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Dynamics of kink, antikink, bright, generalized Jacobi elliptic function solutions of matter-wave
condensates with time-dependent two- and three-body interactions
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By using the F-expansion method associated with four auxiliary equations, i.e., the Bernoulli equation, the
Riccati equation, the Lenard equation, and the hyperbolic equation, we present exact explicit solutions describing
the dynamics of matter-wave condensates with time-varying two- and three-body nonlinearities. Condensates are
trapped in a harmonic potential and they exchange atoms with the thermal cloud. These solutions include the
generalized Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions.
In addition, we have also found rational function solutions. Solutions constructed here have many free parameters
that can be used to manipulate and control some important features of the condensate, such as the position, width,
velocity, acceleration, and homogeneous phase. The stability of the solutions is confirmed by their long-time
numerical behavior.
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I. INTRODUCTION

The dynamics of Bose-Einstein condensates (BECs)
trapped in a harmonic potential and exchanging atoms with
the thermal cloud has been a fascinating topic and has
attracted much attention in recent theoretical and experimental
works [1]. It is well known that the dynamical behavior
of a condensate in the mean-field limit is well described
by the Gross-Pitaevskii equation (GPE) [1], which is a
nonlinear Schrödinger equation with an external potential.
Basically, the GPE is a three-dimensional (3D) equation,
but in some cases, it may be reduced to a one-dimensional
(1D) form. This is possible when the condensate is frozen
in two transverse directions by a stronger potential. The
dimensionless governing equation of cigar-shaped (1D) BECs
with two- and three-body nonlinearities can be written as [1]

ı�t (x,t) + c�xx − g(t)|�(x,t)|2�(x,t)

−χ (t)|�(x,t)|4�(x,t) − (αx2 + ıγ )�(x,t) = 0. (1)

In Eq. (1), the time t and the spatial coordinate x are scaled
in the harmonic-oscillator units. The time-dependent cubic
nonlinearity coefficient g(t) characterizes the intensity of the
two-body interactions. The quintic nonlinearity coefficient
χ (t) characterizes the strength of the three-body interactions.
Generally speaking, χ (t) is a complex quantity, but its
imaginary part can be neglected since it is very small compared
to the real part [2,3]. Thus, in the following, we consider
that χ (t) is a real-valued expression. Time variations of
the cubic and the quintic nonlinearities can be realized in
condensates by magnetically or optically induced Feshbach
resonances [1]. The parameter α represents the strength of
the external magnetic or optical harmonic confinement. The
complex quantity ıγ , which is a nonconservative term, is
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introduced phenomenologically in Eq. (1). It takes into account
the interaction between the condensate and the noncondensed
fraction of the atomic vapor. When γ > 0, the density of
the condensate grows due to an injection of atoms into the
condensate from the thermal background or by a pumping
mechanism from an atomic reservoir. For γ < 0, the density
of the condensate decays since atoms are expelled out of the
harmonic potential. This dissipative process can be explained
by inelastic collisions in the BEC due to dipolar relaxation [1].
Hence, γ accounts for the exchange of atoms between the pure
condensate and its surrounding thermal background. The rate
of exchange of atoms is characterized by a temporal scale ζ ,
which is the time interval between subsequent events of adding
or removing individual atoms from the atomic ensemble. The
mean-field approximation GPE for BECs is applicable if ζ

is negligible, i.e., ζω⊥ � 1, which is verified for typical
configurations where ω⊥ = 2π × 100 Hz and ζ ∼ 10 μs [4].
In the absence of the three-body interactions χ (t) = 0, Eq. (1)
coincides with the cubic GPE with a gain or loss term (γ )
employed in Refs. [5,6]. In Ref. [6], the cubic GPE with the
gain term has been used to model the condensate growth in a
trap, and it appears that as the condensate grows, its center
of mass oscillates in the trap. In addition, the cubic GPE
with the gain or loss term has been proposed to describe the
dynamics of atom lasers [7], or light waves in fiber optics in the
absence of harmonic confinement [8]. Some exact solutions
of the cubic GPE with the gain or loss term γ have been
reported [9]. In the case in which χ (t) = γ = 0, Eq. (1)
reduces to the well-known nonlinear Schrödinger equation.
In such a case, there exists many kinds of exact solutions with
the Hirota method, the inverse scattering method, the Darboux
transformation, and the Lax pairs technique for describing
bright-bright solitons, dark-dark solitons, bright-dark solitons,
and so on in the existing literature.

Equation (1) (and its variant forms) is a nonlinear evolution
equation, and it also appears in many fields in physics such
as nonlinear optics, biophysics, fluids mechanics, and so on.
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It is rather difficult to solve Eq. (1) analytically, but in recent
years many powerful and direct methods for finding exact
solutions of Eq. (1) have emerged. Among them are the
Bäcklund transformation [10], the tanh-function method [11],
the extended tanh-function method [12], the homogeneous
balance method [13], the auxiliary equation method [14], the
F-expansion method [15], just to name a few. Exact solutions
are of a relevant importance in physics in general, since as
mathematical models they provide better understandings of
physical models, and they may lead to physical applications.
In the context of BECs, Mohamadou et al. [16] have recently
derived exact solutions of Eq. (1) by using the extended-
tanh function method with special solutions of an auxiliary
equation, i.e., the Lenard equation. In addition, using the same
method developed in Ref. [16], exact solutions of Eq. (1) with
different geometrical traps have also been proposed by Wamba
et al. [17] and Belobo et al. [18]. We recall that in Ref. [17],
the trapping potential consists of a linear magnetic field and a
time-dependent laser field, while in Ref. [18] the condensate is
confined by a linear field and exchanges atoms with the thermal
cloud. If we want to better understand the dynamical behavior
of BECs trapped in a harmonic potential and exchanging atoms
with the thermal cloud, a detailed investigation of Eq. (1) using
more powerful methods to obtain more types of exact solutions
containing soliton solutions is needed. Hence, using another
method may lead to other solutions of Eq. (1).

The aim of this work is to construct exact solutions of Eq. (1)
in the framework of the F-expansion method, combined with
four types of auxiliary equations, i.e., the Bernoulli equation,
the Riccati equation, the Lenard equation, and the hyperbolic
equation.

The rest of the paper is organized as follows. In Sec. II, we
present the model. Section III is devoted to deriving exact
solutions of Eq. (1) by applying the F-expansion method,
combining it with four types of auxiliary equations. We
discuss some issues of our exact solutions in Sec. IV. Then,
we show that it is possible to significantly increase the
number of solutions obtained in Ref. [16] by using other
solutions of the Lenard equation. Finally, Sec. V concludes the
paper.

II. KINEMATICS OF THE CENTER OF
MASS OF THE CONDENSATE

To derive exact solutions of Eq. (1), we need to transform
Eq. (1) into a more tractable and manageable form. Toward
that end, we follow Ref. [16] and use the following modified
lens-type transformation:

�(x,t) = D(t)	(X,T ) exp[η(t) + ıf (t)x2], (2)

where T is a function of time t , and X = x
l(t) . The func-

tion f (t) represents the nonlinear frequency shift, and η(t)
(which takes into account the exchange of atoms between
the condensate and its surroundings) represents the growth
[η(t) > 0] or the loss [η(t) < 0] of atoms. The preservation
of the scaling implies that dT

dt
= 1

l(t)2 . Further, we request

that

df (t)

dt
= −4cf (t)2 − α(t), (3)

dD(t)

dt
= −2cf (t)D(t), (4)

dl(t)

dt
= 4cf (t)l(t), (5)

dη(t)

dt
= γ. (6)

Inserting Eq. (2) into Eq. (1) and using Eqs. (3)–(6) yields
the reduced form of Eq. (1) in the rescaled variables X and T

(see [16]),

ı
∂	(X,T )

∂T
=−c

∂2	(X,T )

∂X2
− P 2|�(X,T )|2	(X,T )

+χ0|	(X,T )|4	(X,T ), (7)

with D(t) = [|g(t)|l(t)2 exp[2η(t)]]−
1
2 , χ (t) = χ0g(t)2l(t)2,

P 2 = −sgn[g(t)]. The two-body interactions are attractive if
P 2 = +1, but they are repulsive when P 2 = −1. Equation (7)
is a cubic-quintic GPE with constant parameters. The exact
solution of Eq. (1) takes the form [16]

�(x,t) =
√

|G(t)|	(X,T )

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (8)

where G(t) = g(t) exp[2η(t)], η(t) = ∫ t

0 γ dt ′ + η0, η0 being
a constant. Solution (8) is obtained by assuming that l(t) =
|G(t)|−1, T (t) = ∫ t

0 G(t ′)2dt ′, f (t) = 1
4c

d
dt

ln |G(t)|.
Exact explicit solutions of Eq. (1) are obtained from the

solution (8) if the explicit form of the function 	(X,T ) is
given. To derive explicit expressions of 	(X,T ), we assume
that it takes the amplitude-phase form and can be written as

	(X,T ) = Q(ξ ) exp[iθ (X,T )], (9)

where Q represents the amplitude part and θ accounts for the
phase part. The variables ξ and θ have the forms

ξ = k0X − ω0T , θ (X,T ) = kX − ωT . (10)

Parameters k0, k, ω0, and ω are real constants that account for
width, linear frequency shift, velocity, and the homogenous
phase of the wave function 	(X,T ), respectively. Substituting
Eqs. (9) and (10) into Eq. (7), and then separating the real and
the imaginary parts, respectively, yields the following set of
ordinary differential equations with respect to Q:

(ω − ck2)Q + Q3 − χ0Q
5 + ck0

d2Q

dξ 2
= 0, (11)

(ω0 − 2ckk0)
d2Q

dξ 2
= 0. (12)

Assuming the constraint

ω0 = 2ckk0 (13)

means that we only need to solve Eq. (11). Thus, in the
following, we focus our attention on deriving solutions of
Eq. (11). We will assume that the function Q is expand-
able in a polynomial function F (ξ ), where F satisfies an
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auxiliary equation. So far, there are some important physical
properties that will be exhibited by the complete solutions
to be constructed. For example, one may be interested in
the dynamics of the center of mass of the condensate for a
specific solution. The properties of the center of mass help us
to understand the behavior of the condensate at mean. In the
rescaled frame, the position, velocity, and acceleration of the
condensate center of mass are XCM = 2ckT , ẊCM = 2ck, and
ẌCM = 0, respectively. In terms of the dimensionless physical
variables, the position, velocity, and acceleration of the center
of mass are xCM(t) = (ck/γ ) sinh(2γ t), ẋCM = 2ck cosh(2γ t),
and ẍCM = 4ckγ sinh(2γ t), respectively. Hence, the behavior
at mean of the condensate is affected by the rate of exchange of
atoms between the condensate fraction and the uncondensed
fraction, and by the linear frequency shift of the initial
condition. These features, that are nowadays manageable in
BEC experiments with a high accuracy, allow us to understand
the influence that the interplay between the condensate and the
uncondensed fraction has on the stability and the dynamics
of the condensate. At initial time, the center of mass of the
condensate is at the center of the trapping potential with the
initial velocity 2ck without any acceleration. As time increases,
the velocity and acceleration of the center of mass increase
for negative and positive values of γ . This implies that the
exchange of atoms with the thermal background accelerates the
center of mass, such that the temperature of the core increases
with time, and it may lead to the collapse of the condensate.
However, for small values of γ , the acceleration and velocity of
the core shall remain small such that the growth of the velocity
induced by the atoms pumping, or the loss mechanisms, will
be negligible, avoiding the collapse of the condensate. The
linear frequency k may also be used to control the acceleration
and the velocity of the condensate’s core. In this work, one
has two powerful tools to avoid the collapse of the condensate.
The position of the center of mass as time evolves also depends
on the sign of the linear frequency k, such that the condensate
moves toward the left side to the axial potential if k < 0, while
the condensate moves toward the right side of the potential
for positive values of k. The features of the parameters γ

and k may be used in some BEC applications such as the
realization of the atomic laser where the velocity of atoms can
be tuned by proper choices of the linear frequency and the
rate of rate of exchange of atoms between the condensate and
its surroundings. Another potential application is the transport
of the condensate in experiments driven by the parameters γ

and k. According to Newton’s second law, the condensate can
be considered as a classical particle moving in the effective
potential Ueff = (−2ck/γ ) cosh(2γ t), with total energy E =
2[ck cosh(2γ t)]2 − (2ck/γ ) cosh(2γ t), its only equilibrium
point being located at the center of the trap, x = 0.

III. EXACT SOLUTIONS

A. The Bernoulli equation as an auxiliary equation

We suppose that the function Q has the following form:

Q(ξ ) =
M∑
i=0

aiF
i(ξ ), (14)

where M is a positive integer, ai are real constants to be
determined later, and the function F is the solution of the
general Bernoulli equation,

dF

dξ
= aF (ξ ) + bFλ(ξ ), (15)

the parameters a, b, and λ being real constants that will be also
determined later, with λ �= 1. Introducing Eq. (14) into Eq. (11)
and using the homogeneous balance between the highest-order
derivative and nonlinear terms, respectively, yields λ = 2M +
1. Since λ �= 1, then M � 1. Let us consider the simple case
in which M = 1 and λ = 3. We have

Q(ξ ) = a0 + a1F (ξ ),
dF

dξ
= aF (ξ ) + bF 3(ξ ). (16)

Inserting Eq. (16) into Eq. (11) and collecting coefficients of
powers F i(ξ ), then setting each coefficient to zero, yields a set
of overdetermined algebraic equations for the unknowns a0,
a1, a, b, and ω. Solving this set of overdetermined equations
with the aid of MAPLE leads to the following solutions:

a0 = 0, (17)

a = −√
3

4k0
√

c
√

χ0
, (18)

b = ±a2
1
√

χ0

k0

√
3c

, (19)

ω = −3 + 16ck2χ0

16χ0
. (20)

Equations (17) and (18) imply that c > 0 and χ0 > 0, meaning
that solutions are valid only for repulsive three-body interac-
tions. One infers from Eqs. (19) and (20) that the amplitude
and the homogeneous phase of the wave function are sensitive
to the strength of the three-body interaction χ (t). It is thus
possible to tune to the desired values both the amplitude
and the phase of the condensate externally by means of the
Feshbach resonance technique. Inserting the solutions of the
general Bernoulli equation [Eq. (15)] for λ = 3 [19] given in
Appendix A into Eq. (16) leads to an explicit expression of Q.
Hence, exact explicit solutions of Eq. (1) are

�1j (x,t) =
√

|G(t)|a1F1j (ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
,

j = 1,2,3. (21)

Equations (16)–(20) and the solutions of Appendix A imply
that the heights of solutions (21) are proportional to the
strength of the cubic nonlinearity, but inversely proportional
to the strength of the quintic nonlinearity. Therefore, the
experimenter knows how to manage the cubic and quintic
nonlinearities in order to obtain a solution with an assumed
amplitude. The density of a solution is subjected to a growth
in the feeding regime, while the density decays when atoms
are removed from the condensate. This feature has been
predicted in Refs. [16,18]. In addition, the behavior of the
density of the condensate is unchanged both for attractive and
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FIG. 1. (Color online) Spatiotemporal evolution of the wave
function of Eq. (21) for j = 2. The parameters selected are α =
−0.005, k0 = 1, χ0 = 1

12 , a1 = 1, c = 0.5, η0 = 0, g(t) = −1, and
γ = −0.005. (a) k = 0.01, density profile of an antikink soliton with
initial speed 0.01. (b) k = −0.5, effect of the linear frequency shift
on the direction of the moving antikink soliton. The initial speed of
the soliton is equal to |k|, and the direction of the soliton depends on
the sign of k.

repulsive condensates. From (21), one understands that we
have constructed three bunches of solutions of Eq. (1). To
represent some samples of the solutions (21), we choose the
following relevant physical parameters: α = −0.005, c = 0.5,
and η(t) = γ t with η0 = 0, used in some experimental and
theoretical studies [16–21]. (We remind the reader that a
slightly expulsive parabolic harmonic potential, negative value
of α was used in the experiments of Refs. [20,21] to produce
solitons in condensates.) We display in Fig. 1(a) the dynamics
of the condensate’s wave function, where we have set j = 2
in solution (21) with γ = −0.005, χ0 = 1/12, and k = 0.01.
In this case, the solution (21) is an antikink soliton with initial
velocity 0.01. The influence of the linear frequency shift on the
direction of the condensate can be seen in Fig. 1(b), where k =
−0.5. The moving antikink soliton evolves toward the left side
of the cigar axis and its initial velocity amounts to 0.05. Kink
and antikink solitons have been predicted in single condensates
with two- and three-body nonlinearities in different trap
geometries [16,17,18] and in binary condensates with cubic
nonlinearities [22]. Other nonlinear media also allow the
existence of kink and antikink solitons such as a layer of binary
liquid heated from below, where oscillatory convection sets in
via a subcritical bifurcation described by the cubic-quintic
Ginsburg-Landau equation [23], optical fibers with elliptical
birefringence for the evolution of the state of polarization of
counterpropagating waves [24], the nonlinear dispersive fiber
optics for the description of wave propagation by including the
effects of group-velocity dispersion, self-phase-modulation,
stimulated Raman scattering, and self-steepening [25]. The
analytical expression of the antikink soliton solution found in
Ref. [16] is different from the solution obtained in the present
work by using the Bernoulli auxiliary equation. Moreover,
with only fewer parameters, i.e., k and γ , we can characterize
the behavior of the condensate at mean.

B. The Riccati equation as an auxiliary equation

We assume that the function Q takes the form

Q(ξ ) =
N∑

i=−N

aiF
i(ξ ), (22)

where the function F is the solution of the following Riccati
equation [26]:

dF

dξ
= MFλ(ξ ) + ε

1 − λ
F 2−λ, ε = ±1. (23)

Inserting Eq. (22) into Eq. (11) and considering the homo-
geneous balance between the highest-order derivative and
nonlinear terms, respectively, we obtain λ = 2N + 1. Let us
now consider the simple case in which N = 1 and λ = 3.
Equations (22) and (23) become

Q(ξ ) = a0 + a1F (ξ ) + a2F
−1(ξ ),

dF

dξ
= MF 3(ξ ) − ε

2
F (ξ ). (24)

Introducing Eqs. (24) into Eq. (11), collecting coefficients of
powers F i(ξ ), and then setting each coefficient to zero, yields
a set of overdetermined algebraic equations for the unknowns
a0, a1, M , and ω. Solving these equations with the aid of
MAPLE, we obtain

a11 = 1

8c
√

2k0

(
3c

χ0

) 3
4

, a21 =
√

k0

2

(
3c

χ0

) 3
4

,

(25)

M1 = 3

128ck2
0χ0

, ω1 = ck2 + 3ε − 27

128χ0
,

a12 =−a11, a22 = −a21, M1, ω1, (26)

a13 = −ıa11, a23 = ıa21, M1, ω1, (27)

a14 = ıa11, a24 = −ıa21, M1, ω1, (28)

a15 = a11, a25 = a21, − M1, ω2 = ck2 − (3ε + 27)

128χ0
,

(29)

a16 = −a11, a26 = −a21, −M1, ω2, (30)

a17 = −ıa11, a27 = ıa21, −M1, ω2, (31)

a18 = ıa11, a28 = −ıa21, −M1, ω2, (32)

a0 = 0. (33)

Equation (28) implies that c > 0 and χ0 > 0 (the three-body
interactions are repulsive). Using Eqs. (24)–(33), we derive
exact solutions of Eq. (1),

�2nm(x,t) =
√

|G(t)|[a1nF2m(ξ ) + a2nF
−1
2m (ξ )] exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (34)

where n,m are integers, with n = 1,8, and m = 1,4 if ε =
−1, m = 5,7 if ε = +1, and m = 8 if ε = 0. The solutions
of the Riccati equation are given in Appendix B [26].
Equations (25)–(34) imply that the amplitudes of solutions (34)
are highly dependent on the values of the width and the strength
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FIG. 2. (Color online) Propagation of the matter wave conden-
sate of the solution given by Eq. (34). (a) Density profile of a growing
periodic solution for n = 5, m = 7, and ε = +1. (b) Density profile
of a moving kink soliton for n = 5, m = 3, and ε = −1. In both cases,
the other parameters are the same as in Fig. 1(a), except χ0 = 0.1,
γ0 = 0.005.

of the quintic nonlinearity, which is also related to the atom
feeding or loss parameter γ . The phases of solutions (34)
are characterized by χ0 and the free parameter k. Hence,
after fixing the values of k0, χ0, and γ , it is possible to
predict space-time evolution of the amplitude and the phase
of solutions (34). Since the latter parameters can be precisely
controlled externally in current BEC experiments, we infer
that solutions (34) are likely to be observed in current or
future experiments with condensates. We visualize in Figs. 2(a)
and 2(b) the spatiotemporal evolutions of the wave function
for two different cases of solution (34). In Fig. 2(a), we
have set in Eq. (34) n = 5, m = 7, and ε = 1. We obtain a
multiple bright soliton solution periodically spaced on the axial
potential. The dynamical characteristics of the center of mass
of this solution are the same as those of Fig. 1(a) since the
same parameters were used. Multiple bright soliton solutions
are usually obtained in condensates via the modulational
instability. In the case of Eq. (1), multiple bright solitons
were generated numerically in Ref. [27]. Here, we give an
analytical expression of a multiple bright soliton solution in
the framework of Eq. (1). Such moving periodic solutions may
be observed in optical lattices, and they can be used to insert
atoms onto optical devices, such as atom chips, waveguides,
and mirrors [18,28]. Figure 2(b) portrays the spatiotemporal
evolution of a kink soliton obtained for n = 5, m = 3, and
ε = −1. This is a kink soliton solution of Eq. (1) that is
different from that derived in Ref. [16].

C. The Lenard equation as an auxiliary equation

We search a function Q that has the form

Q(ξ ) =
N∑

i=0

aiF
i(ξ ), (35)

the function F satisfying the Lenard equation [29]

dF

dξ
=

√
b0 + b2F 2(ξ ) + b4F 4(ξ ) + b6F 6(ξ ). (36)

Solutions of (36) are given in Appendix C. Substituting
Eq. (35) into Eq. (11) and considering the homogeneous bal-
ance between the highest-order derivative and nonlinear terms,
respectively, we obtain N = 1. Inserting Q into Eq. (11),

collecting coefficients of powers F i(ξ ), and then equating each
coefficient to zero, yields a set of overdetermined algebraic
equations for the unknowns a0, a1, b4, and ω. Solving them
with MAPLE, we have

a11 =
√

k0

(
cb6

χ0

) 1
4

, b4 = − 1

2ck0

√
2cb6

χ0
, (37)

a12 = −a11, b4, (38)

a13 = ıa11, −b4, (39)

a14 = −ıa11, b4, (40)

a0 = 0, ω = ck2−ck2
0b2. (41)

Equation (37) implies that k0 must be positive, and both χ0

and b6 must have the same sign. Inserting Eqs. (37)–(41) into
Eq. (35) yields explicit solutions of Q, which in turn are used
to obtain exact solutions of Eq. (1), which are

�3nm(x,t) =
√

|G(t)|a1nF3,m(ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (42)

where n,m are integers, with n = 1,4, and m = 1,18 for b0 =
0 and m = 19,22 for b0 = 8b2

2
27b4

and b6 = b2
4

4b2
. Relations (37)–

(40) mean that the amplitudes of solutions (42) depend on the
values of k0 and χ0. Equation (41) implies that the phases of
the solutions (42) depend on the values of k and k0. After the
choice of the parameters bi (i = 0,1,2,3,4,5,6) related to the
solution pattern needed, it is possible to precisely manipulate
the amplitude and the phase of solutions only with the selection
of the values of the width (1/k0), the linear frequency k, the
sign of χ0, and the rate of exchange γ . There are many types
of solutions of Eq. (1) that can be derived from Eq. (42).
We present in Fig. 3(a) a bright soliton solution of (42) for
n = 1, m = 1, with b2 = 2, b6 = −2, χ0 = −0.1, and g(t) =
1. The other parameters are the same as in Fig. 1(a). Bright
solitons have been reported in condensate experiments with
a constant two-body nonlinearity [20,21]. The dynamics of
the core of this soliton are the same as that of the solution
of Fig. 1(a). The parameter k0 plays two important roles in
the characterization of the solutions: (i) generally speaking,
the width of the condensate is 1/k0; (ii) for each solution

FIG. 3. (Color online) (a) Sample of a bright soliton solution
derived from solution (42) for n = 1, m = 1 with k0 = 1, χ0 = −0.1,
b2 = 2, and b6 = −2. (b) Same parameters as in panel (a) except
k0 = 0.1. The parameter k0 affects both the width and the amplitude
of the solution. The other parameters as the same as in Fig. 1(a).
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derived from Eq. (42), the amplitude is proportional to
√

k0

as depicted by Eq. (37). A comparison between Figs. 3(a)
and 3(b) corroborates the latter effects due to k0.

One important class of physically relevant solutions of
Eq. (1) is the Jacobi elliptic function solutions that are missed
in the above development. We need to remedy this by including
the generalized Jacobian elliptic solutions of Eq. (1). Toward
that end, we resort the same procedure and consider the
following special solutions of the Lenard equation [30–33],
which can be found in Appendix D. The generalized Jacobi
exact solutions of Eq. (1) can then be expressed as follows:

�3nm(x,t) =
√

|G(t)|a1nF5,m(ξ ) exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (43)

where n,m are integers, with n = 1,4 and m = 18,19. These
solutions have to respect the constraint imposed by the
expression of b4 given by Eq. (37), and they are valid only for
negative values of χ0. Thus, the generalized Jacobi function
solutions (43) are valid provided that the quintic interatomic
interactions are attractive, and they share the same features
with solutions (42) regarding the behavior of the amplitudes
and the phase. Subsequently, k0 can be written in terms of

the periods k1 and k2 as k0 = − 1
2cb4

√
2cb6
χ0

, with b4 and b6

chosen as in Eq. (37) or in Appendix D. In other words,
once two periods k1,k2 are fixed, the width 1/k0 and the
strength of the three-body interatomic interactions are derived.
It is interesting to notice that, except for the atom feeding
or loss mechanism that is controlled by γ , all important
features of the solutions (43) depend on the values of the
periods k1,k2. We plot in Fig. 4(a) the density profile of the
generalized Jacobi cosine function, and in Fig. 4(b) the density
profile of the generalized Jacobi function of the third kind,
in the feeding regime γ = 0.001, for repulsive condensates
g = 1. As periodic solutions, the generalized Jacobi elliptic
function solutions may be observed for BECs in optical
lattices [28]. Some particular solutions of (43), the Jacobi
elliptic function solutions, have been reported in Jacobian
elliptic potentials for condensates with constant cubic and
cubic-quintic nonlinearities [34].

FIG. 4. (Color online) Spatiotemporal evolution of density pro-
files of generalized Jacobi elliptic solutions of Eq. (1). (a) c(ξ,k1,k2),
(b) d1(ξ,k1,k2). Parameters are α = −0.005, k1 = 0.6, k2 = 0.2,
χ0 = −k2

1k
2
2 , γ = 0.001, k = 0.1, and g = 1.

D. The hyperbolic equation as an auxiliary equation

The function Q is assumed to have the form

Q(ξ ) =
N∑

i=0

ai sinhi[F (ξ )], (44)

where the function F satisfies the hyperbolic equation [35]

dF

dξ
= c0 + c2 sinh2(ξ ). (45)

The solutions of the hyperbolic equation [35] are presented
in Appendix E. Substituting Eq. (44) into Eq. (11) and
considering the homogeneous balance between the highest-
order derivative and nonlinear terms, respectively, we obtain
N = 1. Then, introducing the function Q into Eq. (11),
collecting all coefficients of powers sinhi[F (ξ )], and setting
each coefficient to zero yields a set of overdetermined algebraic
equations for the unknowns a0, a1, c0, and ω. Solving them
with MAPLE, we obtain

a11 =
√

k0c2

(
3c

χ0

) 1
4

,

ω1 = k0c2

√
3c

χ0
+ ck2 + 3ck2

0c
2
2

4
− 3

16χ0
, (46)

c01 =
−

√
3c
χ0

− 2ck0c2

4ck0
,

a12 = −a11, ω1, c01, (47)

a13 = ıa11, ω2 = −k0c2

√
3c

χ0
+ ck2 + 3ck2

0c
2
2

4
− 3

16χ0
,

c02 =
√

3c
χ0

− 2ck0c2

4ck0
, (48)

a14 =−ıa11, ω2, c02, (49)

a0 = 0. (50)

Proceeding in a similar way as above, we obtain exact solutions
of Eq. (1) as

�4nm(x,t) =
√

|G(t)|a1n sinh1,m[F (ξ )] exp[ıθ (X,T )]

× exp

{
η(t) + ı

[
− 1

4c

d

dt
ln |G(t)|

]
x2

}
, (51)

where n,m = 1,2,3,4. From Eqs. (46)–(50), one can realize
that features of the solutions (51) are related to some
experimental parameters such as the strength of the quintic
interatomic interactions, the rate of exchange of atoms with
the thermal background γ , and the linear frequency shift
k. For instance, the amplitudes of solutions (51) depend on
the width (1/k0) and the strength of the quintic interatomic
interactions χ0 (which depends on the interplay between the
condensate and the thermal vapor), whereas the homogeneous
phase depends on the width, linear phase, and χ0. As already
stated above, it is possible to control the amplitude and phase
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of a solution in current condensate experiments once 1/k0, k,
and γ have been fixed. In addition, the kinematics of the center
of mass of the solutions (51) are also manageable externally in
experiments, as mentioned before. We expect that the present
work will motivate the quest of hyperbolic solutions in BEC
experiments and applications.

E. Discussions

In the latter section, we have constructed exact solutions
of Eq. (1) using a lens-type transformation with constraints
[Eqs. (3)–(6)] also used in Ref. [16]. However, due to the
method used in this work, the kinematics of the center of
mass of our solutions is rather different from that predicted in
Ref. [16]. In addition, we provide many types of solutions that
are related to important experimental parameters with BECs.
We have also proposed hyperbolic solutions and generalized
Jacobi function solutions.

It is well known that the inclusion of quintic nonlinearity
alters the behavior of matter-wave condensates. One important
issue is to show what effects the quintic nonlinearity has
on the formation of matter-wave condensates. To single out
these effects, we consider the solutions with and without
quintic nonlinearity for the four types of auxiliary equations.
In the limit case of vanishing three-body interactions, the
solutions found above actually have χ (t) = 0 counterparts,
since they exist for any arbitrary nonzero small values of
χ (t), however their counterparts for χ (t) = 0 cannot be
expressed analytically simply due to divergence to infinity
of some parameters [see Eqs. (18), (25), (37), and (46) for
example]. Therefore, we resolve Eq. (1) again with χ (t) =
0. For the case of the Bernoulli equation, the analytical
solution is given by Eq. (21), where a1F (ξ ) is replaced by
a0 + a1F (ξ ), with a0 = ±ck0a/

√−2c, a1 = ±√−2ck0b, and
ω = 1

2c(k2
0a

2 + 2k2), a and b being free real parameters. The
solutions exist only if the dispersion coefficient c is negative.
Such solutions do not describe the evolution of matter-wave
condensates, but they may rather describe the evolution of light
waves in fiber optics with application to telecommunication
transmissions. In addition, from Eq. (18) we know that the
solutions with nonzero quintic nonlinearity are valid only
for positive values of c. Due to the method adopted in the
present work, the influence of quintic nonlinearity on the
dynamics of waves cannot be determined because the solutions
obtained describe two distinct physical situations (positive

FIG. 5. (Color online) Evolution of the density of a dark soliton
of Eq. (1) obtained using the Bernoulli equation, with the same
parameters as in Fig. 1(a) except c = −0.5, a = 1, b = −1, and
χ (t) = 0.

FIG. 6. (Color online) (a) Evolution of the density of a periodic
solution of Eq. (1) obtained using the Riccati equation, with same
parameters as in Fig. 2(a) except M = −0.4, χ (t) = 0. (b) Evolution
of the density of a plane-wave solution of Eq. (1) derived using the
Riccati equation, with the same parameters as in Fig. 2(b), except
M = −0.4, χ (t) = 0.

dispersion coefficient c > 0 and negative dispersion coefficient
c < 0). A comparison between Fig. 5 [χ (t) = 0] and Fig. 1(a)
confirms that with the inclusion of quintic nonlinearity, the
dynamics of waves are different with regard to the shape of
the solution, which turns from a dark profile to an antikink
profile. When one uses the Riccati equation, the solution of
Eq. (1) is given by Eq. (34), where n = 1,5; m and ε have
the same signification. The coefficients are a11 = 0, a21 =√−2cεk0, ω1 = ck2 + 2ck2

0Mε; a12 = 0, a22 = −a11, ω2 =
ω1; a13 = −2ck2

0M
2, a23 = 0, ω3 = ω1; a14 = a13, a24 =

a21, ω4 = 6ck3
0M

2
√−2cε + ck2 + 2ck2

0Mε; a15 = a13, a25 =
−a24, ω5 = −6ck3

0M
2
√−2cε + ck2 + 2ck2

0Mε. M is a free
real parameter. The expressions of the coefficients a1i and
a2i show that only the coefficients for n = 3 correspond to
matter-wave solutions. The others with a negative dispersion
coefficient may rather describe the evolution of light in
fiber optics. A comparison between Fig. 6(a) [χ (t) = 0] and
Fig. 2(a) implies that the inclusion of quintic nonlinearity
modifies the top of the periodic solution. In addition, drawing
a parallel between Fig. 6(b) and Fig. 2(b), one realizes that
the inclusion of quintic nonlinearity may also induce the
localization of matter waves in BECs. Localized solutions are
due to a compensation between dispersion and nonlinearity. It
is likely that the quintic nonlinearity helps to attain a regime
of parameters where the nonlinearities balance the dispersion.
Resolving Eq. (1) for χ (t) = 0 with the hyperbolic equation,
the solutions are provided by Eq. (51) for the parameters a1 =
a2 = 0 and ω = −a2

0 + ck2, where a0 is a free parameter. Once
again, due to the reason mentioned above, quintic nonlinearity
also induces the localization of solutions since the cubic form

FIG. 7. (Color online) Evolution of the density of a bright solu-
tion of Eq. (1) obtained using the ordinary auxiliary equation, with
the same parameters as in Fig. 2(a) except M = −0.4, χ (t) = 0.
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FIG. 8. (Color online) Spatiotemporal propagation of the stable
antikink-like soliton of Fig. 1(a). Parameters are the same as in
Fig. 1(a) except γ = 0.

of Eq. (1) only admits plane-wave solutions (due to the fact that
a1 = a2 = 0.) Setting χ (t) = 0 in Eq. (1), the Lenard equation
reduces to the ordinary auxiliary equation since one must set
b6 = 0 [12]. In this case, it is difficult to check the impact
the quintic nonlinearity has on the formation of matter-wave
condensates because the ordinary auxiliary equation has dif-
ferent solutions, which are presented in Appendix F [23]. The
solutions of the cubic equation found by means of the ordinary
auxiliary equation are given by Eq. (43), where n = 1,2,
with a1 = ±√−2cb4k0 and ω = ck2 − ck2

0b2. The solutions
found may describe the evolution of matter-wave condensates
provided that c > 0, which implies that b4 < 0. The inclusion
of the quintic nonlinearity does not bring significant changes,
as can be seen by comparing Figs. 7, 3(a), and 3(b).

IV. NUMERICAL SIMULATIONS

An important issue concerning exact solutions found with
mathematical methods is their stability or robustness in real
physical experiments. The physical relevance of an exact

solution can be investigated by means of comparisons with
the exact numerical solution obtained by a direct integration
of the underlying Eq. (1). Here, the numerical method used
is the split-step Fourier method [36,37]. The spatial grid
is sufficiently large in order to prevent problems with the
boundaries [37]. An initial reasonably small amount of random
perturbation is added in order to unveil any instability that can
be seeded during the time evolution. We restrict ourselves to
some of the cases of exact solutions found above.

Let us start with the antikink soliton solution of (21) for
j = 2. In the case in which γ = 0, the condensate does not
exchange any atoms with a thermal background. Figure 8
proves that the initial condition persists without destruction
though the insertion of a small initial random perturbation.
For a condensate in the regime of a loss of atoms, there is
also very good agreement between the analytical prediction
and numerical results, as depicted by Figs. 9(a)–9(c), for
γ = −0.005. Figure 9(d) shows that the disturbed initial
condition remains stable during the propagation. One can then
consider that such a solution is a robust physical object that
can be observed in a real experiment.

Next, we look at the kinklike soliton solution of Fig. 2(b).
Two cases are considered, namely the feeding regime and the
regime where the condensate does not exchange any atom
with its surroundings. In Fig. 10(a) (γ = 0), the amplitude of
the condensate stays constant during the propagation, while
the amplitude increases with time in the feeding regime, as
shown in Figs. 10(b)–10(d) (γ = 0.005). From Figs. 10(a)
and 10(e) (γ = 0.005), one infers that the derived kinklike
soliton solution of (37) for n = 5, m = 3, and ε = −1 is a
stable solution.

The bright soliton solution of Fig. 3(b) obtained by using
the Lenard equation is dynamically stable and accurately
corroborates its analytical counterpart. Figure 11 displays the
agreement between the numerical and analytical solutions,
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FIG. 9. (Color online) (a)–(c) Comparison between analytical (solid line) and numerical (dotted line) solutions at particular times of the
antikink-like soliton of Fig. 1(a). (d) Spatiotemporal evolution of the stable antikink-like soliton of Fig. 1(a). Parameters are the same as in
Fig. 1(a).
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FIG. 10. (Color online) (a)–(c) Parallel between analytical (solid line) and numerical (dotted line) solutions at different times of the kinklike
soliton of Fig. 2(b). (d) Spatiotemporal propagation of the stable antikink-like soliton. Parameters are the same as in Fig. 2(a).

as well as the long-time robustness of our bright soliton
[Fig. 3(a)].

In the above discussions, we have shown that an analytical
solution for the case χ = 0 and c > 0 is not available for the

physical situation of matter waves in condensates if one uses
the Bernoulli equation as an auxiliary equation. To show how
far the qualitative behavior changes, we display in Fig. 12
the spatiotemporal evolution of the condensate density with
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FIG. 11. (Color online) (a)–(c) Parallel between analytical (solid line) and numerical (dotted line) solutions at different times of the bright
soliton of Fig. 3(b). (d) Spatiotemporal propagation of the stable bright soliton. Parameters are the same as in Fig. 3(b) except γ = 0.005.
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FIG. 12. (Color online) Spatiotemporal evolution of a stable kink
solution for χ = 0, c = 0.5. The solution is that of Fig. 5 with the
same parameters except that of c.

the same parameters as in Fig. 5, except c = 0.5. As one can
see, we obtain a stable kink profile solution, the maximum
density of which is 2.21. The analytical solution with c > 0
for a (vanishingly) small value of χ is an antikink solution
with very large density, confirming the previous analysis.

The dynamical stability of some trivial-phase dark, kink,
and antikink soliton solutions of Eq. (1) has been analyzed
mathematically and numerically in Ref. [10]. Here, the
dynamical stability of more valuable nontrivial phase solutions
is investigated numerically. The stability of the specific
solutions that were tested is well verified. Families of solutions
constructed here may also be applied in other physical media
where Eq. (1) also appears, such as nonlinear fiber optics.

V. CONCLUSION

In this paper, we have studied the GPE with time-dependent
two- and three-body nonlinearities, confined in a harmonic
potential and exchanging atoms with the thermal background.
By applying the F-expansion method, and taking advantage
of solutions of four types of auxiliary equations, i.e., the
Bernoulli equation, the Riccati equation, the Lenard equation,
and the hyperbolic equation, we have constructed 230 explicit
exact solutions of Eq. (1), distributed into 49 families. Among
these solutions, we have hyperbolic function solutions and
trigonometric functions solutions. Furthermore, we have also
found rational function solutions. In comparison with the
work done in Ref. [10], we have found more exact solutions
of Eq. (1) and we analyzed the stability of some nontrivial
phase soliton solutions numerically. The latter nontrivial phase
solitons appear to be dynamically stable. The effects of quintic
nonlinearity on the formation of matter-wave condensates are
also studied in certain cases. It appears that the inclusion of
quintic nonlinearity drastically modifies the shape of solutions
found with the Riccati and hyperbolic auxiliary equations, and
it could lead to localization of solutions. This localization can

come from the fact that the inclusion of quintic nonlinearity
alters the nonlinearities in such a way that they compensate
the dispersion.

When the parameter γ is not small, Eq. (1) formally
describes the evolution of condensates at finite temperatures
where the effects of the thermal cloud become important.
Many models have been developed in order to account for the
effects of the thermal cloud [38]. Indeed, through a recent self-
consistent investigation of the whole thermal cloud part (i.e.,
the noncondensed and the anomalous densities) by means of a
variational time-dependent Hartree-Fock-Bogoliubov theory,
the impact of the anomalous density in three- and two-
dimensional homogeneous Bose gases at finite temperatures
has been analyzed [39,40]. The parameter γ can be related
to the so-called Keldysh self-energy [41,42]. Comparisons
between some finite-temperature BEC models have been
performed in Ref. [42]. The dynamics of dark solitons within a
finite-temperature BEC model with only two-body interatomic
interactions has been reported in Ref. [43]. Nevertheless, many
finite-temperature BEC models rarely consider the effects of
three-body interactions. For instance, a study of the effects
of finite temperature (γ large) on the dynamics of solitons in
matter waves of BECs with two- and three-body interatomic
interactions should be carried out in future works.
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APPENDIX A: SOLUTIONS OF THE GENERAL
BERNOULLI EQUATION

The solutions of the general Bernoulli equation according
to Ref. [13] are found to be as follows:

F11(ξ ) =
(

− a

2b

) 1
2

; (A1)

ξ0 > 0:F12(ξ ) = − a

2b

[
tanh

(
aξ − ln(ξ0)

2

)
+ 1

] 1
2

; (A2)

ξ0 < 0 : F13(ξ ) = − a

2b

[
coth

(
aξ − ln(−ξ0)

2

)
+ 1

] 1
2

.

(A3)

APPENDIX B: SOLUTIONS OF THE RICATTI EQUATION

The solutions of the general Bernoulli equation according to Ref. [20] are found to be as follows:

F21(ξ ) =
{√

−1

M(λ − 1)
tanh[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B1)
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F22(ξ ) =
{√

−1

M(λ − 1)
coth[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B2)

F23(ξ ) =
⎛
⎝

√
−1

M(λ − 1)

⎧⎨
⎩

√
−1

M(λ − 1)
tanh[

√
−M(λ − 1)ξ ] ± ı sech[

√
−M(λ − 1)ξ ]

⎫⎬
⎭

⎞
⎠ 1

λ−1 ; (B3)

F24 =
⎧⎨
⎩

√
−1

M(λ − 1)

⎡
⎣

√
2
√

−1
M(λ−1) tanh[

√−M(λ − 1)ξ ] ± ı sech[
√−M(λ − 1)ξ ]

√
2 − sech[

√−M(λ − 1)ξ ]

⎤
⎦

⎫⎬
⎭

1
λ−1

; (B4)

F25(ξ ) =
{
−

√
−1

M(λ − 1)
tan[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B5)

F26(ξ ) =
{√

−1

M(λ − 1)
cot[

√
−M(λ − 1)ξ ]

} 1
λ−1

; (B6)

F27 =
⎧⎨
⎩−

√
−1

M(λ − 1)

⎡
⎣

√
2
√

−1
M(λ−1) tan[

√−M(λ − 1)ξ ] ± ı sec[
√−M(λ − 1)ξ ]

√
2 + √

5 sec[
√−M(λ − 1)ξ ]

⎤
⎦

⎫⎬
⎭

1
λ−1

; (B7)

F28 =
{

1

−M(λ − 1)ξ + p

} 1
λ−1

. (B8)

p is an arbitrary real constant.

APPENDIX C: SOLUTIONS OF THE LENARD EQUATION

The Lenard equation admits the following solutions [23]:

b2 > 0, b4 < 0, b6 < 0, δ = b2
4 − 4b2b6 > 0:F3,1 =

√
2b2sech2(

√
b2ξ )

2
√

δ − (
√

δ + b4)sech2(
√

b2ξ )
,

F3,2 =
√

2b2csch2(±√
b2ξ )

2
√

δ + (
√

δ − b4)csch2(±√
b2ξ )

; (C1)

b0 = 0, b2 < 0, b4 � 0, b6 < 0,δ > 0:F3,3 =
√

−2b2 sec2(
√−b2ξ )

2
√

δ − (
√

δ − b4) sec2(
√−b2ξ )

,

F3,4 =
√

2b2 csc2(±√−b2ξ )

2
√

δ + (
√

δ + b4) csc2(±√−b2ξ )
; (C2)

b6 = b2
4

4b2
, b2 > 0, b4 < 0:F3,5 =

√
−b2

b4
[1 + tanh(±

√
b2ξ )], F3,6 =

√
−b2

b4
[1 + coth(

√
b2ξ )]; (C3)

b2 > 0:F3,7 =
√

−b2b4sech2(
√

b2ξ )

b2
4 − b2b6[1 + tanh2(

√
b2ξ )]

, F3,8 =
√

b2b4csch2(
√

b2ξ )

b2
4 − b2b6[1 + coth2(

√
b2ξ )]

,

F3,9 = 4

√
b2 exp(2

√
b2ξ )

exp(4
√

b2ξ − 4C4) − 64b2b6
; (C4)

b2 > 0:F3,7 = 4

√
b2 exp(2

√
b2ξ )

exp[(2
√

b2ξ − 4C4)2 − 64b2b6]
; b2 > 0, δ > 0:F3,10 =

√
2b2√

δ cosh(2
√

b2ξ ) − b4

; (C5)

b2 > 0, δ < 0:F3,11 = 2

√
2b2√−δ sinh(2

√
b2ξ ) − b4

; (C6)
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b2 < 0, δ > 0:F3,12 =
√

2b2√
δ sin(2

√−b2ξ ) − b4

, F3,13 =
√

2b2√
δ cos(2

√−b2ξ ) − b4

; (C7)

b2 > 0, b6 > 0; F3,14 =
√

−b2sech2(
√

b2ξ )

b4 + 2
√

b2b6 tanh(
√

b2ξ )
, F3,15 =

√
b2csch2(

√
b2ξ )

b4 + 2
√

b2b6 coth(
√

b2ξ )
; (C8)

b2 < 0, b6 > 0:F3,16 =
√

−b2 sec2(
√−b2ξ )

b4 + 2
√−b2b6 tan(

√−b2ξ )
, F3,17 =

√
−b2 csc2(

√−b2ξ )

b4 + 2
√−b2b6 cot(

√−b2ξ )
; (C9)

b2 > 0, b4 = 0:F18 = 4

√
±b2 exp(2

√
b2ξ )

1 − 64b2b6 exp(4
√

b2ξ )
; (C10)

b2 < 0, b4 > 0:F3,19 =

√√√√√√ −8b2 tanh2
(±√

−b2
3 ξ

)
3b4[3 + tanh2

(±√
−b2

3 ξ
)
]
, F3,20 =

√√√√√√ −8b2 coth2
(±√

−b2
3 ξ

)
3b4[3 + coth2

(±√
−b2

3 ξ
)
]
; (C11)

b2 > 0, b4 < 0:F3,21 =

√√√√√√ 8b2 tan2
( ±

√
b2
3 ξ

)
3b4[3 − tan2

( ±
√

b2
3 ξ

)
]
, F3,22 =

√√√√√√ 8b2 cot2
( ±

√
b2
3 ξ

)
3b4[3 − cot2

( ±
√

b2
3 ξ

)
]
. (C12)

b0 = 0 corresponds to F3,1 − F3,18; b0 = 8b2
2

27b4
and b6 = b2

4
4b2

correspond to F3,19 − F3,22.

APPENDIX D: GENERALIZED JACOBI ELLIPTIC FUNCTION SOLUTIONS OF THE LENARD EQUATION

Some generalized Jacobi elliptic function solutions of the Lenard equation [25–27] are as follows:

b0 = 1 − k2
1 − k2

2 + k2
1k

2
2, b2 =−1 + 2k2

1 + 2k2
2 − 3k2

1k
2
2, b4 =−k2

1 − k2
2 + 3k2

1k
2
2, b6 =−k2

1k
2
2:F23 = c(ξ,k1,k2); (D1)

b0 =−1 + k2
1 − k2

2 + k−2
1 k2

2, b2 = 2 − k2
1 + 2k2

2 − 3k−2
1 k2

2, b4 =−1 − k2
2 + 3k−2

1 k2
2, b6 = −k−2

1 k2
2:F24 = d1(ξ,k1,k2).

(D2)

c(ξ,k1,k2) is the generalized Jacobi elliptic cosine function, and d1(ξ,k1,k2) is the generalized Jacobi elliptic function of
the third kind. The generalized Jacobi elliptic functions can be written in terms of the standard Jacobi elliptic functions as

follows: c(ξ,k1,k2) = k3cn(k3ξ,k4)/
√

1 − k2
2cn

2(k3ξ,k4), d1(ξ,k1,k2) =
√

k2
1 − k2

2dn(k3ξ,k4)/
√

k2
1 − k2

2dn2(k3ξ,k4), with k3 =√
1 − k2

2, k4 =
√

(k2
1 − k2

2)/(1 − k2
2), 0 � k2 � k1 � 1. The generalized Jacobi functions degenerate to traditional functions in

some limiting cases. For instance, if k2 → 0, one can obtain the usual Jacobi elliptic function solutions: c(ξ,k1,0) → cn(ξ,k1),
d1(ξ,k1,0) → dn(ξ,k1). If k1 → 1, k2 → 0, one obtains hyperbolic solutions: c(ξ,1,0), d(ξ,1,0) → sech(ξ ). For k1 → 0, k2 → 0,
the generalized Jacobi elliptic functions degenerate to trigonometric solutions: c(ξ,0,0) → cos(ξ ), d1(ξ,0,0) → 1.

APPENDIX E: SOLUTIONS OF THE HYPERBOLIC EQUATION

Some solutions of the hyperbolic equation [29]:

c2 > 0, c0c2 − c2
2 > 0, c2 − 2c0 + 2

√
c0(c2 − c0) tan{

√
[c0(c2 − c0)]ξ} > 0:

sinh11[F (ξ )] =
{

(c0 − √
c0(c2 − c0) tan{√[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 + 2
√

c0(c2 − c0) tan{√[c0(c2 − c0)]ξ})
} 1

2

; (E1)

c2 > 0, c0c2 − c2
2 < 0, c2 − 2c0 + 2

√
c0(c2 − c0) cot{

√
[c0(c2 − c0)]ξ} > 0:

sinh12[F (ξ )] =
{

(c0 − √
c0(c2 − c0) cot{√[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 + 2
√

c0(c2 − c0) cot{√[c0(c2 − c0)]ξ})
} 1

2

; (E2)
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c2 > 0, c0c2 − c2
0 < 0, c2 − 2c0 − 2

√
c0(c2 − c0) coth{

√
−[c0(c2 − c0)]ξ} > 0:

sinh13[F (ξ )] =
{

(c0 + √−c0(c2 − c0) coth{√−[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 − 2
√−c0(c2 − c0) coth{√−[c0(c2 − c0)]ξ})

} 1
2

; (E3)

c2 < 0, c0c2 − c2
0 < 0, c2 − 2c0 − 2

√
c0(c2 − c0) tanh{

√
−[c0(c2 − c0)]ξ} < 0:

sinh13[F (ξ )] =
{

(c0 + √−c0(c2 − c0) tanh{√−[c0(c2 − c0)]ξ})2

c2(c2 − 2c0 − 2
√−c0(c2 − c0) tanh{√−[c0(c2 − c0)]ξ})

} 1
2

. (E4)

APPENDIX F: SOLUTIONS OF THE ORDINARY AUXILIARY EQUATION

The auxiliary equation admits the following solutions [23]:

b0 = κ2 − 1, b2 = 2 − κ2, b4 = −1:F3,1 = dn(ξ ); (F1)

b0 = 1 − κ2, b2 = 2κ2 − 1, b4 =−κ2:F3,2 = cn(ξ ); (F2)

b0 = −1, b2 = 2 − κ2, b4 = κ2 − 1:F3,3 = 1/dn(ξ ); (F3)

b0 = 1, b2 = 2κ2 − 1, b4 = κ2(−1 + κ2):F3,4 = sn(ξ )/dn(ξ ); (F4)

b0 =−2κ3 + κ4 + κ2, b2 = 6κ − κ2 − 1, b4 =−4/κ:F3,5 = κdn(ξ )cn(ξ )/[1 + κsn2(ξ )]; (F5)

b0 = 2 − 2κ1 − κ2, b2 =−6κ1 − κ2 + 2, b4 = −4κ1:F3,6 = κ2sn(ξ )cn(ξ )/[κ1 + dn2(ξ )]; (F6)

b0 = (κ2 − 1)/4
(
D2

3κ
2 − D2

2

)
, b2 = (κ2 + 1)/2, b4 = (

D2
3κ

2 − D2
2

)
(κ2 − 1)/4:

F3,7 =
√(

D2
2 − D2

3

)/(
D2

2 − D2
3κ

2
)
sn(ξ ); (F7)

b0 = (2κ − κ2 − 1)/D2
2, b2 = 2κ2 + 2, b4 = −D2

2κ
2 − D2

2 − 2D2
2κ

2:F3,8 = [κ2sn2(ξ ) − 1]/D2[κsn2(ξ ) + 1]; (F8)

b0 =−(2κ + κ2 + 1)/D2
2, b2 = 2κ2 + 2, b4 = −D2

2(κ2 + 1 + 2κ):F3,9 = [κsn2(ξ ) + 1]/D2[κsn2(ξ ) − 1]; (F9)

b0 = b4 = (κ2 − 1)/4, b2 = (κ2 + 1)/2:F3,10 = dn(ξ )/[1 ± κsn(ξ )], F3,11 = κsd(ξ ) ± nd(ξ ); (F10)

b0 = −(1 − κ2)/4, b2 = (κ2 + 1)/2, b4 = −1/4:F3,12 = κsd(ξ ) ± nd(ξ ); (F11)

b0 = 0, b2 > 0, b4 < 0:F3,13 =
√

−b2/b4sech(
√

b2ξ ); (F12)

where κ (0 < κ < 1) denotes the modulus of the Jacobi elliptic function, κ1 = √
1 − κ2, and D2, D3 (D2D3 �= 0), and D4 are

arbitrary constants.
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[10] Bäcklund and Darboux Transformations, edited by A. Coely
et al. (American Mathematical Society, Providence, RI, 2001),
and references therein.

[11] H. A. Abdusalam, Int. J. Nonlin. Sci. Numer. Simul. 6, 99 (2005).
[12] Z. Y. Yan, Phys. Lett. A 292, 100 (2001).
[13] M. L. Wang, Phys. Lett. A 213, 279 (1996).
[14] E. Yomba, Chaos Solitons Fractals 21, 75 (2004).
[15] Y. B. Zhou, M. L. Wang, and Y. M. Wang, Phys. Lett. A 308, 31

(2003).
[16] A. Mohamadou, E. Wamba, D. Lissouck, and T. C. Kofane,

Phys. Rev. E 85, 046605 (2012).

042902-13

http://dx.doi.org/10.1103/PhysRevLett.92.140401
http://dx.doi.org/10.1103/PhysRevLett.92.140401
http://dx.doi.org/10.1103/PhysRevLett.92.140401
http://dx.doi.org/10.1103/PhysRevLett.92.140401
http://dx.doi.org/10.1103/PhysRevA.75.031602
http://dx.doi.org/10.1103/PhysRevA.75.031602
http://dx.doi.org/10.1103/PhysRevA.75.031602
http://dx.doi.org/10.1103/PhysRevA.75.031602
http://dx.doi.org/10.1103/PhysRevLett.102.144101
http://dx.doi.org/10.1103/PhysRevLett.102.144101
http://dx.doi.org/10.1103/PhysRevLett.102.144101
http://dx.doi.org/10.1103/PhysRevLett.102.144101
http://dx.doi.org/10.1103/PhysRevA.74.033609
http://dx.doi.org/10.1103/PhysRevA.74.033609
http://dx.doi.org/10.1103/PhysRevA.74.033609
http://dx.doi.org/10.1103/PhysRevA.74.033609
http://dx.doi.org/10.1103/PhysRevA.75.037601
http://dx.doi.org/10.1103/PhysRevA.75.037601
http://dx.doi.org/10.1103/PhysRevA.75.037601
http://dx.doi.org/10.1103/PhysRevA.75.037601
http://dx.doi.org/10.1103/PhysRevA.63.013605
http://dx.doi.org/10.1103/PhysRevA.63.013605
http://dx.doi.org/10.1103/PhysRevA.63.013605
http://dx.doi.org/10.1103/PhysRevA.63.013605
http://dx.doi.org/10.1103/PhysRevA.58.4841
http://dx.doi.org/10.1103/PhysRevA.58.4841
http://dx.doi.org/10.1103/PhysRevA.58.4841
http://dx.doi.org/10.1103/PhysRevA.58.4841
http://dx.doi.org/10.1103/PhysRevA.53.977
http://dx.doi.org/10.1103/PhysRevA.53.977
http://dx.doi.org/10.1103/PhysRevA.53.977
http://dx.doi.org/10.1103/PhysRevA.53.977
http://dx.doi.org/10.1103/PhysRevE.73.056611
http://dx.doi.org/10.1103/PhysRevE.73.056611
http://dx.doi.org/10.1103/PhysRevE.73.056611
http://dx.doi.org/10.1103/PhysRevE.73.056611
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1103/PhysRevLett.85.4502
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1088/0256-307X/26/12/120301
http://dx.doi.org/10.1088/0256-307X/26/12/120301
http://dx.doi.org/10.1088/0256-307X/26/12/120301
http://dx.doi.org/10.1088/0256-307X/26/12/120301
http://dx.doi.org/10.1515/IJNSNS.2005.6.2.99
http://dx.doi.org/10.1515/IJNSNS.2005.6.2.99
http://dx.doi.org/10.1515/IJNSNS.2005.6.2.99
http://dx.doi.org/10.1515/IJNSNS.2005.6.2.99
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1016/S0375-9601(01)00772-1
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.1016/j.chaos.2003.09.028
http://dx.doi.org/10.1016/j.chaos.2003.09.028
http://dx.doi.org/10.1016/j.chaos.2003.09.028
http://dx.doi.org/10.1016/j.chaos.2003.09.028
http://dx.doi.org/10.1016/S0375-9601(02)01775-9
http://dx.doi.org/10.1016/S0375-9601(02)01775-9
http://dx.doi.org/10.1016/S0375-9601(02)01775-9
http://dx.doi.org/10.1016/S0375-9601(02)01775-9
http://dx.doi.org/10.1103/PhysRevE.85.046605
http://dx.doi.org/10.1103/PhysRevE.85.046605
http://dx.doi.org/10.1103/PhysRevE.85.046605
http://dx.doi.org/10.1103/PhysRevE.85.046605


D. BELOBO BELOBO, G. H. BEN-BOLIE, AND T. C. KOFANE PHYSICAL REVIEW E 91, 042902 (2015)

[17] E. Wamba, T. C. Kofane, and A. Mohamadou, Chin. Phys. B 21,
070504 (2012).

[18] D. Belobo Belobo, G. H. Ben-Bolie, and T. C. Kofane, Phys.
Rev. E 89, 042913 (2014).

[19] W. X. Ma and B. Fuchssteiner, Int. J. Nonlin. Mech. 31, 329
(1996).

[20] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles,
L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002).

[21] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
New J. Phys. 5, 73 (2003).

[22] N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602
(2011).

[23] W. van Saarloos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749
(1990); V. Hakim, P. Jacobsen, and Y. Pomeau, Europhys. Lett.
11, 19 (1990); B. A. Malomed and A. A. Nepomnyashchy, Phys.
Rev. A 42, 6009 (1990).

[24] S. Wabnitz, PIERS ONLINE 5, 621 (2009).
[25] G. P. Agrawal and C. Headley III, Phys. Rev. A 46, 1573 (1992).
[26] S. Zhang, Y. N. Sun, J. M. Ba, and L. Dong, J. Adv. Math.

Studies 3, 125 (2010).
[27] A. Mohamadou, E. Wamba, S. Y. Doka, T. B. Ekogo, and T. C.

Kofane, Phys. Rev. A 84, 023602 (2011).
[28] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006);

G. K. Campbell, Ph.D. thesis, MIT, 2006.
[29] L-H. Zhang, Appl. Math. Comput. 208, 144 (2009).
[30] E. A-B. Abdel-Salam, Z. Naturforsch. a 64, 639 (2009).
[31] H. F. Baker, Abelian Functions (Cambridge University Press,

Cambridge, 1897).

[32] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and Physicists (Springer, Berlin, 1954).

[33] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis.
An Introduction to the General Theory of Infinite Processes and
of Analytic Functions (Cambridge University Press, Cambridge,
1996).

[34] J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz,
Phys. Rev. Lett. 86, 1402 (2001); J. C. Bronski, L. D. Carr,
B. Deconinck, J. N. Kutz, and K. Promislow, Phys. Rev. E 63,
036612 (2001); B. Deconinck, B. A. Frigyik, and J. N. Kutz,
Phys. Lett. A 283, 177 (2001).

[35] S. D. Zhu, Chaos Solitons Fractals 34, 1608 (2007).
[36] D. Belobo Belobo, G. H. Ben-Bolie, T. B. Ekogo,

and T. C. Kofane, Int. J. Theor. Phys. 52, 1415
(2013).

[37] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego,
2006), and references therein.

[38] N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008),
and references therein.
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