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Proof of uniform sampling of binary matrices with fixed row sums and column sums for the fast
Curveball algorithm
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Randomization of binary matrices has become one of the most important quantitative tools in modern
computational biology. The equivalent problem of generating random directed networks with fixed degree
sequences has also attracted a lot of attention. However, it is very challenging to generate truly unbiased random
matrices with fixed row and column sums. Strona et al. [Nat. Commun. 5, 4114 (2014)] introduce the innovative
Curveball algorithm and give numerical support for the proposition that it generates truly random matrices. In
this paper, we present a rigorous proof of convergence to the uniform distribution. Furthermore, we show the
Curveball algorithm must include certain failed trades to ensure uniform sampling.
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I. INTRODUCTION

The randomization of binary matrices with fixed row
sums and column sums is used extensively throughout com-
putational biology. For instance, in numerical ecology, it
is known as the recombining of presence-absence matrices
where matrices represent either species per site or species
interactions [1–3]. In biochemistry, it is used in the analysis of
protein interaction networks [4,5]. Furthermore, square binary
matrices with fixed row sums and column sums are equivalent
to directed networks with fixed degree sequences, which have
attracted a lot of interest in network science [6–10]. We discuss
these equivalent problems in terms of matrix randomization.
However, the reader should keep in mind that all results hold
equally well for directed networks.

It is hard to generate truly unbiased samples of binary
matrices with fixed row sums and column sums. Existing
randomization methods fall into two categories: the “fill
methods” and the “swap methods.” Fill methods construct a
matrix, starting with a matrix of zeros, then adding ones until
reaching the desired row sums and column sums [6–8]. These
methods are generally fast. However they either produce a
biased sample or only rarely produce a binary matrix [10,11].

Swap methods [12], on the other hand, randomize a given
matrix by repeatedly making small changes. Care must be
taken when implementing swap methods since removing
repeated matrices causes these algorithms to sample with
bias [3,9,11,13–15]. However, when correctly implemented,
the switching method [16] has been shown to sample uni-
formly [3,9].

Recently the Curveball algorithm was introduced as a
much faster procedure to sample random binary matrices
with fixed row sums and column sums [17]. Similar to swap
methods, the Curveball algorithm randomizes a binary matrix
by repeatedly making small changes. The supposition that this
algorithm samples uniformly, although backed by numerical
experiments, is speculative. In this paper we rigorously prove
that the Curveball algorithm generates truly random matrices.

The Curveball algorithm has two distinct properties that
cause repeated states. We show that one type of repeated

*corriejacobien.carstens@rmit.edu.au

states can be excluded while maintaining uniform sampling,
whereas excluding the other type leads to biased sampling.
Repeated states generally slow down convergence, leading
us to investigate the convergence and run-time behavior of
the Curveball algorithm with and without the former type
of repeated states. We found that the modified Curveball
algorithm outperforms the original Curveball algorithms for
small matrices. However, for larger matrices, the original
Curveball algorithm is slightly faster.

The remainder of this paper is organized as follows.
Section II describes the Curveball algorithm in Markov
chain terminology, pointing out its similarity to the switch-
ing method. Furthermore, it presents our proof of uniform
sampling for the Curveball algorithm. Section III discusses
the convergence properties of the Curveball algorithm when
repeated states are excluded. Section IV presents numerical
results on the convergence and run time of the original and
modified Curveball algorithm. Finally, Sec. V concludes with
a recommendation to use the original Curveball algorithm.

II. THE CURVEBALL ALGORITHM

The Curveball algorithm was introduced in Ref. [17].
This section provides a proof that the sampling of the
Curveball algorithm is unbiased. Our proof uses the following
well-known theorem about Markov chains (see, for instance,
Ref. [18, Theorem 7.10]).

Theorem II.1. A finite, irreducible, and aperiodic Markov
chain converges to a unique stationary distribution on its state
space S. Let PAB denote the transition probability from state
A to B. If there exists a probability distribution π on S such
that the detailed balance equations,

πAPAB = πBPBA

hold for all states A,B ∈ S, then π is this unique stationary
distribution.

This theorem implies that a finite, irreducible, and aperiodic
Markov chain converges to the uniform distribution if PAB =
PBA for all states A,B.

We start this section by describing the Curveball algorithm
as a Markov chain. We then show that this Markov chain
is finite, irreducible, and aperiodic. Finally, we derive its
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FIG. 1. (Color online) A trade in the Curveball algorithm consists of (a) converting a binary matrix into lists of indices Ai for each row i. In
step (b) two rows are selected, in this case rows 1 and 3. (c) The set differences A1−3 and A3−1 are extracted. (d) Set B1 is formed by removing
A1−3 from A1 and adding |A1−3| elements randomly chosen from A1−3 ∪ A3−1, in this case {2,3,4}. B3 is formed by removing A3−1 from A3

and adding the remaining elements of A1−3 ∪ A3−1. Step (f) converts the resulting lists of indices Bi into matrix B. In the original description
of the Curveball algorithm step (b)-(d) are repeated N times in step (e). This is equivalent to repeating step (a)-(d) and step (f) N times.

transition probabilities and show that the detailed balance
equations hold with respect to the uniform distribution.

A. Description of the Curveball algorithm

The Curveball algorithm randomizes a binary n × m matrix
A using the following steps (see also Fig. 1). (a) Transform
A into lists of indices, Ai for each row i, corresponding to
ones in that row [19], (b) select two of these lists Ai and Aj at
random, (c) compare the lists and let Ai−j be all indices that
are in Ai but not in Aj . Similarly define Aj−i . (d) Create a new
list Bi by removing Ai−j from Ai and adding the same number
of elements randomly chosen from Ai−j ∪ Aj−i . Combine
Aj\Aj−i with the remaining elements of Ai−j ∪ Aj−i to form
Bj [20]. (e) Reiterate steps (b)–(d) N times for a certain fixed
number N , and (f) form a new matrix from the resulting lists.

Notice that step (a) is the inverse of step (f) and vice versa,
hence a run of the Curveball algorithm (a)–(f) is equivalent
to reiterating steps (a)–(d) and (f) N times. We use the latter
description to show that the Curveball algorithm corresponds
to a Markov chain with state space all binary matrices with row
sums and column sums equal to those of A. We will refer to one
iteration of steps (a)–(d) and (f) as a trade and the number of
exchanged indices |Bi\Ai | = |Bj\Aj | as the size of the trade.

The Curveball algorithm corresponds to a discrete stochas-
tic process: a sequence of random variables corresponding to
binary matrices with fixed row sums and column sums. The
first matrix in the sequence is A, and each trade results in a
subsequent matrix in the sequence. Notice that there is always a
nonzero probability for consecutive matrices to be equal since
trades can have size zero. That is, either Ai−j or Aj−i could be
empty, and even if they are not, the elements randomly selected
from Ai−j ∪ Aj−i to create Bi could be exactly the elements
in Ai−j . This stochastic process is clearly Markovian: The
probability of a matrix appearing in the sequence depends only
on its immediate predecessor. Indeed, the Curveball algorithm
corresponds to a Markov chain. This Markov chain is finite
since its state space, the set of all binary matrices with row sums
and column sums equal to those of the initial matrix A, is finite.

B. Comparison to the switching method

As mentioned in Ref. [17], the Curveball algorithm and
switching method are “in a certain way closely related.”

Here, we use this similarity to show that the Markov chain
corresponding to the Curveball algorithm is irreducible. Using
Theorem II.1, the switching method has been shown to sample
uniformly [3,9,10,13]. In particular, its Markov chain has been
shown to be irreducible [13,21].

The state space of the switching method is the same as
that of the Curveball algorithm, namely the set of all binary
matrices that have the same row sums and column sums as
the initial matrix. Therefore, the state graph of the switching
method and the state graph of the Curveball algorithm have the
same set of vertices. However, in general, they have different
edges.

The switching method generates a sequence of matrices
where each subsequent matrix is the result of a switch instead
of a trade. A switch from a matrix A replaces a checkerboard,
Aik = Ajl = 1 and Ail = Ajk = 0, by the opposite checker-
board, Aik = Ajl = 0 and Ail = Ajk = 1 (see Fig. 2). This
switch corresponds to a trade of size one: Row Ai trades index
k for index l with row Aj .

Hence, each switch in the switching method corresponds
to a trade in the Curveball algorithm. This implies that the
state graph of the switching method is a subgraph of the
state graph of the Curveball algorithm with the same set of
vertices (see Fig. 3). In particular, since irreducibility of a
Markov chain equals strong connectivity of its state graph,
this means that the Markov chain of the Curveball algorithm is
irreducible.

C. Proof of uniform sampling

In the previous sections we have seen that the Markov
chain corresponding to the Curveball algorithm is finite and
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FIG. 2. A switch in the switching algorithm.
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FIG. 3. (a) There are six different matrices with row sums (2,2) and column sums (1,1,1,1). (b) The structure of the state graph for the
switching method. Notice that there are no edges between states A and F , between states B and E, and between states C and D since these
pairs of matrices differ by two switches. (c) The structure of the state graph of the Curveball algorithm. There are edges between states A and
F , between states B and E, and between states C and D since these pairs of matrices differ by one trade (of size two).

irreducible. It is also aperiodic since step (d) ensures that there
is a nonzero probability to repeat each state and hence each
vertex in the state graph has a self-loop. Thus, to prove that the
Curveball algorithm converges to the uniform distribution, it

remains to show that its transition probabilities satisfy PAB =
PBA for all A and B.

Lemma II.2. The transition probabilities PAB of the Curve-
ball algorithm are given by

PAB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
n(n−1)

|Ai−j |!|Aj−i |!
(|Ai−j |+|Aj−i |)! , if A and B differ in a trade between rows i and j,

1 −
∑
C �=A

PAC, if A = B,

0, otherwise,

where n is the number of rows of A (and B) [22].
Proof. Let A and B be distinct binary n × m matrices that

differ by a trade between two rows i and j . The probability of
selecting these rows in A is 2

n(n−1) . In step (d) of the Curveball
algorithm, set Ai−j of indices in row i but not in row j is taken
from Ai and put together with set Aj−i taken from Aj . The
resulting set is shuffled, the first |Ai−j | elements are returned
to Ai , and the remaining elements are returned to Aj . The
probability that shuffling results in state B equals the inverse of
the number of ways you can select |Ai−j | unordered elements
from a set of |Ai−j | + |Aj−i | elements. This probability thus
equals |Ai−j |!|Aj−i |!

(|Ai−j |+|Aj−i |)! . �
Theorem II.3. The Markov chain corresponding to the

Curveball algorithm converges to the uniform distribution on
its state space S.

Proof. We have seen that the Markov chain corresponding
to the Curveball algorithm is finite, irreducible, and aperiodic.
It remains to show that PAB = PBA for all states A,B ∈ S.
If A = B or if A and B differ by more than one trade, this
equality clearly holds.

Let A and B differ by one trade between rows i and j .
Now Bi−j is exactly the set of |Ai−j | elements randomly
chosen from Ai−j ∪ Aj−i in step (d) to form Bi , and hence
|Bi−j | = |Ai−j |. Similarly Bj−i is the set of remaining
elements in Ai−j ∪ Aj−i , and hence |Bj−i | = |Ai−j ∪ Aj−i | −
|Ai−j |. This equals |Aj−i | since Ai−j ∩ Aj−i is by definition
empty.

Thus we find

PAB = 2

n(n − 1)

|Ai−j |!|Aj−i |!
(|Ai−j | + |Aj−i |)!

= 2

n(n − 1)

|Bi−j |!|Bj−i |!
(|Bi−j | + |Bj−i |)! = PBA.

�

III. MODIFYING THE CURVEBALL ALGORITHM

In this section we discuss two modifications of the Curve-
ball algorithm and their stationary distributions. When the
probabilities of repeating states are high, the mixing time of
a Markov chain increases [9]. It is thus desirable to refrain
from unnecessary repetitions. The following two situations
cause repeated states in the Curveball algorithm: First, when
two rows are selected that do not allow any trades and second
when the shuffling of Ai−j ∪ Aj−i results in sets Bi = Ai and
Bj = Aj , in other words, when this shuffling leaves rows i

and j unchanged. We will refer to the former as no-trade row
pairs and to the latter as no-trade shuffles.

A. Excluding no-trade shuffles

We first show that the Curveball algorithm may be adjusted
by excluding no-trade shuffles and that this modification only
changes the stationary distribution for a pathological class P of
matrices. The no-trade shuffles can be excluded by modifying
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FIG. 4. When a matrix A contains two rows i and j that can make
a trade and differ at more than two indices, it contains a submatrix
of one of the forms above. This implies that there is a path of three
trades as well as a path of two trades starting and ending at A. Thus
state A is aperiodic, and hence the finite Markov chain is aperiodic.

step (d). Instead of always accepting the newly created lists Bi

and Bj , repeat this step until Bi �= Ai and Bj �= Aj , in other
words until a trade of size at least one has been made. The
transition probability for distinct neighboring states A and B

then becomes

PAB = 2

n(n − 1)

|Ai−j |!|Aj−i |!
(|Ai−j | + |Aj−i |)! − (|Ai−j |!|Aj−i |!) .

This probability only depends on n, |Ai−j |, and |Aj−i |,
and thus PAB = PBA. Furthermore, this Markov chain is
irreducible by the same argument as before. Finally, we need
to find out under which conditions this chain is aperiodic.
The argument for the aperiodicity of the Curveball algorithm
cannot be used since it relied on the inclusion of no-trade
shuffles.

Lemma III.1. Let P be the subset of binary matrices that
are, up to a reordering of columns, equal to the identity matrix
together with an arbitrary number of columns of just ones and
an arbitrary number of columns of just zeros.

The Markov chain corresponding to the Curveball algo-
rithm without no-trade shuffles is aperiodic for a matrix A if
and only if A /∈ P .

Proof. We prove this lemma by contrapositive, that is we
prove that the Markov chain corresponding to the Curveball
algorithm without no-trade shuffles is periodic if and only if
A ∈ P .

We first show that if the Markov chain is periodic, then A ∈
P . It is clear that the Markov chain cannot be periodic if the

initial matrix contains no-trade row pairs, and thus |Ai−j | > 0
for all i,j . Furthermore, if all rows in a matrix can make trades
and there exists a pair of rows which differ at more than two
indices, then the Markov chain is aperiodic as illustrated in
Fig. 4. Hence |Ai−j | � 1 for all i,j .

Thus the only matrices A for which the Markov chain could
potentially be periodic are those with |Ai−j | = 1 for all row
pairs i and j . These are exactly the matrices in P .

We now show that the Markov chain is periodic for all ma-
trices A ∈ P . Columns consisting of just ones or just zeros are
left invariant by the Curveball algorithm. Hence without loss of
generality we may assume that A is an n × n identity matrix.
Each trade corresponds to a column swap, in other words a
transposition of columns. The identity perturbation is even and
can thus only be formed by an even number of transpositions
of columns, which means that this Markov chain is two
periodic. �

To summarize, no-trade shuffles can be removed from
the Curveball algorithm without affecting the stationary
distribution of the Markov chain for all matrices not in P .
In practice all matrices of interest are randomized without
bias. From now on, we will refer to this modified Curveball
algorithm for matrices not in P as the good-shuffle Curveball
algorithm [23].

B. Excluding no-trade row pairs

We now show that repeats caused by no-trade row pairs
should not be excluded from the Curveball algorithm, or else
sampling is no longer guaranteed to be uniform. This is in con-
tradiction with a comment made by Strona et al. that removing
all repeated states does not affect the Curveball algorithm.
In the Supplementary Information of their paper [17], this
argument is supported by presenting the transition matrix of a
single example where all repeats are removed. However, it is
a coincidence that sampling is uniform for this example. We
give another example to show that in general sampling may be
biased.

To remove repeats caused by no-trade row pairs, step
(b) is modified: Instead of randomly selecting any row pair,
randomly select a row pair that can make trades. The transition
probability for distinct neighboring states A and B then

FIG. 5. (a) When all repeated states are excluded from the Curveball algorithm, PAB is not always equal to PBA. In this example, both A1−2

and A2−1 contain two elements, that is |A1−2| = |A2−1| = 2. There are two row pairs in A that can make trades, resulting in PAB = 1
10 . This

does not equal PBA since there are three row pairs in B that can make trades and hence PBA = 1
15 . (b) The number of each of the 15 possible

binary matrices with row sums (2,2,2) and column sums (2,1,2,1) in a biased sample, generated by the modified Curveball algorithm where all
repeated states are excluded. The sample consists of 10 000 matrices sampled at every 1000th trade of the Markov chain.
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FIG. 6. The transition probabilities of the Curveball algorithm without repeated states for all 15 matrices with row sums (2,2,2) and column
sums (2,1,2,1).

becomes

PAB = 1

ptr (A)

|Ai−j |!|Aj−i |!
(|Ai−j | + |Aj−i |)! − |Ai−j |!|Aj−i |!

where ptr(A) is the number of row pairs in A that can make
trades. In this Markov chain, PAB is no longer guaranteed
to equal PBA. See Fig. 5(b) for an example. Figure 6 shows
all binary matrices with row sums (2,2,2) and column sums
(2,1,2,1) and the transition probabilities for the Curveball
algorithm without repeated states (i.e., without no-trade row
pairs and no-trade shuffles). The Markov chain corresponding
to this example is irreducible and aperiodic as can be checked
from its transition matrix in Fig. 6. Furthermore, one can
verify that the detailed balance equations hold for π =
1

42 (2,3,3,3,3,2,3,3,3,3,2,3,3,3,3). Thus, the Markov chain
converges to π and not to the uniform distribution. It is less
likely to generate matrices A, F , and K than the other matrices
as shown experimentally in Fig. 5(b).

IV. NUMERICAL RESULTS

The mixing time τ (ε) of a Markov chain quantifies the
number of steps needed for the chain to get close to its
stationary distribution [18]. Generally, it is intractable to
compute the exact mixing time for the Curveball algorithm.
However, it can be performed for small examples where it is
possible to enumerate all binary matrices with given row sums
and column sums. The mixing time by itself is not enough to
determine the run time of a Markov chain. The time it takes
to execute n steps in the chain needs to be taken into account
too; we refer to this as the step run time ts(n).

In Table I the mixing time and step run time of the
Curveball and good-shuffle Curveball algorithms are listed for
several small matrices. The good-shuffle Curveball algorithm
generally mixes faster, which can be explained by the exclusion
of some of the repeated states. However, there is a trade-off
in terms of step run time since step (d) is more complicated
for the good-shuffle algorithm. Indeed, Table I clearly shows
that the step run time is longer for the modified algorithm than

for the original algorithm. Overall, the good-shuffle Curveball
algorithm almost always outperforms the original Curveball
algorithm.

Most matrices of interest are much larger than the above
examples. Besides, if all matrices with given row sums and
column sums can be enumerated, there is no need to use a
Markov chain; sampling can be performed directly. For larger
matrices, the mixing time needs to be estimated. This can
be performed by measuring the perturbation of each matrix
in the Markov chain with respect to the initial matrix [17].
The mixing time is approximated by the step at which the
perturbation score stabilizes.

Figure 7 shows that for a 10 × 10 matrix, the perturbation
score of the Curveball and good-shuffle Curveball algorithms
stabilizes at roughly the same time. For a 100 × 100 matrix
the perturbation scores are indistinguishable. This suggests
that for larger matrices, it takes roughly the same number of
steps to reach the uniform distribution for both algorithms.
There is a good explanation for this: The sizes of sets Ai−j

TABLE I. Mixing times and run times of the Curveball and good-
shuffle Curveball algorithms for some small matrices. Here ε = 10−6

and n = 1000. The total run times are approximate, computed from
the mixing and step times. Specifically ts[τ (ε)] = τ (ε) ts (n)

n
.

Curveball Good shuffle

Row Column State Mixing Step Total Mixing Step Total
sums sums count τ (ε) ts(n) ts[τ (ε)] τ (ε) ts(n) ts[τ (ε)]

121 121 5 33 0.668 0.022 19 0.888 0.017
313 2221 7 74 0.520 0.038 54 0.628 0.034
2211 1212 34 48 0.704 0.034 30 0.963 0.029
2222 1142 12 35 0.734 0.026 13 1.104 0.014
11422 23212 198 101 0.666 0.067 75 0.874 0.066
21021 31011 18 95 0.528 0.050 59 0.655 0.039
22032 22311 120 99 0.539 0.053 77 0.710 0.055
31243 24232 237 92 0.647 0.059 64 0.855 0.055
32111 11321 141 95 0.821 0.082 69 0.875 0.060
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FIG. 7. (Color online) Due to the large variance in perturbation scores for different runs of each Markov chain, average perturbation scores
over 100 runs are shown. (a) Five random 10 × 10 binary matrices were created by letting each matrix entry be one with probability 0.1, 0.2,
0.3, 0.4, or 0.5. For each matrix, the perturbation scores of the Curveball and good-shuffle Curveball algorithm stabilize at roughly the same
point after about 50 steps. (b) The same experiment was repeated for 100 × 100 matrices, and here the perturbation scores of the Curveball and
good-shuffle Curveball algorithm are indistinguishable.

and Aj−i are larger for larger matrices. For large |Ai−j | and
|Aj−i |, the difference between transition probabilities,

P GS
AB − P CB

AB

= 2

n(n − 1)

( |Ai−j |!|Aj−i |!
(|Ai−j | + |Aj−i |)! − (|Ai−j |!|Aj−i |!)

− |Ai−j |!|Aj−i |!
(|Ai−j | + |Aj−i |)!

)

becomes negligible since |Ai−j |!|Aj−i |! � (|Ai−j | +
|Aj−i |)!.

The step run time of the good-shuffle Curveball algorithm
is still longer than that of the Curveball algorithm. Thus,
the Curveball algorithm runs faster than the good-shuffle
Curveball algorithm.

V. CONCLUSION

The Curveball algorithm is a fast algorithm for the random-
ization of binary matrices with fixed row sums and column
sums. In this paper we proved that it generates truly unbiased
samples. This is a crucial property since random matrices are
usually used as a null hypothesis. Our proof gives a theoretical
justification for using the Curveball algorithm instead of the
more familiar switching method. Both sample uniformly, but
the Curveball algorithm is much faster [17].

We investigated the effect of excluding repeated states from
the Curveball algorithm as this was claimed not to affect the
unbiased sampling and could potentially improve the speed of
the algorithm. We found that out of two types of repeated
states, only one can be excluded without introducing bias
in the sampling distribution. However, excluding these states
only resulted in performance gains for very small matrices
(fewer than ten rows and columns). In fact, the increased
complexity of each step in the modified algorithm caused it
to run slower than the original Curveball algorithm for larger
matrices.

We recommend the use of the Curveball algorithm for
the randomization of binary matrices. It produces unbiased
samples as does the switching method but runs much faster.
Furthermore, it is best to leave the Curveball algorithm as it is
with inclusion of all repeated states.
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