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Impact of self-healing capability on network robustness
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A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability.
Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree
distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and
the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing
capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and
that salient difference exists in upholding network integrity under random failures and intentional attacks. The
results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied
complex systems.
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I. INTRODUCTION

The robustness against random and systemic failures is
crucial for the stable operation and high performance of various
kinds of social, technological, and biological networks [1,2].
In terms of degree distribution, complex networks can be
classified into heterogeneous networks (such as scale-free
networks [3] with a power-law degree distribution) and
homogeneous networks (such as random graphs [4] and
small-world models [5] with a Poisson degree distribution). It
has been well demonstrated [6–9] that heterogeneous networks
are highly robust against random failures but appear extremely
fragile to attacks targeted at highly connected nodes, i.e., hubs.

Although the topological attribution, e.g., degree distri-
bution, to network robustness has been intensively studied
in the past decade, the influence of self-healing of nodes
is much overlooked despite its relevance in many real-life
networked systems [10]. Examples are polymer networks
where new polymeric compounds in materials can be self-
repaired bonding crack faces due to microencapsulated healing
agents released [11,12], neural networks where neurons in
brains of mild injury are capable of spontaneous healing by
reinstating lost connections [13,14], cancer networks where
cancer stem cells have the ability to self-renew (maintaining
their undifferentiated state) and cause a relapse of the tumor
in spite of conventional chemotherapies [15,16], and botnets
where compromised hosts are able to autonomously become
healthy after the scan of equipped antivirus softwares [17,18].
These indicate that the topology alone may not determine
robustness [19], as the self-healing mechanisms help such
complex systems maintain great stability routinely in the pres-
ence of continual small failures and shocks, for instance [20].
It is thus essential to incorporate the self-healing phenomenon
and understand its consequences on network robustness.

Concerning robustness improvement against failures or at-
tacks, a range of strategies have been reported, including edge
rewiring or addition [21–24], edge swapping (while conserving
the node degrees) [25,26], and even edge removal in the
case of interdependent networks [27,28]. These strategies are
applicable in technological (e.g., communication) networks,
where backup channels and rerouting protocols are accessible.
However, this is not the case with most infrastructure networks,
since the creation of new physical links has geographic

constraints, and incurs time and financial costs, if at all
possible. The limitations are even inherent in biological and
social systems, rendering these designed strategies virtually
ineffective.

In this paper we study the case in which only previously
existing links can be recovered due to self-healing of nodes.
We work with a minimal model, as is often favored in physics,
to investigate the impact of self-healing on robustness; i.e., we
aim at being as generic as possible in the system description
instead of proposing particular recovery algorithms [10].
We adopt the perspective of healing, yet we mention that
our model might be motivated in other instances besides
network healing as the system under consideration is static
by nature. Albeit simple, the model we develop incorporates
the network topology, failure or attack pattern, and the
self-healing capability of nodes. It is found that the self-healing
capability has a profound impact on the phase transition in
the emergence of giant clusters, and the topology-dependent
self-healing schemes display distinct behaviors in upholding
integrity under random failures and intentional attacks.

II. RESULTS

To be concrete, we build our networks using the config-
uration model [29] that is a random graph with a specified
degree distribution pk , in the limit of large graph size. In the
tradition of physics, this model is a natural choice for networks
in the absence of any known geometry for the problem. It
has become a standard arena for the exploration of network
robustness [7,25,30,31], and this tradition is followed here.
Our approach involves two quantities: (i) the probability qk

that a node is intact given that it has degree k, describing
the error pattern; and (ii) the capability αk of self-healing
of a node given that it has degree k. We assume that any
faulty node of degree k is recovered spontaneously together
with random αk proportion of incident edges connecting its
intact neighbors [32]. Therefore, each node in the network
is occupied (either intact or recovered): αk ≡ 1 means the
strongest self-healing capability—an edge is occupied unless
both end nodes are recovered ones, while αk ≡ 0 is the
weakest—an edge is occupied only if both end nodes are intact.
In the language of percolation [7], we are dealing with a bond
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percolation, and interestingly, the case αk ≡ 0 is essentially
equivalent to a site percolation except some isolated nodes.

A. Networks with constant self-healing capability

We start from a degree-independent scenario, i.e., qk = q

and αk = α for all k. By construction, every node has degree k

with probability pk . Hence, the probability generating function
of node degree is G0(x) = ∑

k pkx
k [29]. If we follow a

randomly chosen edge from a root node, the node reached,
say, v0, can be intact with probability q, or recovered with
probability 1 − q. In the first case, the selected edge is
occupied with probability 1, while in the second case, it is
occupied with mean probability αq [33]. Hence, the edge
is occupied with probability ρ := q + αq(1 − q), and the
distribution of the number of edges leading out of v0 (namely,
the excess degree distribution) is generated by [7]

F1(x) =
∑

k kpkρxk−1

〈k〉 = ρG1(x), (1)

where 〈k〉 = ∑
k kpk is the average degree, and G1(x) =

G′
0(x)/〈k〉 is the generating function of excess node degree

alone.
Let H1(x) be the generating function for the distribution of

the sizes of percolation clusters that are reached by choosing
a random edge and following it to its end, say v0. Since the
subclusters will not be connected in cycles for a sufficiently
large random graph below percolation (namely, the graph has a
pure branching structure), we may safely treat each subcluster
independently of the others [29]. Thus, H1(x) satisfies the
self-consistency condition

H1(x) = [1 − F1(1)] + xF1[H1(x)], (2)

where the first term corresponds to the probability that the
selected edge is deleted (unoccupied), and the second term
accounts for the size distribution of clusters attached to v0.
Analogously, the probability distribution of the size of cluster
to which a randomly chosen node belongs is generated by
H0(x), where

H0(x) = 1 − η + ηxG0[H1(x)], (3)

and η := q + α(1 − q) representing the probability that the
node is either intact or recovered with α fraction of incident
edges. An important quantity that can be deduced, for our
present purpose, is 〈s〉 = H ′

0(1), the mean size of cluster to
which a random node belongs. Substituting (2) and (3), we
find that

〈s〉 = η + ηG′
0(1)H ′

1(1) = η + ηρG′
0(1)

1 − ρG′
1(1)

. (4)

The critical values (qc,αc) at which a giant (formally infinite)
cluster first emerges, i.e., (4) diverges, are determined by

1 = [qc + αcqc(1 − qc)]G′
1(1), (5)

where G′
1(1) is the branching factor of the network. When

α = 0, the critical intactness probability qc = 1/G′
1(1), which

coincides with [7, Eq. (12)] confirming the equivalence to
the uniform site percolation as commented above. For a
network with power-law degree distribution pk ∼ k−γ , the
ratio 〈k2〉/〈k〉 = G′

1(1) + 1 diverges when 1 � γ < 3. By (5),
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FIG. 1. (Color online) Main panels: percolation threshold qc for
networks of 106 nodes from numerical simulations with α = 0
(squares), 0.5 (circles), and 1 (triangles), and exact solutions (solid
lines) by (5): (a) for ER graphs with 〈k〉 = λ, and (b) for scale-free
networks with degree exponent γ = 2.4 and exponential cutoff κ .
To obtain the data points qc, we begin with q = 0.99 and mark
each node of a given network as recovered with probability 1 − q

independently, and delete all its incident edges (while we record
its neighbor set). We then reconnect a random α fraction of intact
neighbors for each recovered node [32]. After checking all nodes, we
calculate the fraction (relative size) S of the giant cluster. We decrease
q and repeat the process until S < 10−3. The plots correspond to the
average of 50 random graphs with 20 independent runs for each.
Insets: αc vs qc by (5): (a) for ER graphs with λ = 5,10,15, and (b)
for scale-free networks with γ = 2.4 and κ = 30,60,90.

qc → 0 for any α if 1 � γ < 3. This means, as expected, that a
scale-free network with any (uniform) self-healing capability
is robust to random failure, reproducing the well-known result
of Cohen et al. [8] in the case of α = 0.

Equation (5) is confirmed by the numerical results shown
in Fig. 1 for Erd´́os-Rényi (ER) random graphs with a Poisson
degree distribution pk = e−λλk/k! (k � 0) and scale-free
graphs with a truncated power-law degree distribution pk ∼
k−γ e−k/κ (k � 1), which are ubiquitous in real-world complex
systems [2]. As expected, an increase in the self-healing
capability α systematically yields a decrease in the critical
intactness probability qc for all values of λ and κ . The “work”
of α is better appreciated when turning to the insets of Fig. 1.
For instance, an increase from α = 0 to α ≈ 0.5 makes an ER
graph with λ = 10 as robust as that with λ = 15 in terms of
qc; while an ER graph with λ = 5 can never (even having the
strongest self-healing capability α = 1) be as robust as that
with λ = 10. Moreover, although the larger the λ (or κ), the
smaller the gain of qc (obtained by increasing α from 0 to
1), it does not mean that it would be always more difficult
to change the robustness for denser ER graphs (or scale-free
networks with larger cutoff). For example, a change of qc from
around 0.07 to around 0.05 demands a pronounced increase
from α ≈ 0.5 to α = 1 for an ER graph with λ = 10 but only
needs an increase from 0 to around 0.3 for that with λ = 15
[see Fig. 1(a) inset].

On top of the percolation threshold, two important measures
of network robustness are the fraction S of giant cluster above
percolation and the robustness R [25], an integral of S over
the entire depreciation process. Recall that Eq. (4) only applies
below percolation where the largest cluster remains finite.
However, we can still solve for S above the phase transition by
evaluating H0(1) exclusively over finite clusters [29]. Using (2)

042804-2



IMPACT OF SELF-HEALING CAPABILITY ON NETWORK . . . PHYSICAL REVIEW E 91, 042804 (2015)

and (3), it follows that

S = 1 − H0(1) = η[1 − G0(u)], (6)

where u = H1(1) is the smallest non-negative solution of 1 −
u = ρ[1 − G1(u)]. Accordingly, the mean size of the clusters,
excluding the giant cluster to which a randomly chosen node
belongs, can be expressed by

〈s〉 = H ′
0(1)

H0(1)
= η

1 − S

[
G0(u) + ρG′

0(u)G1(u)

1 − ρG′
1(u)

]
, (7)

which reduces to (4) in the absence of giant cluster, namely,
S = 0 and u = 1. The robustness R, attracting increased
attention [25–27,31], on the other hand, is defined as

R = 1

N

N∑
qN=1

S(q) ∼
∫ 1

0
S(q)dq, (8)

where N is the number of nodes in the network and S(q)
is the fraction of nodes in the largest connected cluster after
recovering qN nodes [34] [in particular, S(q) is given by (6)
under random failures]. Figure 2 shows the variations of S and
R under random failures as well as targeted attacks, which we
will explain later.
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FIG. 2. (Color online) First row [(a) and (b)] main panels: frac-
tions of giant clusters S as functions of q for α = 0 (squares), 0.5
(circles), 1 (triangles), and αI (�) (crosses), and αD(δ) (pluses). Panel
(a) is for ER graphs with λ = 10; (b) is for scale-free networks
with γ = 2.4 and κ = 60. The insets show, respectively, S vs f ,
the fraction of the least connected nodes that are kept intact. Data
points correspond to the simulation results averaged over 50 random
graphs with 20 independent runs for each, and solid lines are the
exact solutions using (6), (9), (10), and (11). Second row [(c) and
(d)]: robustness R of networks with different self-healing schemes
under random failures and targeted attacks: (c) corresponds to (a),
and (d) corresponds to (b).

B. Networks with degree-dependent self-healing capability

To further explore the robustness variation in response to
different failure patterns as well as self-healing capabilities,
we consider the general degree-dependent scenario hereafter.
Now if we follow a randomly chosen edge from a root node
with degree k′ to a node, say, v0, with degree k, the probability
that the selected edge is occupied turns out to be ρk,k′ := qk +
αkqk′(1 − qk), and the excess degree distribution is generated
by

F1(x|k′) =
∑

k kpkρk,k′xk−1

〈k〉 . (9)

in analogy to (1). Likewise, the counterparts of (2) and (3)
become, respectively,

H1(x|k′) = 1 − F1(1|k′) + x
∑

k kpkρk,k′H1(x|k)k−1

〈k〉 (10)

and

H0(x) = 1 −
∑

k

pkηk +
∑

k

pkηkH1(x|k)k, (11)

where ηk = qk + αk(1 − qk).
We now apply these results to the study of network

robustness in various nonuniform cases. We consider two
types of topology-dependent self-healing capabilities sig-
nified by αI (kc) := αk = k/ max{k,kc} and αD(kc) := αk =
min{k,kc}/k, where kc is an integer ranging from the minimum
degree δ to the maximum degree � of the network. We
assume δ � 1 without loss of generality. The first type αI (kc)
indicates a recovery scheme where hubs possess the strongest
self-healing capability, while the second type αD(kc) implies
that the least connected nodes have the strongest self-healing
capability. These schemes allow one to interpolate smoothly
between uniform and nonuniform self-healing capabilities (see
Appendix A).

Figure 2 reports the fraction of giant cluster S and
robustness index R for the same networks used in Fig. 1.
The main panels in Figs. 2(a) and 2(b) display the behaviors
under random failures, where a fraction 1 − q of random
nodes are selected as recovered, and their incident edges are
reconnected according to the respective self-healing schemes.
The insets in Figs. 2(a) and 2(b) display the behaviors under
intentional attacks targeted at hubs (or systemic failures
inclined toward hubs). Here, the targeted attack is equivalent to
setting qk = θ (k − ka), where θ is the Heaviside step function
and ka is a cutoff ranging from 0 to the maximum degree of
the network [7]. We define f = f (ka), the fraction of the least
connected nodes that are kept intact, by the number of intact
nodes with degree smaller than ka divided by 106, the total
number of nodes. By doing so, f plays an analogous role as q

in the random failure case, facilitating our comparison.
The results gathered in Fig. 2 allow us to draw several

interesting comments. First, the simulated results agree well
with theoretical predictions. The phase transition point at
S ∼ 0, as expected, coincides with the critical probability qc

in Fig. 1 for α = 0, 0.5, and 1. Second, there is a pronounced
difference on the convexity of S curves for α = 0, 0.5, and
1, in both ER [Fig. 2(a)] and scale-free networks [Fig. 2(b)].
The increase of self-healing capability in terms of α yields
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a noticeable increase in the fraction of giant clusters. For
example, consider q = 0.2 in Fig. 2(a), namely, 20% nodes in
the network are intact. The giant cluster consists of only 15%
nodes for α = 0 but consists of almost all nodes for α = 1,
dramatically enhancing the network robustness. Third, for ER
graphs, the topology-dependent self-healing scheme αI (�)
produces results very close to the uniform case α = 0.5 in
both random failures and targeted attacks [Figs. 2(a) and 2(c)].
Additionally, the self-healing scheme αD(δ) is similar to
the case α = 0 in both random failures and targeted attacks
[Figs. 2(a) and 2(c)].

These phenomena can be explained as follows. In the
random failure scenario, we have αI (�) = k/� ∼ 〈k〉/� ∼
0.5 and αD(δ) = δ/k ∼ δ/〈k〉 ∼ 0.1 due to the bell-shaped
degree distribution of ER graphs. The similarity of the results
between random failures [e.g., Fig. 2(c) green bars] and
targeted attacks [e.g., Fig. 2(c) red bars] stems from the
homogeneity of the network topology. In other words, the
robustness of ER networks is not sensitive to the individual
variation of self-healing capability—only the overall average
change matters.

However, it is a quite different story when it comes to
scale-free networks. In the random failure scenario [Fig. 2(b)
main panel], the fraction of giant cluster S for αD(δ) is
slightly smaller than that for α = 0.5; while S for αI (�) is
slightly larger than that for α = 0, confirmed by R [Fig. 2(d)
green bars]. This is due to the fact that most nodes in
a scale-free network have small degrees and only a small
number of nodes (hubs) have large degrees. Therefore, a
random recovered node probably has a small degree, whose
self-healing capability is higher under the αD(δ) scheme,
rendering a more robust network, than under the αI (�)
scheme. Namely, the self-healing capability of small-degree
nodes largely determines robustness in the random failure
scenario, while increasing the self-healing capability for hubs
has a quite limited contribution. In sharp contrast, under
targeted attacks, the self-healing scheme αI (�) turns out to
improve robustness much more effectively than the αD(δ)
scheme. For example, the red bars in Fig. 2(d) show that
R(α = 1) ∼ R[αI (�)] ∼ 0.05 	 R[αD(δ)] ∼ 0.015. This is
again due to the heterogeneity of scale-free networks—the
self-healing capability becomes more critical for hubs than for
small-degree nodes in this case.

When comparing the random failure and targeted attack
scenarios, we note that a scale-free network with maximum
self-healing capability (i.e., α = 1) under targeted attacks
appears even more fragile, in terms of S as well as R, than
that without self-healing capability (i.e., α = 0) under random
failures. This is unforseen yet reasonable because the hubs can
be strongly connected with each other, which is known as the

FIG. 3. Illustration of several different self-healing capability
distributions. For αI (kc), the capability increases with respect to node
degree, while for αD(kc), the capability decreases with respect to node
degree. Moreover, αI (kc) with kc = δ is equivalent to αD(kc) with
kc = �—they are both equivalent to the uniform self-healing scheme
αk ≡ α = 1.

rich-club phenomenon [35,36]—removing the edges between
them may cause rapid fragmentation of the entire network.

It is worth adding that the scale-free networks in our
examples seem often to have higher qc (cf. Fig. 1) and lower
S (cf. Fig. 2), and are less robust than the ER graphs. This is
because the mean degree of the scale-free networks is lower.
For instance, the mean degree of the scale-free network in
Fig. 2(b) with γ = 2.4 and κ = 60 is below 3, while that of
the ER graph in Fig. 2(a) is 10.

Finally, we apply our theory to varied real-world networks,
and find that the impact of self-healing capability on network
robustness can be qualitatively predicted (see Appendix B).

III. DISCUSSION

Self-healing phenomenon plays an important role in many
complex systems. Yet, little was known about how it will affect
robustness in complex networks. We have here developed ana-
lytical tools to deal with this problem using degree distribution
as the only input. Our key finding, that the self-healing capabil-
ity has a profound impact on both percolation transitions and
(integrated) fraction of giant clusters for homogeneous and
heterogeneous topologies, suggests a simple local mechanism
to better understand network robustness which goes beyond
merely network topology. A number of variants of the problem
are of interest. For instance, in some cases the attacks are not
launched simultaneously but in a sequential manner. There
could also be self-healing time delays in response to failures.
Moreover, the role of self-healing functions in networks with
degree-degree correlation is certainly worth investigation.
We hope the results presented here could stimulate further
research efforts on these related issues which have practical
implications for designing robust systems in the real world.

TABLE I. List of five empirical networks analyzed in this paper. N : number of nodes; M: number of edges.

N M Description

USPowerGrid [5] 4941 6594 Power grid of the western United States
ca-CondMat [37] 23133 186936 Collaboration network of arXiv Condensed Matter
Yeast [38] 2361 7182 Protein-protein interactions in the yeast S. cerevisiae
C. elegans [5,39] 297 2148 Neural network of the worm C. elegans
Facebook [40] 4039 88234 Facebook user-user friendships
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TABLE II. Robustness index R of five empirical networks with various self-healing schemes in the case of random failures as well as
targeted attacks.

Random failure Targeted attack

α = 0 α = 0.5 α = 1 αI (�) αD(δ) α = 0 α = 0.5 α = 1 αI (�) αD(δ)

USPowerGrid 0.227 0.312 0.420 0.249 0.293 0.063 0.087 0.104 0.096 0.071
ca-CondMat 0.405 0.491 0.570 0.429 0.488 0.083 0.109 0.131 0.124 0.095
Yeast 0.391 0.472 0.556 0.408 0.463 0.109 0.122 0.136 0.129 0.118
C. elegans 0.477 0.580 0.701 0.492 0.523 0.331 0.386 0.430 0.425 0.347
Facebook 0.452 0.536 0.670 0.478 0.510 0.113 0.138 0.162 0.151 0.124
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APPENDIX A: ILLUSTRATION OF SELF-HEALING
CAPABILITIES

In Fig. 3 several different self-healing capability distribu-
tions are presented.

APPENDIX B: IMPACT OF SELF-HEALING CAPABILITY
ON REAL NETWORKS

We studied the impact of self-healing capacity on network
robustness for diverse empirical networks (see Table I for a
brief description): namely, USPowerGrid [5], the vertices
being generators, transformers, and substations and the edges
being high-voltage transmission lines; ca-CondMat [37],
the edges in this network indicating that the two scientists

co-authored at least one paper; Yeast [38], the vertices being
proteins and the edges representing biological interactions; C.
elegans [5,39], the vertices being neurons and the edges being
neural connections; Facebook [40], the edges in this network
indicating that the two users are friends on Facebook. All these
five networks except USPowerGrid are demonstrated to have
power-law degree distributions. USPowerGrid does not have
a power-law regime but has an exponential decaying tail.

The robustness indices R of these networks under random
failures and targeted attacks are summarized in Table II. The
results are broadly consistent with our theory and synthetic
models. For example, an increase in self-healing capability α

systematically yields an increase in R. It is interesting to see
that our found signature of scale-free networks—R[αD(δ)] >

R[αI (�)] under random failures, while R[αI (�)] > R[αD(δ)]
under targeted attacks—is obeyed by all five systems. We
contend that this phenomenon for USPowerGrid may find
its origins in the heterogeneity of the degrees. Although
USPowerGrid has a narrower degree distribution than a
scale-free network, the exponential decaying is much slower
than a Poisson degree distribution of an ER random graph.
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H. J. Herrmann, Sci. Rep. 3, 1969 (2013).
[28] R. Parshani, S. V. Buldyrev, and S. Havlin, Phy. Rev. Lett. 105,

048701 (2010).
[29] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E

64, 026118 (2001).
[30] A. A. Moreira, J. S. Andrade Jr, H. J. Herrmann, and J. O.

Indekeu, Phys. Rev. Lett. 102, 018701 (2009).
[31] Y. Shang, Phys. Rev. E 90, 032820 (2014).
[32] The model is independent of the order of node recovery.
[33] A mean-field approximation gives P(root connected to v0) =

α · P(root intact) + 0 · P(root recovered) = αq.
[34] The original definition [25] of R is slightly modified here by

considering recovered nodes instead of removed nodes.
[35] F. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, Nat.

Phys. 2, 110 (2006).

[36] This might seem at odds with the fact that scale-free networks
tend to exhibit disassortativity. However, they do not conflict
with each other: Although the chance of finding a chain of pe-
ripheral, low-degree nodes is low, the hubs can be interconnected
with each other [43].

[37] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans. Knowl.
Discov. Data 1, 2 (2007).

[38] H. Jeong, S. Manson, A.-L. Barabási, and Z. Oltvai, Nature
(London) 411, 41 (2001).

[39] J. White, E. Southgate, J. Thomson, and S. Brenner, Philos.
Trans. R. Soc. London B 314, 1 (1986).

[40] J. McAuley and J. Leskovec, in Advances in Neural Information
Processing Systems (NIPS, Lake Tahoe, 2012), pp. 548–556.

[41] P. Crucitti, V. Latora, and M. Marchiori, Phys. Rev. E 69,
045104(R) (2004).

[42] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing,
Phys. Rev. Lett. 100, 218701 (2008).

[43] S. Zhou and R. J. Mondragón, New J. Phys. 9, 173
(2007).

042804-6

http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1103/PhysRevE.85.066130
http://dx.doi.org/10.1103/PhysRevE.85.066130
http://dx.doi.org/10.1103/PhysRevE.85.066130
http://dx.doi.org/10.1103/PhysRevE.85.066130
http://dx.doi.org/10.1038/srep01969
http://dx.doi.org/10.1038/srep01969
http://dx.doi.org/10.1038/srep01969
http://dx.doi.org/10.1038/srep01969
http://dx.doi.org/10.1103/PhysRevLett.105.048701
http://dx.doi.org/10.1103/PhysRevLett.105.048701
http://dx.doi.org/10.1103/PhysRevLett.105.048701
http://dx.doi.org/10.1103/PhysRevLett.105.048701
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevLett.102.018701
http://dx.doi.org/10.1103/PhysRevLett.102.018701
http://dx.doi.org/10.1103/PhysRevLett.102.018701
http://dx.doi.org/10.1103/PhysRevLett.102.018701
http://dx.doi.org/10.1103/PhysRevE.90.032820
http://dx.doi.org/10.1103/PhysRevE.90.032820
http://dx.doi.org/10.1103/PhysRevE.90.032820
http://dx.doi.org/10.1103/PhysRevE.90.032820
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1103/PhysRevE.69.045104
http://dx.doi.org/10.1103/PhysRevE.69.045104
http://dx.doi.org/10.1103/PhysRevE.69.045104
http://dx.doi.org/10.1103/PhysRevE.69.045104
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1088/1367-2630/9/6/173
http://dx.doi.org/10.1088/1367-2630/9/6/173
http://dx.doi.org/10.1088/1367-2630/9/6/173
http://dx.doi.org/10.1088/1367-2630/9/6/173



