the coupling for Fermi resonance. Then we can
sum up the conditions for Fermi resonance in dielectric micro-
cavities as follows. (i) Two real eigenvalues should approach
each other to become nearly degenerated states for interaction.
(ii) The quantum number difference of the nearly degenerated
quasinormal modes should equal a classical periodic orbit,
where SLRs or scarred resonances are localized. Under these
conditions Fermi resonance occurs for SLRs and scarred
resonances through the interaction between two quasinormal
modes. In our further investigation, we also find that scars in
chaotic billiards are also the phenomenon of Fermi resonance.

V. DISCUSSION AND CONCLUSION

We have investigated Fermi resonance in dielectric mi-
crocavities of three shapes. Through the investigation, we

found that the Fermi resonance relation coincides with the
SLRs and scarred resonances. However, we emphasize that
the conditions we have discussed cannot be directly applied
to all systems. For example, first, in the case of nonchaotic
billiards such as an elliptic and a rectangular one, although the
eigenvalues of two eigenfunctions are coincident and there
are various nonisolated periodic orbits, there is no Fermi
resonance because the eigenfunctions do not interact with each
other. Next, in a fully chaotic system, two nearly degenerated
scarred resonances interact with each other and another pair
of scarred resonances is generated. In this case, because
scarred resonances have no well-defined quantum number,
the quantum number difference is hard to determine for
Fermi resonance [8]. Finally, it was shown that a quasiscarred
resonance is a linear combination of a number of quasinormal
modes with proper weighting factors [28,29], whose quantum
number differences are (|�nr |,|�nθ |) = (1,3) and (2,5) for a
triangular and a star shape, respectively, and that the orbits
supporting the resonances exist due to uncertainty [30,31].
Although in this case the relation (|�nθ |,|�nr |) = (mr,mθ ) is
satisfied, these resonances are not pairs of quasinormal modes.
More rigorous studies are required for these exceptional
cases.

In conclusion, we have verified that SLRs and scarred
resonances are phenomena of Fermi resonance due to in-
teraction between a pair of quasinormal modes through an
ARC and why SLRs and scarred resonances are localized on
periodic orbits. Our results provide a meaningful contribution
to the understanding of scars and scarred resonances in chaotic
microcavities.
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