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Using trading strategies to detect phase transitions in financial markets
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We show that the log-periodic power law singularity model (LPPLS), a mathematical embodiment of positive
feedbacks between agents and of their hierarchical dynamical organization, has a significant predictive power
in financial markets. We find that LPPLS-based strategies significantly outperform the randomized ones and
that they are robust with respect to a large selection of assets and time periods. The dynamics of prices thus
markedly deviate from randomness in certain pockets of predictability that can be associated with bubble market
regimes. Our hybrid approach, marrying finance with the trading strategies, and critical phenomena with LPPLS,
demonstrates that targeting information related to phase transitions enables the forecast of financial bubbles and
crashes punctuating the dynamics of prices.
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I. INTRODUCTION

Complex systems often exhibit nonlinear dynamics due to
the interactions among their constituents. In particular, phase
transitions are a very common phenomenon that emerge due
to coupling, leading to positive and negative feedback loops.
Examples of such systems can be found in a broad range of
fields such as biology with the firing of neurons in the brain [1],
ecology with the turbidity of lakes [2], sociology with the Arab
Spring [3], or, as we propose, the economy with stock market
bubbles and crashes [4].

The stock market is a complex system whose constituents
are economic agents. They are heterogenous in size and
preference (financial institutions, individual traders, etc.) and
interact through a complex network topology [5]. As such,
statistical stationarity and complete unpredictability of price
dynamics as postulated by classical economic theory seem
unlikely, as exemplified by the emergence and run-up of
financial bubbles until the Global Financial Crisis of 2008 [6].
In fact, many models have been put forward to describe
bubbles [7–11] or diagnose their occurrence [12–14], but
quantifying their explanatory and predictive power remains
an outstanding problem [15].

We propose that bubbles and their ensuing crashes can be
seen as phase transitions where the behavior of the economic
agents becomes synchronized through positive feedback loops,
building up the bubble and eventually leading to its collapse.
The crash is not the result of a new piece of information
becoming available to market participants; instead, it is
the result of a system close to criticality, where even a
tiny perturbation is enough to reveal the large susceptibility
associated with the approach to the phase transition. These
concepts are captured by the log-periodic power law sin-
gularity model (LPPLS) [16,17], which has been usefully
applied in the description of other physical phenomena such
as earthquakes [18] or the rupture of materials [19]. In the
case of the stock market, the basic mechanism generating
the positive feedback loops is herding, both technical and
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behavioral: during a bubble regime, the action of buying the
asset pushes its price up, which itself leads paradoxically to an
increased demand in the asset. This process is unsustainable
and inevitably leads to a change of regime, which often results
in a financial crash [16].

We extend previous LPPLS-related studies [16,17], not by
determining how well LPPLS can predict the time of the
regime change according to some definition of a crash, but
by developing a hybrid methodology combining physics and
finance based on the outcome of trading strategies constructed
on the log-periodic power law singularity model. Usually
the province of finance, trading strategies are here proposed
as genuine nonlinear transformations mapping an input time
series (here a price) onto an output profit-and-loss time series
that, when coupled with physical mechanism(s), may reveal
novel properties of the studied system [20–22].

II. THEORY

More formally, the positive feedback process at the core
of LPPLS, on which the trading strategies are built, can be
described by the simple differential equation (1) capturing the
market impact of excess demand fueled by growing prices:

dp(t)

dt
∝ p(t)δ, (1)

with p the price. When the exponent δ is greater than 1, it
represents positive feedback of the price on the instantaneous
rate of return. In this case, the solution to Eq. (1) becomes

p(t) ∝ (tc − t)−m, (2)

where m = 1
δ−1 . This solution is quite remarkable because

of the emergence of the hyperbolic power law describing a
superexponential regime ending in a finite-time singularity
occurring at the movable time tc determined by initial
conditions, beyond which Eq. (2) has no solution. This can be
interpreted as a change of regime, where the price dynamics
go from a superexponential to something different, a crash for
example. By abandoning the need to describe the full process
of the bubble, followed by a crash, and the subsequent market
recovery and evolution, we gain the insight that the information
on the end of the bubble regime, embodied in the critical time
tc, is contained in the price dynamics itself during the bubble.

1539-3755/2015/91(4)/042803(5) 042803-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.042803
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In addition to the exuberant growth dynamics of the bubble,
one can observe the existence of medium-term volatility dy-
namics decorating the superexponential price growth. Several
mechanisms have been found to be at the origin of these struc-
tures [23], the most notable being the hierarchical organization
of the network of traders [24], leading to dynamics obeying
the symmetry of discrete scale invariance [25].

Combining these mechanisms with the positive feedback
process and imposing that the price should remain finite
leads to the so-called log-periodic power law singularity
specification for the deterministic component (or expected
logarithmic price) of the price dynamics [26]:

ln[p(t)]=A+B(tc − t)m + C(tc−t)m cos[ω ln(tc − t) − φ],

(3)

where A = ln[p(tc)] is the log price at tc, B (B < 0 for positive
bubbles) gives the amplitude of the bubble, 0 < m < 1, and C

determines the amplitude of the oscillations. ω is the angular
log frequency determining the scaling ratio of accelerating
oscillations, and φ is a phase embodying a characteristic time
scale.

III. METHODOLOGY

Because empirical time series such as prices contain
many complex unknown features, using trading strategies to
extract properties requires a robust null reference, which we
take as random strategies, i.e., decisions to buy or sell at
random. Because the random strategies are exposed to the
same complex patterns as the supposedly LPPLS-informed
trading strategies, they are exposed to the same bias and same
idiosyncratic features. Hence, any significant performance of
the LPPLS-informed strategies over the random ones signal a
causal relationship between LPPLS and the price formation
process. This idea can be formulated mathematically as
follows: if φLPPLS and φrandom are, respectively, an LPPLS-
based and random strategies, then the following statements
are true in expectation:

r(φLPPLS(M)) = r(M) if M is random, (4)

r(φLPPLS(M)) = ω �= r(M) if M ∼ LPPLS, (5)

r(φrandom(M)) = r(M) ∀M, (6)

where M is the time series of prices of the market and r

the annualized return “operator.” Equations (4) and (5) follow
from the martingale condition (no free lunch), and Eq. (6)
translates the fact that random strategies have no skill and do
not use any pattern that might be existing in the financial
market time series. From Eqs. (5) and (6), it follows that
if LPPLS strategies outperform random ones, the market
has some structure connected to the LPPLS pattern. Trading
strategies are thus used as the analogs of “spectrometers” that
probe the market, where deviations from the performance of
random strategies reveal the existence of information [20].
Thus only the relative performances of the LPPLS strategies
are relevant within this context; their absolute performance
is secondary for our purpose. (It is obviously important for

would-be investors.) The strength of this methodology lies in
the fact that our tests do not depend on the definition of bubbles,
of crash, or of market phase transitions, or on any assumption
about the underlying process. It should also be noted that the
impact of any trading activity on the market dynamics falls
outside of the scope of our methodology for the following
reason: If a significant number of agents would start applying
LPPLS-based strategies, they would possibly influence the
market dynamics and it is an open question as to whether this
would modify the LPPLS patterns that we aim at probing.

In order to implement LPPLS-based strategies, we first
need to create a signal aggregating the information contained
in the calibration of the LPPLS model to financial prices at
different time scales. Not knowing a priori which time scales
capture a potential bubble dynamic, for any given day t , we fit
Eq. (3) for every interval [t − �,t] with � ∈ [20, 21,..., 500]
days, corresponding to one business month to two business
years. For each day of observation t , we fit 500 − 20 = 480
intervals, each of them representing a different time scale.
Naturally, not all the fits are relevant, especially outside of a
superexponential regime. In order to distinguish those that are
phenomenologically compatible with bubble regimes, we filter
them according to theoretically and empirically motivated
criteria. For instance, we want m ∈ [0,1] [in Eq. (3)]: m > 1
would lead to a decelerating price, inconsistent with the
concept of a superexponential regime, whereas m < 0 would
lead to diverging prices, which is unrealistic. Similarly, we
need B < 0 to filter for increasing price and Bm > Cω to
ensure that the probability of a crash remains positive in the
rational expectations framework [27]. The remaining criteria
are based on empirical observations and are ω ∈ [6,13] and the
number of oscillations until t should be larger than 2.5 [28].
The selected range of ω is motivated by general theoretical
arguments that its associated scaling factor λ := exp[ 2π

ω
]

should be of the order of 2 [29]. This range is also supported
empirically by studying 20 well-known bubbles and crashes
and using a Lomb periodogram to determine the relevant
range of ω values [28]. Concerning the number of oscillations,
Ref. [30] showed that the most probable number of oscillations
of a geometric random walk is 1.5. Thus we impose a larger
number so as to decrease the likelihood that the oscillations
may be spurious. We then define our signal st simply as
st = number of qualified fits

number total fits , the fraction of qualified fits, which
represents the equally weighted vote among all the time scales
of the strength of the superexponential regime. Figure 1 shows
the signal average over the SP500 constituents (as of 2003)
together with a plot of the SPY index.

Based on the signal, we build simple trading strategies and
compare them with two different benchmarks consisting of
different ways of randomizing our strategies.

The LPPLS-based strategies were constructed as follows:
When the LPPLS signal st is above a threshold s̄, we enter a
short position as shown in Fig. 2. This means that we expect
the price to decrease, as the LPPLS signal is detecting a strong
superexponential regime that, due to its unsustainable nature,
indicates an imminent correction. We close the position
according to some predefined exit gain or loss (ḡ, l̄) and
minimum or maximum holding times (hmin, hmax). We then
wait ωmin days to open a new position. In practice, we explored
all possible combinations of s̄ ∈ [0.01,0.025,0.05,0.075,0.1],
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FIG. 1. (Color online) Price trajectory of the SPY (blue and
left scale) together with the average of the signal over the SP500
constituents (as of 2003) (red and right scale) as a function of time.

ḡ ∈ [1%,5%,15%,50%], l̄ ∈ [−1%,−5%,−15%,−50%],
hmin ∈ [1,5,10] trading days, hmax ∈ [20,100,∞] trading
days, and ωmin ∈ [1,5,10] trading days, i.e., 2160 strategies.
The parameters were allowed to vary within broad bands to
show that the difference in the outcome of the LPPLS-based
versus random strategies is robust.

The random strategies were constructed in two different
ways. In the first one, for each of the 2160 LPPLS strategies,
the positions taken based on the LPPLS signal were shuffled.
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FIG. 2. (Color online) Example of a strategy applied on Deere
and Co. (DE). We see a successful example of going short with a
signal threshold s̄ of 0.025, as manifested by the predominance of
green bars on the upper figure. The size of the positions changes
due to reallocation of resources on the other assets of the portfolio.
Notice that most green bars coincide with the end of a strong price
appreciation that the LPPLS signal qualifies as a mature bubble ready
to burst.

In other words, for each LPPLS position (open-close pair),
the entry time of the random position was picked arbitrarily
and its duration was set to be the same as the LPPLS one.
The upside of this method was that the duration and the
number of positions were the same in both the LPPLS and
random cases. Its downside was that the exit strategies were
ignored, since the duration of the positions was enforced.
The second randomization process consisted in shuffling the
LPPLS signal (an example of which is shown on the lower
panel of Fig. 2), effectively destroying its structure and
applying the strategies as in the LPPLS case but on the shuffled
signal. While not suffering from the downside of the first
method, the number and lengths of the positions were not
conserved. The two processes are complementary: shuffling
the signals ensures that any difference between LPPLS and
“shuffling the positions” is not solely due to the exit strategies
(ḡ,l̄,hmin,hmax,ωmin), while shuffling the positions ensures that
any difference between LPPLS and “shuffling the signal” is
not solely due to the difference in the number and duration of
the positions between the two processes.

IV. RESULTS

Figure 3 shows the comparison between LPPLS strategies
and their two random counterparts in the five-year period
starting on 1 January 2008, and ending on 31 December
2012. The strategies were not applied on a single asset, but
rather on a portfolio of 50 assets chosen randomly among
the SP500 constituents. We see a clear difference between the
performances of the LPPLS-based strategies and the random
ones, in that the annualized returns of the LPPLS-based
strategies are greater than those of their random counterparts,
the vast majority of the points on Fig. 3 lying above the x = y
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FIG. 3. (Color online) Annualized returns of the LPPLS-based
strategies vs the random ones on a basket of 50 assets between
1 January 2008 and 31 December 2012. Each point represents the
annualized return of a single strategy.
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FIG. 4. (Color online) Each polygon represents the fraction of
LPPLS > shuffle positions of a cloud plot of Fig. 3. The vertical
bars on the yz projections represent the standard deviation of the
fraction of LPPLS > shuffle positions over ten different choices of
assets. In the vast majority of cases, LPPLS is above the 50% plane
and thus significantly differs from shuffle positions. Although LPPLS
vs shuffle signals is not shown here, the results are qualitatively the
same.

line representing equal performance. Indeed, the LPPLS-based
strategies outperform the outcome of the shuffled positions
and shuffled signal process 92% and 96% of the time,
respectively. In other words, the portfolio performance metrics
of LPPLS strategies are significantly and consistently different
from those of random strategies in this time period, strongly
suggesting that LPPLS contains information.

Proving that LPPLS-based strategies outperform their
random counterpart in a given time period is not enough to
make a general statement. In fact, asset price dynamics can
be very different depending on the time period chosen. For
instance, during the 2008 financial crisis, the stock market went
down as opposed to the 2003–2006 period. This motivated
us to compare the LPPLS-based results with the random
ones in different time periods. Concretely, we chose the
nonoverlapping ten yearly periods, five 2-year periods, two
5-year periods, and the 10-year period from 1 January 2003
until 31 December 2012. Moreover, in order to show that the
deviation from randomness was robust with respect to the
choice of the 50 assets portfolio on which the 2160 strategies
were applied, for each time period we ran the strategies on ten
different portfolios of 50 assets chosen randomly among the
SP500 constituents.

Figure 4 shows the extension of the procedure reported
in Fig. 3 to all the time periods and portfolios of 50 assets
described previously. The cubes represent the fraction of
strategies that performed better in the LPPLS case than
in the shuffled position ones in a given time period. The
error bars on the yz projection result from repeating the

comparison on ten different portfolios of 50 assets. We can
see that LPPLS shorting clearly outperforms the outcome of
the two randomized processes in most of the time periods
and choices of assets, confirming LPPLS’s predictive nature.
However, contrary to naive expectations, the few time periods
in which the LPPLS strategies perform similarly to their
random counterparts is between 2007 and 2009, i.e., during
the financial crash and the ensuing recession. This seemingly
unintuitive behavior has a straightforward explanation. By
construction, the signal is built to detect positive bubbles.
However, superexponential regimes of positive price growth
are by definition rare during a financial crash. As such, it
is not surprising to see our signal losing its relevance during
such a period. There are ways to take into account the so-called
negative bubbles [31], but that is beyond the scope of this paper.

V. CONCLUSION

The statistically significant skills of our LPPLS-based
strategies support the hypothesis that the dynamics of financial
market prices exhibits transient regimes characterized by the
approach to phase transitions revealed by the power law
singularities. The present work adds to the existing sum
of evidence concerning the relevance of the log-periodic
power law singularity model for describing stock market
bubbles [4,26,28,32–37] by providing the most robust and
broadest test available until now. In our approach discussed
above, we refrained from optimization of any kind and just
launched a wide web of parameter sets applied to arbitrary
chosen assets in a simple, fair horse race with the random
strategies. While one can never prove that a model or a theory
is right [38], we argue that the evidence of the present paper
significantly increases our trust further in the relevance of the
power law singularity view of financial markets, a hallmark of
phase transitions.

In summary, we have applied a hybrid methodology to
financial markets, marrying trading strategies with the log-
periodic power law singularity model, which takes its roots
in critical phenomena. Our results have clearly demonstrated
that the outcome of LPPLS strategies persistently outperforms
that of the random ones, in other words, they have predictive
skills. This work supports a view in which financial markets
are inherently unstable, out of equilibrium, a view dramatically
opposed to the consensus in classical finance and economics.
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