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Crafting networks to achieve, or not achieve, chaotic states
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The influence of networks topology on collective properties of dynamical systems defined upon it is studied
in the thermodynamic limit. A network model construction scheme is proposed where the number of links
and the average eccentricity are controlled. This is done by rewiring links of a regular one-dimensional chain
according to a probability p within a specific range r that can depend on the number of vertices N . We compute
the thermodynamical behavior of a system defined on the network, the XY -rotors model, and monitor how it
is affected by the topological changes. We identify the network effective dimension d as a crucial parameter:
topologies with d < 2 exhibit no phase transitions, while topologies with d > 2 display a second-order phase
transition. Topologies with d = 2 exhibit states characterized by infinite susceptibility and macroscopic chaotic,
turbulent dynamical behavior. These features are also captured by d in the finite size context.
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I. INTRODUCTION

Networks are ubiquitous in the reality surrounding us, and
indeed the network perspective for systems of interacting
agents has seen a real paradigm shift in various realms ranging
from physics to biology, sociology, and economics [1–4]. One
pivotal feature shared by many existing networks, like the
World Wide Web [5–7] or social networks [8], is the so-called
“small-world” property: two nodes are separated by a short
path consisting in just a few edges thanks to the presence of
long-range connections, the shortcuts, in the network. Since
this property often arises in a self-organized fashion, it could
seem natural at first to infer that those shortcuts favor the flow
of information and more easily lead to collective states, as if
a kind of evolutionary principle is at play. But are those long-
range links always beneficial to enhance global coherence? A
striking example of this dilemma can be the brain: from one
side it displays the small-world property [9], but at the same
time, there are evidences of chaotic response in living neural
systems [10]. In contrast, small-world topologies can be a
fertile substrate to enhance transport phenomena as navigation
[11] and, more recently, it has also been shown that the overall
conductance of a network is advantaged by the introduction of
long-range links [12]. It hence appears highly nontrivial, when
dealing with interacting agents upon a network, to ask oneself
what kind of collective behavior they can possibly display,
since a chaotic response can arise along with a coherent
response due to the presence of long-range links.

This work is given within the following framework. We
provide here a means to construct a class of networks in which
the addition of long-range links can give rise to a whole range
of dynamical and statistical behaviors and, in particular, it also
entails a chaotic state of infinite susceptibility, similar to that
encountered in Refs. [13] and [14]. Moreover, our network
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model is crafted to embed real networks characteristics but
via minimal assumptions so as to ensure a certain form of
simplicity. As we will display in the following, we related the
different behaviors to the network dimension, which changes
according to the injection of long-range links.

II. MODEL CONSTRUCTION

In our model, networks are built starting from a k-regular
network with periodic boundary conditions and degree k ∝
Nγ−1(1 � γ � 2) (where N is the number of vertices), which
constitutes the backbone. Practically, the nodes are laid on
a one-dimensional ring and each of them interacts with
its k closest neighbors (see Fig. 1). Therefore our starting
configuration is completely symmetrical and invariant under
rotations. In this work, we set γ close to 1, γ = 1.2, in order
to have a few links per vertex (for instance, we get k = 12 for
N = 214). This choice for the present work is meant to recover
sparseness [4], which is a common feature in many real-world
networks; nevertheless, the influence of the k parameter by
itself was explored in [13]. We then proceed to a construction
similar to the Watts-Strogatz construction for small world
networks [15]: we rewire each link with probability p but,
differently from [15], we impose to rewire it within a range
r (Fig. 1). Therefore with our parameters (γ,p,r) we put
three ingredients meant to mimic concrete systems: first the
condition of sparseness through γ , i.e., a very low vertex
degree compared to the system size [4]; second, we introduced
the concept of interaction range constraining the links to be
at most of a fixed length r; and last we inject randomness in
the structure so to have a nonuniform degree. Hence, from
one side, the range parameter r mimics the fact that in many
natural and artificial systems interactions can occur only within
a certain neighborhood and on the other side the probability p

ensures the presence of randomness in the link distribution,
so that all the length scales occur. The range concept is
reminiscent of the Kleinberg model [16], but in our case, the
choice of r entails a sharp cutoff in the distribution of the
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FIG. 1. (Color online) Practical network construction for N =
14, γ = 1.2 thus k ∝ �N 0.2� = 2 and r = �√N� = 3. The starting
configuration is the solid (green) line, since we have just two links
per spin and the dotted (red) links are the possible rewiring.

accessible link lengths and, moreover, the probability p to
rewire a link within the range r is uniform. Before proceeding
we would like to stress that the key parameter of interest
for the present work is the range: indeed, in two previous
works [13,14] we investigated, respectively, the impact of the
k parameter on k-regular networks and the interaction between
k and p for small-world networks. Now, with the range
constraint, we practically enforce a control on the dimension.

III. DEFINITION OF DIMENSION

Heuristically we can forecast that if we choose, for instance,
r ∝ √

N , the more links are rewired (i.e., for high p), the
more the network will be shaped like a bidimensional object,
because we have in some sense crafted from the initial ring a√

N × √
N lattice. To give a more quantitative counterpart

to this view, we define the dimension d similarly to the
dimension on Euclidean lattices. For the latter, it holds a
power law relation between the volume and a characteristic
length V ∝ rd , the exponent d being the dimension. Then
in our context of networks, we have to consider a specific
length scale. Here we settled for the average of the vertices
eccentricity ec(i), i.e., the longest path �i,j i �= j attached
to each vertex i. Thus we define our characteristic length
� as

� = 1

N

∑
i

ec(i). (1)

Hence if we consider its scaling with the network volume (size)
N , we obtain the following definition of dimension:

d = log N

log �
. (2)

The definition in Eq. (2) recovers in the N → ∞ limit the one
already proposed in [17–19] in which they consider the power
law scaling of the average path length �av with the network
size N , while we take into account in Eq. (1) the average
vertex eccentricity �ec. These two quantities are indeed related
since �ec ∼ 2�av , and this assumption was also numerically
tested. It is hence evident that the difference between the two
dimension definitions is a term vanishing logarithmically with
the size N , thus proving their equivalence in the N → ∞ limit.
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FIG. 2. (Color online) (a) Dimension of a completely rewired
network (p = 1) with N = 214 and r ∝ Nδ . The horizontal axis is
the parametrization in Eq. (3), which gives, with our choice of r ,
dr = 1/(1 − δ). (b) Scaling of the magnetization variance σ 2(N ) with
the system size N for d = 2. (c) Phase transition of the magnetization
M(ε), ε = E/N for d > 4. The error bars are within the dot size.

However, in the range of system sizes used in our simulations,
the definition in Eq. (1) was the more suitable choice to grasp
the dimension, since the aforementioned difference is still
important enough to introduce a small shift in the dimension
value. In Eq. (2), it is straightforward to see that the dimension
of the completely rewired (p = 1) configuration is intrinsically
related to the range r: indeed, for p = 1, we have that � ∼ N/r ,
since each node very probably possesses a link rewired at
a distance r . Therefore, if � ∼ N/r , we have that Eq. (2)
becomes

dr = log N

log N − log r
. (3)

In what follows we shall use the dimension dr given by
Eq. (3) as our control parameter: in practice dr corresponds
to a reparametrization of the range which we will consider
to be of the type r ∼ Nδ with N 
 1 and δ > γ − 1. If we
take our previous example of r = √

N , we obtain that the
corresponding network with p = 1 has indeed dr = 2 and, in
Fig. 2(a), we display how the measured network dimension for
p = 1 follows Eq. (3) so that, fixing the range r(N ), we can
control the resulting dimension once we have rewired all the
links, independently from the size.

IV. THE XY− MODEL

Having thus an operative and general way to set and
quantify the dimension, we used our network model to
investigate the thermodynamic response of a dynamical system
defined upon these networks and test the influence of the
dimension d in Eq. (2). With this goal in mind, we consider
N XY -rotors [20,21], whose dynamics is described by an
angle θi(t), and its canonically associated momentum pi(t).
We shall show that the rewiring of a few links, beyond altering
the network structure significantly, can also entail different
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collective behaviors. In particular, we shall investigate if, like
on regular lattices, we have a spontaneous symmetry breaking
for d > 2, which is absent when d < 2. This brings some
analogies to the extension of the Mermin-Wagner theorem
on inhomogeneous structures [22,23], in which the critical
parameter to discriminate between different regimes is the
spectral dimension [24–26], therefore opening an interesting
thread of research. Moreover, we shall focus on d = 2, or
r ∼ √

N , to see if a chaotic state emerges, displaying some
similarities with the one observed in the regular structure
discussed in [13]. Returning back to the XY rotors, each
rotor i is located on a network vertex and its interactions are
provided by the set Vi of vertices attached to it via the links.
The Hamiltonian of the system reads

H =
N∑

i=1

p2
i

2
+ J

2〈k〉
∑
i∈Vi

[1 − cos(θi − θj )], (4)

where J > 0, 〈k〉 is the average degree, and Vi = {j �=
i|∃ei,j ∈ E}, E being the ensemble of edges. The dynamics of
the network is given by the two Hamilton equations:{

θ̇i = pi

ṗi = − J
〈k〉

∑
j∈Vi

sin(θi − θj ).
(5)

V. SIMULATION PROCEDURE

We run molecular dynamics (MD) simulations of the
isolated system in Eq. (5), starting with Gaussian initial
conditions for {θi,pi}. The simulations are performed by
integrating the dynamic equations in Eq. (5) with the fifth-order
optimal symplectic integrator, described in [27], with a time
step of �t = 0.05. Such an integrating scheme allows us
to check the correctness of the numerical integration, since
we verified at each time step that the conserved quantities
of the system, the energy E = H and the total momentum
P = ∑

i pi/N , are effectively constant. The total momentum
P is set at 0 as the initial condition without loss of generality.
In order to grasp the amount of coherence in the system, we
define a magnetization M = |M| as the order parameter

M = 1

N

∑
i

(cos θi, sin θi), (6)

and once the system has reached a stationary state, we measure
M , where the bar stands for the temporal mean. Thus, in the
stationary state, if M ∼ 1, all the rotors point in the same
direction, whereas if M ∼ 0 there is not a preferred direction.
Practically, once the network topology and the size N are fixed,
we monitor the average magnetization M(ε,N ) for each energy
ε = E/N in the physical range. We perform the temporal mean
on the second half of the simulation, after checking that the
magnetization has reached a stationary state, when it is reached
(i.e., not in the case of the chaotic state). The simulation time
is typically of order Tf = 104–105.

VI. THERMODYNAMIC BEHAVIOR

In the insets of Fig. 2 we display the dynamical response
of the XY model to different dimensions: we chose r so as
to have d = 2 for r ∝ √

N and d > 4 for r ∝ N3/4. For the

latter, in Fig. 2(c) the magnetization displays a second-order
phase transition, seeming to occur at ε = E/N ∼ 0.75, in
the same fashion of the Hamiltonian mean field (HMF)
model [28]. It is noteworthy that, for the XY model, the
dimension 4 is the one at which mean field theory starts to
apply and, indeed, the phase transition displayed in Fig. 2(c)
for d > 4 seems to confirm this picture. For the case with d = 2
we observed a state similar to the one described in [13,14]; the
magnetization, for low energy densities ε = E/N , is affected
by important fluctuations, such as if the order parameter was
oscillating between the mean field value and zero. Moreover,
this regime does not reach the equilibrium on the time scales
considered. Its persistence was checked for simulation times
Tf ∼ 106, i.e., 10 times longer than in previous cases and
nevertheless, it was not possible to observe its relaxing. To
give further insight on this chaotic state arising in the network
with d = 2, we looked at the magnetization variance σ 2 =
(M − M)2, where the bar stands again for the temporal mean,
in order to give a quantitative measure of this regime. As shown
in Fig. 2(b), the variance is unaffected by the size. This flat pro-
file is in striking contrast with the variance’s canonical scaling
σ 2 ∝ 1/N , leading to vanishing fluctuations in the thermo-
dynamic limit. On the contrary, if we take into account the
definition of the magnetic susceptibility,

χ ∼ lim
N→∞

Nσ 2, (7)

we have that this regime shall be characterized by an infinite
susceptibility in the thermodynamic limit. The peculiar nature
of this regime is also highlighted by its persistence in an
energy range. Indeed, in the usual XY Kosterlitz-Thouless
transition the divergence of the susceptibility occurs at the
phase transition point [29], while these “turbulent” states
exist in whole interval energies up to the critical state. In
fact, these states are somewhat reminiscent of the observed
quasistationary states (QSSs) occurring in the HMF model
or more generally in systems with long-range interactions
[30–34]. Nevertheless, as mentioned, we do not observe any
relaxation, in contrast with the QSSs’ behavior.

VII. FINITE SIZE CASE

Our model brings interesting perspectives for finite size sys-
tems as well. As a first observation, note that our construction
procedure, like the Watts-Strogatz algorithm for small world
networks [15], induces on average NR = Nkp ∝ Nγ p rewired
links. Hence the fraction of long-range connections increases
with the size (in the present study very slightly because of our
choice γ = 1.2). We thus argue the existence of a nontrivial
interplay between p, r , and N , so that it is possible, like
for small world networks, to tune p in order to change the
measured dimension for a given size N . In some sense, d

can turn out to be, for a finite size system, a measure of an
effective dimension produced by the fraction of rewired links.
To test our hypothesis, we consider N = 214 and N = 216, and
in Figs. 3(a)–3(d) we show how the progressive introduction
of long-range links in the network drags the dimension to
d = 2 for r = √

N [Fig. 3(a)] and to d = 4 for r = N3/4

[Fig. 3(d)]. Indeed, the shift between the two dimension curves
mirrors the effect of the two sizes, and it is more pronounced
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FIG. 3. (Color online) Dimension and its influence on global coherence. The relation between the dimension d and the fraction of links
rewired, given by p, for (a) r = √

N and (d) r = N3/4 for two network sizes, N = 214 (dots) and N = 216 (triangles). In (a) the dimension shifts
from 1 to 2, whereas in (d) the increased r drags the dimension up to 4. In the insets we display the corresponding thermodynamical response.
In (b) for a network with d = 2 the magnetization shows a chaotic behavior at ε = 0.350(1), while in (c) and (f) the quasi-unidimensional
network does not sustain any long-range order, entailing the vanishing of the magnetization for every energy. Finally, for d � 3, (e) shows a
second-order phase transition at εc = 0.6. For the magnetization equilibrium values (c,e,f) and the dimension (a,d), the error bars are within
the dot size.

for the largest range r = N3/4. Therefore a natural question
arises: Does the dynamical behavior relate to this “finite size”
dimension? Similarly to what we did in Fig. 2, we analyzed
the dynamical response of the XY model, and in Fig. 3 we
display our results for r ∼ √

N and r ∼ N3/4. To guide our
investigation, we can use Figs. 3(a)–3(d) as a map to locate
the parameter zones characterized by different dimensions.
Focusing first on r ∼ √

N , we chose the probabilities so as
to have either a network with d = 2, p = 0.1, and p = 0.3,
or a quasi one-dimensional network, p = 0.005. In Fig. 3(b)
we show that indeed these networks generate a chaotic state
similar to the state of Fig. 2(a) and described in Refs. [13] and
[14]. The heavy oscillations of the magnetization do not relax
even for long time simulations, and their amplitude (i.e., the
variance) is unaffected by the size increase. This peculiar state,
appearing for low energy densities, seems again intrinsically
related to the dimensionality, since the two aforementioned
probability values entail d ∼ 2, as displayed in Fig. 3(a).
Moreover, we considered several sizes to investigate the impact
of the size increase and, again, there is no significant difference
between, for instance, N = 214 and N = 216 in the fluctuation
amplitude. On the other hand, it is noteworthy to observe
a signature of the different sizes in the oscillation period,
which is significantly slower in the N = 216 case. This effect,
entangling system size and time scales, can be reminiscent
with the lifetime of QSSs [30–34] of the HMF model, which
is the mean field version of the XY model. Moreover, the
collective oscillation itself recalls a very similar oscillating
behavior observed in the HMF case [35] or in the α − HMF
case [33] for QSSs. In this latter case of QSSs, this feature was
used to perform “Poincaré sections” [33,36]. Nevertheless, we
would like to stress that, both in [13] and in the present case,
the root of the oscillating state is a topological condition on the
network and not a dynamical one, as the choice of a particular
initial condition. Furthermore, as another point of difference,

we were not able to observe the eventual relaxation of those
states so far. Anyway, those analogies, like the aforementioned
analogy on the phase transition, and those differences both
point to very interesting research perspectives to shed light
on the connection between these two systems. Continuing in
our analysis, for p = 0.005, which gives d � 1.7 [Fig. 3(a)],
the magnetization vanishes for all the energies, so as to
confirm the crucial role played by the crossover to the two-
dimensional configuration. Now, taking into account the case
r ∼ N3/4, we show in Fig. 3(e) that the system undergoes a
second-order phase transition, as it happens in Fig. 2(c) when
d > 2. In Fig. 3(e) the probability is set at p = 0.1, which
entails d ∼ 3 for the sizes considered. On the other hand,
the short-range regime is at play for lower probabilities in
Fig. 3(f), where we display the vanishing of the order parameter
for d � 1.5.

VIII. CONCLUSION

In conclusion, we have provided a way to construct a
class of networks whose dimension d is controllable via the
range parameter r . We have shown how this dimension, in the
thermodynamic limit, is related to different collective states
of the XY model upon those networks. For d > 2 the system
displays a second-order phase transition that becomes very
similar to that of the HMF model for d > 4, while for d = 2 a
regime characterized by an infinite susceptibility is at play.
Beyond the analysis in the thermodynamic limit, we also
interpreted the dimension d in the case of finite size systems.
In this framework d is a function of (N,r,p) so that we can
“adjust” the probability of rewiring p to obtain the desired
effective dimension.

Considering the evidences we have displayed, we may
argue that, for general networks, the considered dimension can
be a key topological characteristic that in the end governs the
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final collective behavior of large coupled systems. Moreover,
we believe that the peculiar case of networks with d = 2,
for which the chaotic collective state emerges, could lead
to many interesting applications. For instance, the infinite
susceptibility could be used to amplify signals, or a better
understanding of the dynamics could prove useful in the
context of modeling and studying turbulent behaviors in an
isolated system. On a closing note, the condition d > 2 to
have a collective behavior, which is entangled with having a
range of interaction r > O(

√
N ), bears a strong resemblance

to the necessary condition for synchronization of Kuramoto
oscillators, as shown in Ref. [37], and this latter analogy could
point to the intrinsic importance of this topological feature
over the details of the dynamic imposed on the network.
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