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Analyzing network reliability using structural motifs
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This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect
of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation
for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about
the effect of a network’s structural properties on diffusion across the network. We illustrate by deriving several
general results relating graph structure to dynamical phenomena.
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I. INTRODUCTION

Characterizing networks in a way that is directly relevant
to diffusion phenomena on the network is important, but
difficult. We argue that the network reliability polynomial
introduced by Shannon and Moore [1] is a characterization
that folds together static measures like degree, modularity,
and measures of centrality into precisely the combinations that
are most relevant to the dynamics [2]. Conversely, knowledge
of reliability can be used to infer structure, in the sense of
network tomography [3]. Furthermore, reliability is a useful
concept for reasoning more generally about the consequences
of structural changes. Colbourn [4] gives a comprehensive
introduction to network reliability, while Youssef [5] provides
a brief derivation of the form of the reliability polynomial.

A network’s reliability is the probability that it continues to
function after sustaining damage to its component edges and/or
vertices. Reliability depends on a parameterized damage model
D(�x), which specifies the probability of damaging a particular
set of components, and a parameterized property P(�α), which
specifies what it means for the network to function. Canonical
problems in diffusion over fixed networks can be cast in
terms of reliability. For example, a damage model D(x)
under which edges (respectively, vertices) fail independently
with probability 1 − x represents bond (respectively, site)
percolation. The choice of P then selects the dynamical
phenomenon of interest. For example, the property “contains
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a connected component including at least a fraction α of
the vertices” is appropriate for studying the existence of a
giant component. For ease of notation, we often express P in
terms of a corresponding reliability rule rP , a binary function
indicating whether property P holds for a given graph. We say
that the rule accepts a graph g if and only if r(g) = 1, that is
g has the property P .

Here we introduce four different reliability rules. The first
three are the most commonly used rules, followed by the last
one, which could be of use to study percolation problems.
To make it easier to understand, we refer to real-world
problems like designing reliable communication networks and
epidemiology which benefit from each of these rules:

(1) Two-Terminal: A graph is accepted if it contains at least
one directed path from a distinguished vertex S (the source)
to another distinguished vertex T (the terminus). Reliability
under this rule is the probability that the specified source
can send a message to the specified terminus in a damaged
network [6].

(2) K-Terminal: A graph is accepted if every vertex is in a
connected component that includes at least one of K specified
vertices. For example, consider a set of K nodes as service
centers. Then reliability under this rule is the probability that
every operational site in a damaged network is connected to at
least one service center [7].

(3) All-Terminal: A graph is accepted if it consists of a
single connected component. The reliability under this rule,
also known as system reliability, is the probability that every
pair of nodes in a damaged network can communicate with
each other, or alternatively, that any vertex in a damaged
network can broadcast to all the other vertices [8].

(4) EAR-α: To understand this rule we discuss the
application of bond percolation for the study of the spread
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of infectious diseases on networks. Such a bond percolation
disease model was explained by Ref. [9]. The probability
that an edge does not fail represents the transmissibility,
i.e., the conditional probability of transmitting infection from
one person to another, conditioned on the source being
infectious and the destination being susceptible. One of the
most important properties of disease dynamics is the attack
rate, defined as the fraction of the population infected in an
outbreak. Most models of infectious disease exhibit a sharp
transition in the attack rate at a critical value of transmissibility.
Indeed, this is a percolation phase transition. Using reliability
we can find the relationship between critical transmissibility
and all structural information of a network contained in its
edge list. In this case the reliability is the probability that the
expected attack rate for an outbreak seeded in a single person
chosen uniformly at random from the population is at least α.
Hence, we call this rule EAR-α.

These rules are all coherent. That is, any graph formed
by adding an edge to an accepted graph is also accepted.
In a companion to this paper [5], we have shown how the
concept of network reliability together with an efficient,
scalable estimation scheme can shed light on complicated
dynamical trade-offs between local structural properties such
as assortativity-by-degree and the number of triangles. Here
we introduce a different representation of the reliability
polynomial that highlights the role certain network structures
play in dynamical phenomena. We show how coefficients
of the reliability polynomial can be interpreted in terms of
topological motifs in the network

and their overlaps. Conversely, we illustrate how knowledge
of these motifs and their overlaps can be used to infer important
constraints on the dynamics of diffusion processes on the
network. The representation in Ref. [5] is well suited for
computational analysis of networks with up to 108 edges
but is analytically tractable only for small networks; the
representation presented in the current work is analytically
tractable but computationally feasible only for small networks
because of its combinatorial complexity. Thus the results of
this paper exactly complement those of the previous paper.

II. RELIABILITY POLYNOMIALS

We use the common notation of G(V,E) for a graph with V

vertices and E edges. The graph may be directed or undirected,
and it is possible to have multiple edges between two
vertices.

The vertices and edges may be labeled. The general case
of directed edges and labeled vertices and edges is powerful
enough to represent extremely complex networks such as
interdependent infrastructure networks. Here, without loss of
generality, we restrict ourselves to homogeneous networks
represented as undirected, unlabeled graphs.

A. Definition and a common representation

The reliability R(G,P(�α),D(�x)) of a network G with
respect to the property P under damage model D is the
probability that a subgraph of G chosen with probability given
by D has property P , and the binary rule rP examines whether

subgraph has property P or not, if it has then

rP(�α)(g) = 1,

otherwise

rP(�α)(g) = 0;

i.e., reliability can be interpreted as the expected value of the
reliability rule operator over different subgraphs of G. We will
explicitly include the dependence on the network G and the
property P in notation such as R(G,P(�α),D(�x)) only when
we wish to distinguish the reliability of two different graphs
or two different properties. Moreover, we will not include the
damage model itself, but only the values of its parameters �x.
Finally, for a homogeneous network in which all edges (or all
vertices) fail with the same probability, �x is a scalar, x. Thus
we can write the reliability simply as R(x):

R(x) ≡
∑
g⊆G

rP(�α)(g)pD(�x)(g). (1)

For the independent-edge damage model, in which the prob-
ability of selecting a subgraph g ⊆ G depends only on the
number of its edges, |g| = k, and is xk(1 − x)E−k , we have

R(x) =
∑
g⊆G

rP(�α)(g)xk(1 − x)E−k. (2)

We can rewrite Eq. (2) in terms of a sum over subgraphs of
different sizes, introduced by Alon et al. [10] as motifs:

R(x) =
E∑

k=0

Rkx
k(1 − x)E−k. (3)

Rk is the number of subgraphs of G with exactly k edges
that are accepted by the rule. For computational convenience,
we often prefer to work with normalized coefficients:

Pk ≡ Rk

/(
E

k

)
. (4)

Pk is the fraction of subgraphs of kG with exactly k edges that
are accepted by the rule; Pk � Pk+1 for a coherent rule. Pk can
be estimated efficiently via Monte Carlo simulation [5].

Substituting Rk coefficients in Eq. (2) with Pks from Eq. (4),
we can see the resemblance to the binomial distribution; since
Pk � 1 it is clear that

R(x) =
E∑

k=0

(
E

k

)
Pkx

k(1 − x)E−k

�
E∑

k=0

(
E

k

)
xk(1 − x)E−k � 1. (5)

Therefore, R(x) : [0,1] → [0,1] is a continuous polynomial
with only a finite, but possibly large, number of coefficients
Rk,k ∈ {0, . . . ,E}. That is, the reliability can be thought of as
a vector in an E + 1-dimensional vector space, and the Rk as
the components of the vector in the basis xk(1 − x)E−k . There
are, of course, many other bases we could choose for this
space. An orthogonal basis, such as the first E + 1 Legendre
polynomials, might have useful estimation properties. Here
we use another nonorthogonal basis, the functions xk , i.e.,
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the Taylor series expansion, because of its simplicity and
its attractive interpretation. There is a unique mapping from
coefficients in one basis to those in the other, which can be
derived by expanding the factor (1 − x)E−k in Eq. (3):

R(x) =
E∑

k=0

Rkx
k

E−k∑
m=0

(
E − k

m

)
(−1)mxm

=
E∑

k=0

Rk

E∑
l=k

(
E − k

l − k

)
(−1)l−kxl

=
E∑

l=0

(−1)lxl

l∑
k=0

(−1)kRk

(
E − k

l − k

)

=
E∑

l=0

Nlx
l, (6)

where

Nl ≡ (−1)l
l∑

k=0

(−1)k
(

E − k

l − k

)
Rk. (7)

The Nl coefficients are signed integers. In Sec. II C we will
explain how we can interpret these coefficients.

B. Structural motifs

We can express the reliability polynomial in terms of over-
laps among certain distinguished subgraphs. These subgraphs
are the P-minimal subgraphs of G. A graph g is P-minimal if
and only if:

(1) g has property P and
(2) There is no proper subgraph g′ ⊂ g that has propertyP .
Obviously whether a graph is P-minimal or not depends on

the property P , or equivalently here, the reliability rule. For
example, P-minimal graphs under a Two-Terminal rule are
paths from S to T with no extraneous edges, i.e., no loops or
dead ends; under the All-Terminal rule, they are spanning trees.
In general, the rule selects a distinctive topological pattern
(e.g., path, spanning tree) that may occur many times in a
given graph; i.e., if we consider all subgraphs of a distinctive
pattern to be the motifs introduced by Alon et al. [10], then
reliability rule selects a subset of these motifs that has the
property P . We refer to subsets generated by a particular rule
as structural motifs because, as we will demonstrate, they
are the structural elements of the network that completely
determine the occurrence of dynamical phenomena of interest,
as specified by P . One advantage of using this representation
is that the contribution of the structural motifs to the reliability
is known exactly for all P and all D, as is shown below.

To describe this, we apply two terminal reliability rule with
source and terminus nodes as its parameters on a small toy
network, depicted in Fig. 1. For this rule structural motifs
are simple paths (including but not limited to shortest paths)
connecting these two nodes. The structural motifs and their
overlap can be seen in Fig. 1.

In another example, we consider the two-terminal reliability
rule on a two-dimensional grid with four nodes in each
dimension. For a given source node we look at two different
terminus nodes to illustrate the dependence of structural motifs

S T1 3

4

S T3

4

1

k=3

k=3

k=3

k=5

k=5

k=5

k=7

k=6

k=6

k=6

 k=7 (x4)

k=7

l=1 l=2 l=3

l=4

FIG. 1. Example calculation of two-terminal reliability in the toy
network in the left panel. The second panel from the left shows the
four motifs; the third shows all unions of two motifs. There are

(4
3

) = 4
unions of three motifs, all of which give the entire graph as shown on
the top of the right panel; there is one union of all motifs, which is
also the entire graph. The number next to each union of motifs gives
its size.

on parameters of the reliability rule. Several structural motifs
of different sizes for each set of selected sources and termini
are shown in Fig. 2.

C. Contribution of structural motifs to R(x)

The sizes of each motif and their unions completely
determine a network’s reliability. We demonstrate this using
an Inclusion-Exclusion argument motivated by a series of
straightforward examples. A detailed proof and more examples
are provided in Appendices A and B.

S

T1

S

T2

FIG. 2. Structural motif for the two-terminal reliability rule are
shown for same source node S and two different target nodes T1 and
T2. We can see that structural motifs of the same network varies with
the parameters of property P . In the left grid three structural motifs
of sizes 6 are shown: note that black dashed path and gray line have
all but two edges in common. For the grid on the right, black normal,
black dashed, and gray paths represent motifs of sizes 3, 5, and 9,
respectively. The last two have two edges in common.
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1. Example 1: A single structural motif

Suppose the network G contains only one structural motif
and that it is a set of k0 edges. For example, for Two-Terminal
reliability, suppose that there is exactly one path between S and
T , and that it has length k0. Then the motif will occur exactly
once among all subgraphs of size k0. For k > k0, we must “use
up” k0 edges to build the structural motif. This leaves E − k0

other edges from which, because the rule is assumed to be
coherent, any set of k − k0 produces an acceptable subgraph
of size k. Hence for this case

Rk =
{

0 k < k0(
E−k0

k−k0

)
k � k0

. (8)

2. Example 4: N disjoint structural motifs

Suppose the graph has exactly N structural motifs that all
have k0 edges, and that the N edge sets are disjoint. Arguing
as above, with the convention that (ab) = 0∀b < 0, gives

Rk =
N∑

i=1

(−1)i+1

(
N

i

)(
E − ik0

k − ik0

)
. (9)

3. Example 5: Two overlapping structural motifs

Suppose the graph has exactly two structural motifs, that
both have k0 edges, and that the number of edges in the union
of the two is k0 + �. Arguing as in Example 1, we get a similar
result, with 2k0 replaced by k0 + �:

Rk =

⎧⎪⎨
⎪⎩

0 k < k0

2
(
E−k0

k−k0

)
k0 � k < k0 + �

2
(
E−k0

k−k0

) − (
E−k0−�

k−k0−�

)
k0 + � � k

. (10)

4. The general case

Suppose the graph has exactly N structural motifs. As
above, its reliability polynomial will be determined by the size
of each structural motif and the overlaps among them. Define
N

(l)
k as the number of combinations of l structural motifs whose

union contains exactly k edges. Also, define

Nk ≡
N∑

l=1

(−1)l+1N
(l)
k . (11)

Then arguing as above gives

Rk =
k∑

k′=0

Nk′

(
E − k′

k − k′

)
. (12)

In Appendix C, we present constraints on Nk . Using
Eqs. (11) and (12) we can determine the reliability coefficients
for the two-terminal reliability rule, by analyzing the four
motifs as shown in Fig. 1. Results of this computation are
shown in Table I.

For a two-dimensional grid, we study only the left case of
two cases in Fig. 2. For two-terminal reliability from S to T

there exist 184 structural motifs of sizes 6 to 14; thus it is
not trivial to draw all structural motifs and their overlap. We
provide computation for Nk and Rk for k � 10 in Table II.

TABLE I. By inspection, values for N
(l)
k and values of Nk and Rk

as given by Eqs. (11) and (12).

l k N
(l)
k Nk Rk

1 3 3 3 3
4 0 12

1 5 1
2 5 2 −1 17
2 6 3 −3 7
2 7 1
3 7 4
4 7 1 2 1

D. Reliability in terms of structural motifs

Given the rather complicated relationship between Rk

and Nk in Eq. (12), it is somewhat surprising that R(x)
can be expressed very simply in terms of Nk . Consider
the contribution of a single structural motif of size k0 to
R(x). Using Eq. (12), Rk = (E − k0

k − k0
). This set of coefficients

determines R(x):

R(x) ≡
E∑

k=0

Rkx
k(1 − x)E−k

=
E∑

k=0

(
E − k0

k − k0

)
xk(1 − x)E−k

= xk0

E∑
k=k0

(
E − k0

k − k0

)
xk−k0 (1 − x)E−k0−(k−k0)

= xk0

E−k0∑
k′=0

(
E − k0

k′

)
xk′

(1 − x)E−k0−k′

= xk0 . (13)

Since the effect of each structural motif, and each motif
overlap, is additive on Rk , we can reduce the general case
to sums like the above, so we immediately find

R(x) =
E∑

k=0

Nkx
k. (14)

Thus Nk defined in Eq. (11) are indeed the same coefficients
as those introduced in Eq. (7).

TABLE II. Number of structural motifs and their overlap for the
two-terminal reliability rule on the left grid in Fig. 2.

k N 1
k N 2

k N 3
k N 4

k Rk

5 0 0 0 0 0
6 20 0 0 20 20
7 0 0 0 0 360
8 36 −30 0 6 3066
9 0 −84 0 −84 16 332
10 48 −146 144 10 60 670
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E. Alternative damage models

The reasoning above is all done in the context of the usual
edge damage model introduced by Moore and Shannon. This
damage model is appropriate for studying bond percolation.
An entirely analogous set of arguments applies to a vertex
damage model, in which a set of k vertices is chosen
uniformly at random, producing a unique subgraph containing
all the edges whose endpoints are both in the selected set
of vertices. This damage model is appropriate for studying
site percolation. Coefficients analogous to Pk and Nk can be
derived (substituting the number of vertices V for the number
of edges E wherever it appears), and structural motifs can be
defined in terms of vertex removal instead of edge removal. The
physical interpretation of Nk in terms of these structural motifs
is the same. It is likely that there are many other damage models
with these properties. Here we consider only the edge damage
model, because it serves to illustrate the role of structural
motifs and its analysis is simpler.

III. ESTIMATES AND BOUNDS ON RELIABILITY
FOR SPECIAL CASES

In this section we illustrate how the study of structural
motifs and their overlaps helps understand network reliability
under several different rules.

A. Exact expressions

If the network contains m structural motifs that are disjoint,
and they all have the same size k0, the only nonzero coefficients
are N

(l)
lk0

= (−1)l+1(ml ), yielding

R(x) = 1 − (1 − xk0 )m. (15)

If the network contains m structural motifs, every pair overlaps
in all but one edge, and they all have the same size k0, the only
nonzero coefficients are N

(l)
k0+l−1 = (−1)l+1(ml ), yielding

R(x) = xk0−1[1 − (1 − x)m]. (16)

We can use the identities given in Eqs. (C4) and (C5) to
evaluate Nk for the following case: there are f structural
motifs, they all have the same size k0, and all unions of
structural motifs have one of only one or two other sizes.
Although this case is somewhat artificial, note that the first
two conditions are satisfied for any network under the AR-α
rule. It seems likely that the last restriction can be relaxed if
additional combinatorial identities are brought to bear on the
problem. First, suppose that the only nonzero coefficients Nk

are for k0 and k1. Then we must have the following:

Nk0 = m,

m + Nk1 = 1, (17)

m + |Nk1 | = 2m − 1.

These simultaneous equations admit a solution only for m = 2,
for which Nk1 = 1 − m, and hence

R(x) = xk0 [2 − xk1−k0 ]. (18)

Note that k1 is not determined by this argument; however, it is
easy to see that k0 + 1 � k1 � mk0. Now, consider the above

case, but with three nonzero coefficients instead of two. We
have

Nk0 = m,

m + Nk1 + Nk2 = 1, (19)

m + |Nk1 | + |Nk2 | = 2m − 1.

If we look for solutions with Nk2 � 1, we must have m � 3.
Then the solution is

Nk1 = 1 − 2m−1, Nk2 = 2m−1 − m. (20)

This gives

R(x) = m(xk0 − xk2 ) + xk1 + 2m−1(xk2 − xk1 ). (21)

B. Perturbative estimates of reliability

Since R(x) is defined for x in the interval [0,1], it is tempting
to think that the lowest-order term in x that appears in the
reliability polynomial, i.e., Nkminx

kmin , is a good estimate of its
value. Note that Nkmin = N

(1)
kmin

, since any union of two or more
structural motifs must contain more than kmin edges. Moreover
Nkmin = Rkmin . Unfortunately, because the coefficients Nk may
grow combinatorially and may be either positive or negative,
the leading order coefficient may not be sufficient to determine
behavior of the reliability polynomial far from zero. For
example, if there are very few different structural motifs with
kmin edges (specifically, if Nkmin 
 N1+kminx), the contribution
of Nkmin may be overwhelmed by larger structural motifs. Nev-
ertheless, evaluating the lowest-order term provides insight
into the relationship between graph structure and reliability:

All-Terminal reliability: Recall that the structural motifs for
the All-Terminal rule are spanning trees. Each such tree has
exactly V − 1 edges. NV −1 is thus the number of spanning
trees, so the lowest-order term in the reliability polynomial is
NV −1x

V −1. The (Kirchhoff) Matrix Tree Theorem [11] gives
NV −1 in terms of a cofactor of the graph Laplacian matrix.

AR-α reliability: The structural motifs for the AR-α
reliability rule are trees that contain at least αV vertices.
Letting t be the number of such trees, the leading order term in
R(x) is txαV −1. Higher-order terms depend on how the trees
overlap. We can use this to establish a tight lower bound on
R(x) for one particular choice of α.

The lower bound is generated by graphs that minimize the
coefficient of the next higher order term xαV . This in turn
requires that as many as possible of the motifs overlap in all
but one edge. For example, beginning with a single tree, we
can change one edge to any other edge that is not already in
the tree and does not create a loop in the tree. There are at
most E − (αV − 1) ways to do this, depending on the graph.
Thus there is a graph with t trees, each of which contains α

vertices, each of which differs from any other by exactly two
edges, if and only if t � E + 2 − αV . In this case, R(x) =
xαV −2(1 − x)t . As far as we know, this particular tree structure
occurs only for αV = E − 1. The graph in which it occurs has
a central vertex of degree t connected to t linear chains of
length E/t (thus t must divide E evenly). The trees contain
every edge except the last edge on one of the chains.

EAR-α reliability: Satisfying the EAR-α rule demands
that the sum of squared component sizes equals or exceeds
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αV 2. What are the structural motifs for this rule? Consider a
partition � of V , i.e., a set of positive integers πi whose sum
is V . The number of elements in � varies from one partition to
another. Then πi could represent the number of vertices in the
ith connected component. Furthermore, if each component is
a tree, the number of edges in the ith component is just πi − 1,
hence the number of edges in the entire subgraph is

∑
i(πi −

1) = V − C, where C = |�| is the number of components.
There are many ways to assign vertices to components, even
for a single �. Each will generate a different structural motif,
as long as the reliability condition

∑
i π

2
i � αV 2 is satisfied.

The smallest number of edges results from a subgraph with the
largest number of components. The result is that kmin, the size
of the smallest structural motif, is the size of a subgraph with
all isolated vertices except for one large tree with v vertices.
kmin can be determined by the constraint∑

i

π2
i = v2 + (V − v) � αV 2 (22)

or

v >
√

α

[
1 − 1

αV

(
1 − 1

4V

)]−1/2

V. (23)

Thus kmin = V − (V − v + 1) ≈ √
αV − 1, and Nkmin is the

number of different trees that can be made with kmin edges.

IV. STRUCTURAL MOTIFS TO FIND EDGE IMPORTANCE

In Sec. II B we demonstrated how structural motifs for two-
dimensional grid depend on parameters of the two-terminal
reliability rule, i.e., S and T . Here we explain how this fact can
effect edge importance based on reliability rules. We computed
reliability for two-terminal reliability rule for two cases on
two-dimensional grids in Fig. 2. It is clear that a grid is more
reliable for the reliability rule parameters in the right, i.e., it
is more probable to have a path from S to T2 than to T1. This
can be seen in Fig. 3. Next we remove two out of three edges
on the shortest path connecting S and T2, and we compute
the reliability for both cases again. We see that reliability
of the grid decreases more for the left case as expected. This

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

R
(x

)

FIG. 3. Reliability polynomial for two-terminal reliability black
curve represents reliability for S − T1, gray curve for S − T2, and
dashed curves the reliability polynomial after removing two edges.

S T1 2

3 6

4

5

FIG. 4. Toy graph illustrating the possible x dependence of an
edge’s importance.

result suggests to employ structural motifs for finding the most
important edges in a way that reflects the choices of parameters
for the reliability rule.

The reliability polynomials of different graphs may inter-
sect multiple times [12]. This means that, for different values
of the damage model’s parameters �x, the relative reliability of
the two graphs switches signs. If both graphs are subgraphs
of the network of interest with the same number of elements
removed, then clearly the Birnbaum importance ranking of
the elements is different for different parameter values. This
is perhaps surprising, but it is an important feature of this
approach compared to, for example, a graph statistic that is
independent of �x.

For example, consider the graph in Fig. 4 under S − T

reliability for the indicated S and T . First, we write the
reliability for the graph by inspection from its structural
motifs. There are three motifs, A ≡ S12T , B ≡ S354T , and
C ≡ S364T . The first has size 3; the second and third, size
4. The second and third overlap in two edges but are disjoint
from the first. There are no edges that do not appear in any
structural motif. Taken together, this gives

R(x) = x3 + 2x4 − x6 − 2x7 + x9. (24)

[Note that R(x) satisfies the constraints
∑

Nk = 1 and∑ |Nk| = 2m − 1, where m = 3 is the number of structural
motifs.] By symmetry, we expect the three edges S1, 12, and
2T to be equally important, and also the pair S3 and 4T , and fi-
nally the four edges 35, 36, 54, and 64. Which edge is most im-
portant? A moment’s thought shows that any edge from the last
four is less important than any other edge. The real choice is be-
tween S1, which is part of a single structural motif of size 3, and
S3, which is part of two structural motifs of size 4. We consider
the reliability R1(x) of the graph after removing edge S1, leav-
ing motifs B and C, and the reliability R2(x) after removing
edge S3, leaving only motif A. Again by inspection, these are

R1(x) = 2x4 − x6, (25)

R2(x) = x3. (26)

By definition, the importance of the edges is IS1(x) ≡
R(x) − R1(x) and IS2(x) ≡ R(x) − R2(x). Hence, the rank of
the edges switches if the polynomial IS1(x) − IS2(x) =

042814-6
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R2(x) − R1(x) changes sign. In fact, this polynomial has a
zero in the interval [0,1]. That is,

R2(x) − R1(x)

= x3(1 − 2x + x3)

{
> 0 for x < 0.618...

< 0 for 0.618... < x
. (27)

V. APPLYING RELIABILITY CONCEPTS TO OTHER
NETWORK ANALYSIS PROBLEMS

The representation of the reliability polynomial in terms of
structural motifs provides a convenient organizing principle
for thinking about general network analysis problems. As one
example, consider the tradeoffs between two systems: one
with only a few completely redundant reliable subsystems and
another with more, but only partially redundant, ones. To study
this we consider two extreme cases of overlap. One contains
r1 structural motifs of size k1, any two of which differ by only
two edges. They are thus built using a total of 2r1 + k1 − 2
edges. The reliability of this combination can be written as

R1(x) =
r1∑

i=1

(−1)i+1

(
r1

i

)
xk1+r1(i−1). (28)

Using the same number of edges we can construct r2 =
2r1+k1−2

k2
motifs of size k2 that are completely disjoint. The

reliability of this combination of motifs is

R2(x) =
r2∑

i=1

(−1)i+1

(
r2

i

)
xik2 . (29)

Knowing the reliability for these two cases, we are able to
compare the reliability of networks with different configura-
tions of structural motifs of different sizes. As an example we
compared the reliability of a network composed of 20 motifs
with 18 edges that are different from one another only in two
edges with a network of four completely disjoint motifs of size
6. Figure 5 shows the reliability curves for these two networks,
and their difference as a function of x. The analysis shows that
the network of disjoint motifs is more reliable for smaller
values of x, while the opposite is true for larger x values.

This approach could also be used to estimate the number
of spanning trees in a graph. A spanning tree is a subgraph of
the network that includes all vertices [13–15]; the number of

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

R
(x

)

R1(x)
R2(x)
R1(x)−R2(x)

FIG. 5. Comparing the reliability of a network with many
overlapping structural motifs with that of a network with a few disjoint
motifs.

spanning trees can be estimated by evaluating the All-Terminal
reliability. Another problem that can be addressed using this
method is to identify chordless loops of various sizes in a
network. A chordless loop is a sequence of vertices with
more than three vertices if for all i = 1, . . . ,k there is exactly
one link from vertex vi to vi+1 and there is no other link
between any two of the vertices in this sequence [16]. Recent
studies on ecological networks have discovered the existence
of many chordless cycles in these networks [17]; therefore
enumeration of all chordless cycles can make a significant
impact on understanding the structure of these networks. An
appropriately designed reliability rule can be used to count the
number of chordless cycles of different sizes.

VI. CONCLUSION AND FUTURE WORK

In this paper we focused on the representation of the
reliability polynomial in terms of structural motifs. We have
shown that network reliability is simply related to the number
of edges in unions of structural motifs Nk (14). Whereas
the coefficients Pk of xk(1 − x)E−k are easy to estimate
numerically but hard to work with analytically, the coefficients
Nk of xk are hard to estimate numerically but easy to
work with analytically. To demonstrate this, we have derived
closed-form expressions for Nk for several types of graphs. The
resulting expressions were confirmed by numerical estimation.
We anticipate that this approach can lead us to a measure
of edge centrality that relates the importance of an edge
to the frequency of its appearance in different structural
motifs [18]. While we can use numerical simulation to study
specific large, realistic networks, including epidemiology on
social networks [19–21], we can use the notion of structural
motifs to understand the differences between networks that
are discovered in simulation. We expect this approach to be
particularly useful in studying the stability and robustness of
interconnected networks [22–27].
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APPENDIX A: INCLUSION-EXCLUSION PROOF
OF RELIABILITY POLYNOMIAL

We begin by rewriting the expansion

R(x) =
E∑

k=0

Rk xk (1 − x)E−k (A1)
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as the following:

R(x) =
∑
A⊆E

r(A) xA (1 − x)E−A ; (A2)

here xA is short for x|A| where |A| refers to size of the
subset A ⊆ E that characterizes the edge-induced subgraph
A. (1 − x)E−A, then, has a similar interpretation. We note
that (A1) is equivalent to (A2) simply because Rk is counting
the number of edge-induced subgraphs A ⊆ E of size k that
satisfy the reliability rule r; for these subgraphs r(A) = 1 and
the equivalence follows; for those that do not, r(A) = 0.

If the reliability rule is coherent, there is a unique family
of minimal subgraphs A ⊆ E such that for every subgraph A′
that is a proper subgraph of either one of them, r(A′) = 0. This
means that every subgraph that is accepted by the reliability
rule r , contains at least one of these minimal subgraphs
(entirely). Therefore, we can see that every reliability rule
is in one-to-one correspondence with a certain family of
(edge-induced) subgraphs A of E. As a result, we can now
define the reliability rule in terms of the very family of minimal
subgraphs that were obtained from this rule,

r(B) =
{

1; ∃ A ∈ A : A ⊆ B

0; otherwise ; (A3)

here A represents this family.
We now show that R(x) stands for the probability that at

least one of these minimal subgraphs is operating in the sense
that all of its corresponding edges function. Put differently, we
show that

R(x)
?= Pr

( ∨
i

{Ai operates}
)

= Pr

( ∨
i

Ai

)
, (A4)

where Ai are different members of the above family of minimal
subgraphs indexed by i; the second line is understood as a
shorthand notation for the first.

Let 〈A1 ∨ A2〉 stand for the family of all subgraphs that
contain all of the edges in at least one of the subgraphs A1

or A2. Also let 〈A1 ∨ A2〉 denote the family of all subgraphs
that lack at least one edge from each of the subgraphs A1 and
A2. Next, we define 〈A1 ∧ A2〉 as the family of all subgraphs
that contain all of the edges in both A1 and A2. Finally, let
〈A1 ∧ A2〉 represent the family of all subgraphs that contain
all of the edges in subgraph A1 and lack at least one edge
from A2. We also utilize unambiguous generalizations of these
notations at a later inductive step.

Now suppose that the reliability rule r is such that only one
minimal subgraph, namely, A1, is accepted, and, as a result,
R(x) becomes

R(x) =
∑

A1⊆A⊆E

xA (1 − x)E−A

=
∑

A∈〈A1〉
xA (1 − x)E−A

= xA1 (A5)

= Pr (A1 operates), (A6)

where Eq. (A5) can be easily obtained by induction on the
edges in subgraph E − A1. We can take (A6) as the base case
for an inductive proof of the equivalence of expressions (A2)
and (A4) and proceed to the induction step. However, to break
in the notation we introduced above, we also prove the case
of two minimal subgraphs, and then proceed to the inductive
step. Therefore, suppose that we have two minimal subgraphs
A1 and A2 and we want to prove the following:

Pr

⎛
⎝ ∨

i�2

Ai

⎞
⎠ ?=

∑
A∈〈A1∨A2〉

xA (1 − x)E−A. (A7)

The right-hand side of this equality is precisely the expansion
of R(x) for a reliability rule that is in one-to-one correspon-
dence with the family of two minimal subgraphs A1 and A2;
therefore our claim is proved for this case if the above equality
holds. We start from the left-hand side and note that

Pr

⎛
⎝ ∨

i�2

Ai

⎞
⎠ = Pr (A1) + Pr (A2) − Pr (A1 ∧ A2). (A8)

Now, we make the following observations:

Pr (A1) =
∑

A∈〈A1〉
xA (1 − x)E−A

=
⎛
⎝ ∑

A∈〈A1∧A2〉
+

∑
A∈〈A1∧A2〉

⎞
⎠ xA (1 − x)E−A, (A9)

Pr (A1 ∧ A2) =
∑

A∈〈A1∧A2〉
xA (1 − x)E−A. (A10)

From these expansions, it immediately follows for (A8) that

Pr

⎛
⎝ ∨

i�2

Ai

⎞
⎠

=
⎛
⎝ ∑

A∈〈A1∧A2〉
+

∑
A∈〈A1∧A2〉

+
∑

A∈〈A1∧A2〉

⎞
⎠ xA (1 − x)E−A

=
∑

A∈〈A1∨A2〉
xA (1 − x)E−A. (A11)

This proves the base case of a family with only two minimal
subgraphs A1 and A2. The inductive step is quite similar,

Pr

( ∨
i�n

Ai

)

= Pr

(∨
i<n

Ai

)
+ Pr (An) − Pr

((∨
i<n

Ai

)
∧ An

)

=
⎛
⎝ ∑

A∈〈∨i<n Ai ∧ An〉
+

∑
A∈〈∨i<n Ai ∧ An〉

(A12)

+
∑

A∈〈∨i<n Ai ∧An〉

⎞
⎠ xA (1 − x)E−A (A13)
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=
∑

A∈〈∨i<n Ai 〉
xA (1 − x)E−A (A14)

=
∑
A⊆E

r(A) xA (1 − x)E−A,

where r is the reliability rule that corresponds to the family of
minimal subgraphs {A1, . . . ,An}. In (A13), 〈∨i<n Ai ∧ An〉
represents the family of all subgraphs that contain all of the
edges in at least one of the subgraphs A1 through An−1 and lack
at least one edge from the subgraph An. Next, 〈∨i<n Ai ∧ An〉
stands for the family of all subgraphs that contain all of the
edges in subgraph An and lack at least one edge from each
and every subgraph A1 through An−1. Last, 〈∨i<n Ai ∧ An 〉
refers to the family of all subgraphs that contain all of the
edges in both An and at least on of the subgraphs A1 through
An−1. Equation (A14), then, follows from the fact that the
combination of these three possibilities is precisely what
〈∨i<n Ai〉 stands for.

So far, we have established that

R(x) = Pr

( ∨
i

Ai

)
, (A15)

and now we proceed to prove a final equivalent expansion,
namely,

R(x)
?=

E∑
k=0

Nk xk, (A16)

Nk ≡
E∑

l=1

(−1)l+1 N
(l)
k , (A17)

where N
(l)
k denotes the number of combinations of l minimal

subgraphs whose union contains exactly k edges. To show that
the above holds, we appeal to equation (A15) which can be
now, by account of inclusion-exclusion principle, expanded as

Pr

⎛
⎝ ∨

1�i�n

Ai

⎞
⎠

=
n∑

i=1

(−1)i+1
∑

1�j1<···<ji�n

Pr
(
Aj1 ∧ · · · ∧ Aji

)

=
n∑

i=1

(−1)i+1
∑

1�j1<···<ji�n

xAj1 ∪···∪Aji ; (A18)

this clearly coincides with the expansion (A16).

APPENDIX B: ADDITIONAL EXAMPLES OF
CONTRIBUTION OF STRUCTURAL MOTIFS TO R(x)

1. Example 2: Two disjoint structural motifs

Suppose the network G contains exactly two structural
motifs, that both have k0 edges, and that no edge is in both.
Arguing as in Example 1, for k < 2k0, Rk is simply twice
what it is for the case of a single structural motif. But when
k = 2k0, the subgraph that consists of the union of the two
structural motifs will have been counted twice instead of once.

Similarly, for k > 2k0, the number of graphs overcounted is
given by assigning 2k0 of the edges and choosing the remaining
k − 2k0 in the subgraph from among the remaining E − 2k0

in the graph G. Hence,

Rk =

⎧⎪⎪⎨
⎪⎪⎩

0 k < k0

2
(
E − k0
k − k0

)
k0 � k < 2k0

2
(
E − k0
k − k0

) − (
E − 2k0
k − 2k0

)
2k0 � k

. (B1)

2. Example 3: Three disjoint structural motifs

Suppose the network contains exactly three structural
motifs, that all three have k0 edges, and that the three edge sets
are disjoint. Again, when k0 � k < 2k0, each motif generates
(E − k0
k − k0

) different reliable subgraphs, and for 2k0 = k, three of
these subgraphs are counted twice. But in this case, when k

reaches 3k0, the subgraph consisting of all three motifs is first
included three times (once for each motif), then excluded three
times (once for each pair of motifs) with the net result that it
must be included again:

Rk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 k < k0

3
(
E − k0
k − k0

)
k0 � k < 2k0

3
(
E − k0
k − k0

) − 3
(
E − 2k0
k − 2k0

)
2k0 � k < 3k0

3
(
E − k0
k − k0

) − 3
(
E − 2k0
k − 2k0

) + (
E − 3k0
k − 3k0

)
3k0 � k

.

(B2)

APPENDIX C: CONSTRAINTS ON COEFFICIENTS

Several constraints apply to Nk . A union of l motifs can
have size k only if all possible unions of l − 1 of the same
motifs have size less than k. This leads to a set of constraints
of the form

N
(2)
k �

(∑k
k′=0 N

(1)
k′

2

)
. (C1)

In addition, a union of l motifs can have size k only if all
possible unions of l − 1 and l − 2 of the same motifs have size
less than k. For instance, N

(3)
k has the following upper bound:

N
(3)
k �

(
k′=k∑
k′=0

N
(1)
k′

) (
k′=k∑
k′=0

N
(2)
k′

)
+

(∑k′=k
k′=0 N

(1)
k′

3

)
. (C2)

Overall, since all unions of l structural motifs must be
included in G, we have

E∑
k=0

N
(l)
k =

(
f

l

)
, (C3)

where f is the total number of structural motifs. Finally, the
facts that

∑f

l=0(fl ) = 2f and
∑f

l=0(−1)l(fl ) = 0 imply that

E∑
k=0

Nk =
E∑

k=0

f∑
l=1

(−1)l+1N
(l)
k

=
f∑

l=1

(−1)l+1

(
f

l

)
= 1 (C4)
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and
E∑

k=0

|Nk| =
E∑

k=0

f∑
l=1

N
(l)
k =

f∑
l=1

(
f

l

)
= 2f − 1. (C5)
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