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Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the
existing nodes’ degree, has become the standard growth model for scale-free networks, where the asymptotic
probability of a node having degree k is proportional to k−γ . However, the motivation for this model is entirely ad
hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach
most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a
starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to
one of the nodes of degree k with probability proportional to 1

N+ζ (γ )(k+1)γ (in a N node network): a stronger bias
toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally
scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks
with a given degree exponent γ . We generate viable realization with finite N for 1 � γ < 2 as well as γ > 2. We
observe an apparently discontinuous transition at γ ≈ 2 between so-called superstar networks and more treelike
realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural
features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment
process and introduce alternative measures of network entropy. Our approach is generic and can also be applied
to an arbitrary degree distribution.
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I. INTRODUCTION

Complex networks appear to be virtually ubiquitous [1],
and, moreover, there is currently a growing industry in the
study of networks with a power-law distribution of node
degree. This recent activity can be traced back to Barabási
and Albert’s seminal work [2] in which they described the
preferential attachment growth model. They showed that if
one grows a network by adding nodes in such a way that new
nodes preferentially attached to high-degree nodes, then the
resulting network will be scale-free; that is, the result of such
a process is a connected network with the probability of a
vertex having degree k being proportional to k−γ .

The surprising power of the Barabási and Albert prefer-
ential attachment growth model (hereafter, BA) is twofold.
First, the scale-free distribution of node degree is implicit
and arises naturally. Second, BA generates networks which
seem to explain much, but not all, of the great variety of
scale-free networks in nature. However, BA does not generate
random representative realizations from the set of all scale-free
graphs [3,4]. In Ref. [5] we proposed a Monte Carlo Markov
Chain framework which does just this, thereby showing that
many of the properties attributed to a scale-free degree distribu-
tion are actually dependent on the particular generative model.

However, the algorithm in Ref. [5] is not a growth model. In
this paper we ask: What is the optimal (in terms of likelihood)
way to arrive at a scale-free network via a growth process?
The surprising result is that BA is not the right answer. The
optimal (via a greedy likelihood maximization process) way of
growing a scale-free network is to most often connect to low-
degree nodes. This leads to a starlike scale-free network with a
single dominant hub: what we call a superstar network. Careful
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examination of the relative prevalence of low- and high-degree
nodes reveals that, when cast in a manner analogous to BA,
our algorithm chooses nodes with degree k with probability
proportional to kγ

N2 (for k � N ). This is a stronger bias towards
higher degree nodes than posited in Ref. [2] and one that
explicitly incorporates the target node degree. Nonetheless,
both our algorithm and BA rely on knowledge of the global
degree sequence of the growing network, yet neither method
needs global connectivity information.

Our result does not diminish the remarkable observation
that BA will naturally lead to a scale-free network. Conversely,
our algorithm incorporates the scale exponent γ explicitly and
hence allows one to grow a scale-free network of arbitrary
exponent; indeed, the algorithm can easily be modified to grow
networks of an arbitrary degree distribution. Our algorithm
provides a mechanism for the generation of scale-free (often
nonsmall world [6]) networks with γ < 2. Such networks have
been widely observed [6–8], but largely viewed as inconsistent
with the current generative models and hence rather patholog-
ical. Typical networks produced by this algorithm are depicted
in Fig. 1. Contrary to the titular claim of [9], we observe
both sparse and dense scale-free networks. Indeed, just as is
claimed in Ref. [9], we see that for γ � 2, the so-called
graphical fraction becomes small; viable networks become
scarcer. However, for γ closer to two, finite dense networks
are fairly common [5]. The structural change in the networks
of Fig. 1 at γ ≈ 2 reflects the effect of increasing the number
of high-degree nodes as highlighted by Ref. [9].

Section II introduces our primary algorithm, an analytic
derivation of the optimal (maximum likelihood) model for
growth of a scale-free network and our main results. In Sec. III
we address some minor issues concerning the maximum
degree of the resultant network; we extend the results of
Sec. II to build truncated power-law networks by introducing
a node-degree cutoff. The cutoff acts to explicitly forbid
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γ = 1.93 γ = 1.94 γ = 1.95 γ = 2.0 γ = 2.5

FIG. 1. (Color online) Representative realizations of the optimal scale-free network generation scheme with γ = 1.93, 1.94, 1.95, 2.0, and
2.5 (N = 103). For γ � 2 the algorithm is unable to find viable networks; however, for 1 � γ < 2 viable networks do exist (certainly for
finite N it is easy to see why this is the case), and such dense networks are, in fact, quite plentiful [5]. As γ approaches 2.0 there is a sudden
phase transition to large treelike networks with a proliferation of cross-links. As γ increases further, the cross-links gradually become scarcer
and the networks we obtain evolve from highly treelike back to hub-centric superstar networks.

networks from growing too large. Nonetheless, we see that
the cutoff alone is neither enough to explain nor suppress the
emergence of superstar networks. Section IV concludes.

Following the main paper are two short and technical
appendices. In Appendix A we address some technical issues
concerning the dependence of scale-free exponent γ on
the number of added links m (this extends the well-known
asymptotic result: in the tail of the distribution γ → 3
independent of m as N → ∞). Finally, Appendix B addresses
some technical computational issues concerning growth of
maximum likelihood networks for m > 1.

The next section presents our primary results.

II. GREEDY MAXIMUM LIKELIHOOD GROWTH

Let GN be a network of N nodes. Let nk denote the number
of nodes in GN with k links. Hence N = ∑

k nk and n(GN ) =
[n1,n2, . . . ,nk, . . . ,nN ] is the histogram of degree distribution.
A scale-free network is usually defined to be a graph for which
the probability of a node having degree k is given by

pk = k−γ

ζ (γ )
. (1)

The denominator ζ (γ ) is the Riemann zeta function and
provides the necessary normalization. However, this is a very
restricted definition of scale-free, and it will not be sufficient
for our purposes. This equality can only hold asymptotically,
and for real networks deviation from this definition is to be
expected. For BA, one must also account for the minimum
degree m, such that pk = 0 for k � m, and hence (1) is replaced
by a shifted power law. In what follows we will provide a
rigorous probabilistic definition of scale-free, based on the
likelihood of an observed degree histogram conforming to the
ideal distribution pk .

Starting from some seed network Gs of s nodes we wish to
add nodes so that

lim
N→∞

nk

N
= pk. (2)

We do this with a series of moves, adding both nodes and edges,
in such a way that we produce networks that are increasingly
likely to satisfy Eq. (2). The likelihood of GN conforming to

degree distribution pk is given by the multinomial distribution

P (GN ) = N !
N∏

k=1

pk
nk

nk!
. (3)

There is a small discrepancy between nk and pk . As defined
above pk > 0 for all k, including k � N . One way to
circumvent this would be to use a truncated power law
instead of (1). However, the introduction of such truncation
incurs an additional parameter which we choose to ignore
at present. In Sec. III we examine the effect of a cutoff
parameter more closely. We eventually conclude [see Eq. (9)]
that our attachment rule naturally induces a more effective size
dependent cutoff of its own.

Our criteria (3) depends on only node degree; we assume
that all connected networks with a given degree sequence are
equally probable [5,10]. One could also condition (3) on other
desirable network properties: assortativity or embeddability,
for example. We seek a sequence of moves yielding a sequence
of networks with increasing P (G). Each move can either add
a new node with one edge, or add another edge from the
last added node to the rest of the network. We only propose
moves which are modifications to the last node added and its
connections; we add nodes one at a time and with a variable
number of links.

The first move we consider is the addition of one node of
degree one. By adding a new node with one link, we move
from GN to GN+1, and the marginal payoff is

Qnode(k) = P (GN+1)

(N + 1)p̃P (GN )
=

(N + 1)!
∏N

k=1
pk

n′
k

n′
k!

(N + 1)p̃N !
∏N

k=1
pk

nk

nk !

=
{ p2

n2+1
1
p̃

k = 1
p1

n1+1
nk

pk

pk+1

nk+1+1
1
p̃

k > 1
. (4)

The additional term (N + 1)p̃ accounts for the additional
node. To provide a fair comparison between the numerator
and denominator we explicitly include the extra node: com-
binatorially, it could be any of the (N + 1) nodes, yet as it is
not connected to existing nodes its corresponding probability is
chosen to be the complement of all other possibilities p̃ = 1 −∑N

k=1 pk . Both simulation and dimensional arguments indicate
that this is the correct choice. We find that choice of p̃ which do
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FIG. 2. (Color online) (a) As we vary γ ∈ [1.5,5] we generate optimal and random realization of our scale-free network growth algorithm.
We plot γ against γ̂ (the maximum likelihood estimate of the scale-free exponent from the sample degree distribution) for both optimal (red)
and partially random (green: slightly larger variance at extrema) realizations with N = 104 nodes. The identity line is also shown. (b) Typical
degree distribution for BA (blue, squares), optimal attachment (red, stars), and semirandom (q = 0.5, green asterisks). The partially random
scheme (with q = 0.5 as described in the text) did not significantly affect the final degree histogram, and yet this allowed much more variation
in the resultant networks; for q < 1 we see a transition from superstar networks towards the usual results of BA.

not scale with N in this way does not produce viable networks.
Denote by n′

k the terms in the new histogram n(GN+1). The
only difference between the histograms n(GN+1) and n(GN ) is
that GN+1 has an additional node with one link (the last node
added), and that link connects to a node formerly of degree
k. Hence, n′

1 = n1 + 1; n′
k = nk − 1; n′

k+1 = nk+1 + 1; and
n′

i = ni (for i /∈ {1,k,k + 1}).
The second move is the addition of another edge from the

last added node to the rest of the network. Suppose that the
last node added to the network already has j links (initially,
j = 1). A slightly more complicated counting argument yields

Qedge−j (k) = P (G̃N,(j+1))

P (GN )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nj−1

pj−1

pj+1

nj+1+1 k = j − 1

p2
j+1

(nj+1+1)(nj+1+2)
nj (nj −1)

p2
j

k = j

nj

pj

pj+2

nj+2+1 k = j + 1
nj

pj

pj+1

nj+1+1
nk

pk

pk+1

nk+1+1 |k − j | > 1

. (5)

The two cases |k − j | = 1 are needed to avoid spurious terms
when an edge is added between nodes of similar degree.

Equations (4)–(5) are sufficient to define two network
growth algorithms: one a random process, and one a greedy
optimization. We start with a seed network Gs and then
at each step we compute Qnode(k) and Qedge−j (k) as given
above. From among these 2N marginal payoffs we select the
maximum Q∗(k) > 1 and adopt the specified move, either
adding a link or a new node. This yields a greedy process
which we will call the optimal scale-free network algorithm
(for a given γ and Gs). Alternatively, we may seek random
realizations by treating each Q∗(k) > 0 as being proportional
to the probability of accepting that particular move and by
selecting among the possibilities randomly. This yields a
random scale-free network growth algorithm (for given γ ).

Like the BA algorithm, the optimal approach requires
knowledge of the degree sequence of the network. Since
neither this algorithm nor BA requires true global knowledge
(of clustering, for example), it is easy to imagine generalization
requiring only local information, utilizing the information of
a random walker on the network, for example. Scenarios in-

volving random walkers, with local information and likelihood
maximizing attachment rules, will be considered elsewhere.

In Fig. 1 we show representative realizations of the optimal
scale-free network for γ between 1.93 and 2.5. Figure 1
depicts the strong dependence of network structure on γ and
an explosive transition first to treelike graphs (at γ ≈ 1.94)
and then a gradual drift back toward superstar networks. Note
that, while γ is the degree distribution exponent prescribed
for the algorithm, it is not necessarily the actual exponent
of the degree distribution of a particular realization of that
algorithm. For comparison, in Fig. 2 we plot exactly this
quantity. What we observe is an excellent agreement between
the target (prescribed) γ and the actual realizations γ̂ , for
γ > 2. For γ < 2, we observe a nonlinear relationship (as
the degree histogram becomes difficult to satisfy), with γ̂

systematically smaller than the prescribed value. Of course,
once γ < 2 the mean of the asymptotic degree distribution is
no longer finite (for N → ∞). Nonetheless, such networks do
exist (for N < ∞), and our algorithm continues to grow them.
As the asymptotic results no longer converge, the comparison
between γ and γ̂ is much weaker.

We now consider the middle ground between our optimal
and random algorithms. Define a parameter q, such that at
each time step there is a probability q of performing an
attachment move deterministically, and probability 1 − q of
making a random assignment. The deviation between the
values generated by the optimal algorithm (q = 1) and by
a somewhat random counterpart (q = 0.5) is small. We stress
that both algorithms control only the degree of the connected
nodes; their location is always random (one is free to choose
from among all nodes of equal degree). The optimal algorithm
has a deterministic impact on the histogram, while for the
random algorithm both the link placement and the changes in
the histogram are random.

Next we ask how best to frame these algorithms in terms
comparable to BA: we seek to distill from (4) and (5) an
analogous rule. Asymptotically, we may suppose (assuming
that the algorithm works) that nk → Npk and hence nk ≈

N
ζ (γ )k

−γ . Substituting this and (1) into (4) and (5) gives

Qnode →
{

N+1
N+ζ (γ )2γ k = 1

N+1
N+ζ (γ )

N
N+ζ (γ )(k+1)γ k > 1

, (6)
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and

Qedge−j →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N
N+ζ (γ )(j+1)γ k = j − 1
N(N−ζ (γ )jγ )

[N+ζ (γ )(j+1)γ ][N+2ζ (γ )(j+1)γ ] k = j

N
N+ζ (γ )(j+2)γ k = j + 1

N2

[N+ζ (γ )(j+1)γ ][N+ζ (γ )(k+1)γ ] |k − j | > 1

.

(7)

Hence, we see that the maximal likelihood scale-free network
is obtained by observing that the probability of attaching a
node to a link of degree k is proportional to

Prob(a degree−k node) ∝ 1

N + ζ (γ )(k + 1)γ
. (8)

However, before comparing (8) to BA we must note that (8) is
the probability of attaching to any one of the nodes of degree
k; asymptotically we expect there to be

nk → Npk ≈ N

ζ (γ )
k−γ

such nodes. BA [2] says that the probability of attaching to a
node, if that node has degree k, is proportional to k. Hence,
our maximum likelihood algorithm approach says that the

optimal strategy is to link to a node of degree k with probability
proportional to

Prob(node−i|degree node−i = k) ∝ 1

N

kγ

N
ζ (γ ) + (k + 1)γ

.

(9)

For k � N this is proportional to kγ

N2 , and as k → N

this probability is approximately
(

k
k+1

)γ → 1, reducing the
likelihood of very high-degree nodes and acting as an implicit
degree cutoff. While most links are to low-degree nodes, we
find that high-degree nodes are more likely to receive links. The
likelihood is significantly stronger than BA, proportional to an
increasing power law, and dependent on the desired exponent
γ . The combination kγ

N2 reveals an interesting connection
between the parameters γ and N and the probability pk . Other
authors (Refs. [11,12], for example) have proposed models
that are explicitly dependent on the network size N . What we
do is show that the (likelihood) optimal growth model induces
a natural scale dependent cutoff of its own, as node degrees
become large the probability of attaching to any of the large
hubs becomes (asymptotically) equal. Beyond some cutoff all
hubs are equally attractive.

FIG. 3. (Color online) For γ ∈ (1,5] we compute optimal realizations of our scale-free network generation algorithms (N = 104). We
show (a) assortativity (linear Pearson correlation coefficient), (b) global clustering coefficient, (c) shortest path length, and (d) two measures
of network entropy. Note that the hublike nature of networks with large γ is evident from the shortest path length, while the global clustering
coefficient drops to zero at γ ≈ 2. Interestingly, assortativity remains negative, peaking with a value of 0 at γ ≈ 2 and then declines rapidly. The
shortest path length has clear evidence of the undersize networks for γ � 2, an abrupt transition to treelike networks near 2, and then a gradual
decay to a single dominant hub as γ increases further. The two network entropy statistics compute the entropy of the degree sequence [13,14]
(lower, red/blue line) and the entropy of the link-degree coincidences (upper, magenta/green line). Both entropy measures show an abrupt,
nondifferentiable transition at γ ≈ 2. Each data point reported in these figures is the corresponding statistic values estimated from a single
network (with γ increasing between simulations in steps of size 0.01); variance can be inferred from the smoothness of the plotted curves.
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The difference between (4)–(5) and (6)–(7) is that the
former incorporates deviation from the target degree distri-
bution pk as a sequence of ratios of the form nk

pk
. The latter

assigns links proportional to (9). Unfortunately, an attachment
algorithm based on these asymptotic attachment rules does
not perform well. Simulation has shown that for small N the
asymptotic approximation is usually poor, and there appears to
be little hope of appropriate convergence. We could be tempted
to define a third implementation of our growth algorithm:
randomly select nodes according to the distributions (6)–(7)
and iterate. Such an algorithm generates what we refer to
as asymptotically scale-free networks. However, systematic
results from this algorithm are not reported here, and per-
formance is generally very poor. For small seed networks,
the initial configuration is far from the asymptotic ideal
and convergence is poor. For large seed networks, the result
depends on the choice of initial network.

In Fig. 3 we compute the usually quoted properties of
scale-free networks, for realizations of our first two algorithms.
We observe a systematic dependence of these properties on
the exponent γ . In particular, there is a sudden, apparently
not differentiable, transition in the vicinity of γ ≈ 2 as the
network structure rearranges. This transition is indicative
of the underlying structural change in the network for γ

bigger than two, the onset of the superstar hub structure
depicted in Fig. 1. We note that for γ > 2 the typical
maximal node degree scales as N1/(γ−1) [15]. For γ < 2
this implies faster than linear growth and results in the (low-
degrees exponent) emergence of a superstar structure in our
model.

More generally, we find the range of behaviours demon-
strated in Fig. 3 is far wider than what one would observe
with straightforward BA. In addition to network topological
measures, we also report two measures of network entropy.
First, following Bianconi [13,14] (and our own independent
and ad hoc treatment [16]), we compute the entropy of
the events defined by the sample degree histogram; that
is, −∑

nk

N
log nk

N
. However, this quantity does not take into

account the structure between nodes of the network (i.e., how
the high and low-degree nodes are distributed within that
topology). Hence, we also compute what we call the network
link entropy. If ei,j is the sample probability of an edge joining
nodes of degree i and j then this version of entropy is computed
as −∑

i,j ei,j log ei,j . Figure 3(d) illustrates the result of both
computations.

Figure 4 demonstrates that, even if γ is restricted to values
which one obtains from BA, the schemes we propose here
exhibit a much wider variation in network structures. The
assortativity of our algorithm is stronger (more negative),
and as consequence, the mean path length is lower. The BA
algorithm illustrated here has minimum degree m = 1, and
hence one can compute (see Appendix A) that the expected
value of γ is approximately 2.471, in excellent agreement with
Fig. 4(c). In comparison, the optimal algorithm adds more links
per node and achieves a significantly higher value of γ .

Using likelihood arguments we have illustrated a new
network growth model that generates structures distinct from
those observed elsewhere. As a consequence of these likeli-
hood methods we have observed the emergence of a natural
node degree cutoff in Eq. (9). Previously other authors have

FIG. 4. (Color online) We generate BA networks (blue solid lines), estimate the scale exponent γ , and then generate networks according
to our first two schemes with this estimated value γ̂ and N = 104 nodes (red dot-dashed and green dashed lines). Displayed here are the
usual network properties estimated from the resultant networks and depicted as histograms (generated from 100 network realizations via a
Gaussian kernel smoothing algorithm): (a) assortativity, (b) shortest path length, and (c) estimated exponent γ̂ (adaptive binning). Remarkably
the distributions reported for the optimal scheme (red dot-dashed) is almost identical to the results of the randomization scheme (q = 0.5 and
green dashed lines). As assortativity is a linear measure, it is not particularly good at describing the detail of degree-degree correlation. Panels
(d)–(f) illustrate scatter plots (circle size and colour proportional to likelihood/number) of actual degree-degree structure for representative
networks: (d) BA, (e) optimal, and (f) random.
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proposed other node degree cutoffs (Ref. [11] for example). In
the next section, we present a technical comparison of these
truncation methods to the growth process proposed in this
paper.

III. TRUNCATED POWER LAWS, AN UPPER BOUND ON
NODE DEGREE, AND A “NATURAL” CUTOFF FUNCTION

We have seen that Eq. (9) acts as an implicit cutoff
and limits the growth of very high-degree nodes. While
it is pleasing to observe the manifestation of this cutoff
directly in our maximum likelihood model, there are several
models that impose explicit (but so-called “natural”) cutoffs
in the power-law degree distribution of evolving scale-free
networks [15]. It is perhaps useful to ask whether the addition
of an explicit mechanistic cutoff to our optimal scheme will
either significantly alter our results or provide an explanation
for the superstar effect and deviation from the BA model. In
this section we show that the answer to both propositions is
“no,” except when imposing extreme restrictions on the node
degree.

To illustrate these results we explore the effect of imposing
an arbitrary maximum degree Cmax < N on a scale-free
network network following the optimal growth procedure
described in Sec. II. The growth process of Sec. II remains
the primary contribution of this paper.

The optimal method proposed in the previous section
tends to generate scale-free networks with a single big hub,
which means the degree distribution in log-log scale has one
particular extremum in the far tail of the distribution far away
from the power law. Because this datum corresponds to an
extremely low-probability event it does not significantly affect
the likelihood evaluation and is hence a natural solution to the
greedy optimization process. Conversely we note that the BA
method produces networks with significant deviation among
the low-degree nodes, deviation which is routinely explicitly
ignored when estimating the exponent of such networks (see
Appendix A). Nonetheless, our networks produce a small
deviation from the ideal scale-free property in the resulting
degree histogram, and it is natural to wonder whether the
superstar networks we observe are only an artifact of this
single node in the far tail of the distribution. To test this we
repeat the optimal growth process described in Sec. II after
modifying (1) to include an explicit cutoff function. We now
consider the truncated power-law distribution

pk =
{

Ck−γ , k � Cmax

Ck−αγ , otherwise
, (10)

where C is the normalization constant and α can be any number
greater than one when γ > 2, and Cmax is the cutoff value.
We call this the truncated maximum likelihood method; as
this approach is parameterized by the constant Cmax, we will
equivalently refer to this as the Cmax method.

(a) BA (b) Cmax = 20 (c) Cmax = 100 (d) Cmax = 200

(e) Cmax = 300 (f) Cmax = 400 (g) Cmax = 900 (h) optimal

FIG. 5. (Color online) Representative realizations of the BA method, optimal method (Sec. II), and an imposed Cmax with Cmax =
20,100,200,300,400,900 (N = 103) (Sec. III). When Cmax is quite small, i.e., Cmax � 100, networks look like the BA network because
of a scattered structure. For Cmax > 100, networks tend to have less hubs and gradually evolve to concentrated superstar networks, equivalent
to the optimal method.
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FIG. 6. (Color online) In (a) and (b), we apply the optimal method, the BA method and the truncated Cmax method with different Cmax to
generate scale-free networks. For each method or each value of Cmax, we generate 100 networks, and then display the histogram of common
properties of scale-free networks: assortativity and shortest path length. The number on the top of the bars indicates the Cmax value. From panels
(a) and (b) we can see that when the Cmax value is large, the networks we have very similar properties to the optimal maximum likelihood
networks. This makes sense because if Cmax is large, the cutoff function has so little power that the optimal method and the Cmax method are
almost the same. Then, when we decrease Cmax, the properties of networks move towards those of BA networks. Notably, when Cmax is small,
the properties of Cmax networks are quite similar to those of BA networks. All of this indicates that the Cmax method can actually link the BA
method and optimal method. Panel (c) illustrates relative probability (relative to optimal maximum likelihood network) of Cmax networks, with
Cmax ranging from 15 to N . Surprisingly, when Cmax is neither very big nor very small, the relative probability will be higher than 1, which
means the probability of truncated Cmax network will be bigger than optimal networks. This suggests that the truncated approach provides a
useful middle ground to generate networks “between” BA and the optimal growth networks.

When Cmax is large, the effect of the additional cutoff term in
the power-law distribution function is small, and the truncated
method behaves similarly to the greedy optimal method
described above: the network results in a single dominant hub
and a potential superstar network. However, as we decrease
Cmax, the cutoff function has more influence, and we observe
that this gradually splits the superhub into multiple smaller (but
still large) hubs. Figure 5 demonstrates this process. That is,
the effect of the introduction of a maximum degree Cmax results
in the largest hub being reduced to a rich club of multiple large
(but nonetheless, smaller) degree hub nodes, and these nodes
are interconnected. One can view this rich club of high-degree
nodes as a virtual superhub: replacing these nodes with a single
node of degree greater than Cmax results in networks exactly
equivalent to the previous section. The superstar networks and
their hub nodes are not an artifact.

Figure 5 provides representative realizations of the BA
method, the optimal method, and the Cmax method (for Cmax

between 20 and N ). In Fig. 5 we can observe the structure of

networks with different Cmax. It is easy to notice that when we
decrease Cmax, the network evolves from a superstar structure
to a scattered structure. In Fig. 6 properties of Cmax networks
move from those of optimal networks to BA networks when we
decrease Cmax from N to 20, further supporting the qualitative
observations of Fig. 5. Another interesting observation is that
when Cmax is rather small, networks can be very similar to BA
networks, both in the structural sense illustrated in Fig. 5 and
in the properties shown in Fig. 6. The Cmax method provides
a link between the BA and optimal method via the parameter
Cmax.

To identify whether a given network is more similar to
the BA or optimal model, the easiest and most direct way is to
count the number (and size) of hubs. Hubs have frequently been
shown to have a disproportionate importance in the overall
network structure [17–19], heavily influencing properties
including assortativity, transitivity, rich clubs, stability, and
centrality. Studying the location and connectivity of hub
nodes offers significant insight into the overall structure and
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FIG. 7. (Color online) Panel (a) illustrates our constructive definition of hubs. Starting with a fixed γ = 2.47 (corresponding to the
estimated γ in comparable BA networks), we construct a straight line in the degree distribution on the log-log scale (the solid red line)
log(nk) = log(n1) − γ log(k) where k is degree and nk is the number of nodes with degree k. The intersection of this line and x axis occurs at
log(n1)/γ . As there is some variability at the end of the degree distribution, we add θ to exclude the tail. In panel (a), the green diamonds show
the degree distribution of Cmax network with Cmax = 25, and blue circles show the BA network. Here we use θ = 3 and draw the minimum
degree of hubs as the black line. From (a) we can see our definition successfully distinguishes the hubs in the networks. In (b), for Cmax ∈ [21,36]
and γ = 2.47 (the estimated γ of BA method when minimum degree is 1), we compute realizations of Cmax method and the number of hubs in
the representative networks. The orange, green, blue, and yellow areas (from bottom to top in the plot) indicate the number of hubs will be 1,
2, 3, 4 with particular Cmax and N in the representative areas. Note that if we fix Cmax, when we increase the size of networks, the number of
hubs will increase; if we fix N and increase Cmax, the number of hubs will decrease.

properties of a network [19]. If there is only one hub (as with
the superstar networks), the network is highly concentrated; if
there are many hubs, the network is more scattered.

Now we wish to quantify the proliferation and placement
of hubs, and we provide the following working definition for
that purpose. Naturally, the only judge of whether a node is a
hub is the degree. We define the minimum degree of hubs as

log(n1)/γ + θ,

and any node with an equal or higher degree is counted as
a hub. Here γ is the degree exponent of the true asymptotic
distribution, not that estimated from the data. The parameter
θ can be any value more than 1; with different θ the exact
number of hubs may vary, but the overall tendency remains the
same. This is not the only definition of hubs, but alternative
definitions yield the same tendency.

When we change the Cmax value, we see that the number
of hubs also changes. Figure 7 shows the tendency of the
number of hubs. Decreasing Cmax or increasing the size
of the network both lead to an increase in the number of
hubs. This can be explained as follows. When the network
grows, it is natural to generate more centers because as the
population N grows, nodes tend to (perhaps) gather into
different groups and gather with different nodes instead of
being all together. If Cmax decreases, the cutoff function has
more influence and so forces the richer nodes in the network to
have fewer connections. However, as those richer nodes have
fewer connections, their former neighbors need to connect
elsewhere, and those new connections increase the degree of
other (relatively) low-degree nodes, increasing the prevalence
of hubs.

We have now provided a thorough examination of the effect
of natural and explicitly imposed degree cutoffs on the growth
of hubs. We find that the absence of cutoffs alone is not
enough to explain the superstar networks we generate with
the algorithm introduced in Sec. II. In the next section we
provide a brief conclusion.

IV. CONCLUSION

Although we have derived four separate algorithms, we
examine only three of them: the asymptotic scheme gives
poor results if the seed network Gs is small. Nonetheless, this
algorithm does provide insight into the asymptotic behavior of
the other methods. Each of the three algorithms we present here
provides a technique to obtain random realizations of networks
consistent with a particular growth process. It has been argued
that growing a network inherently biases the random sampling
of the wider space of all networks consistent with a given
degree distribution [3]. While in Ref. [5] we address the issue
of random realizations from the space of all networks defined
by a particular degree distribution, in this paper we propose
a more narrowly defined growth algorithm. We demonstrate
that BA does not provide the most likely algorithm for
network growth consistent with a particular power-law degree
distribution. In a sense, this extends the arguments of Ref. [3];
not only is random growth biasing one’s selection from the
space of all networks, BA is a biased selection [20,21] from the
space of randomly grown scale-free networks. Our algorithm
provides a new approach to growing scale-free networks with
an arbitrary degree exponent; moreover, these networks exhibit
a range of structural features beyond what one would expect
from BA.

Of particular interest are the superstar networks that
emerge from the optimal algorithm. These networks possess a
unique structure not previously explored via standard growth
processes. Recent work on explosive synchronization in star
networks [22] demonstrates the importance of understanding
this particular class of networks. Here we see that superstar
networks emerge via a natural and optimal growth process.
This also provides a natural mechanism for the very large
diameter and small exponent (i.e., γ < 2) scale-free network
observed in the real-world transmission of avian influenza [6],
a large number of superstar hubs distributed geographically.
Similar small exponent superstar networks have also been
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observed for networks of musical preference [7] and sexual
promiscuity [8]. One possible explanation for the origin of
this superstar structure is offered by the strongly linked hub
nodes in a rich club [19]; as we observe, the imposition of a
strict node-degree cutoff leads to the formation of a cluster of
high-degree nodes acting as a virtual superstar. Nonetheless,
the algorithm we present provides a simple mechanism for
generation of networks such as these. Conversely, the single
dominant “superstar” can easily be forbidden by truncating (1)
with a harsher upper bound dependent on N . Doing so
produces networks with a distributed cluster of hubs.

Mathematica and MATLAB implementations of the algo-
rithms described in this paper are available from the first author.
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APPENDIX A: EXPECTED DEGREE

We provide an analytic expression for the expected degree
exponent γ of a preferential scale-free network. The standard
result [23] holds that, for BA growth, γ → 3 independent of m.
However, this result is an asymptotic one concerning the tail of
the distribution. A more useful statistic for what we are doing
here is to estimate γ from the entire distribution (1). Doing
so yields quite a different answer and we achieve excellent
agreement between theory and computation. Moreover, this is
a far more useful statistical measure for finite networks than the
asymptotic result. After introducing our results we will briefly
discuss the reasons behind the deviations from the results in
Ref. [23] in a little more detail.

We perform a preferential attachment growth process to
generate a scale-free network. At each stage we add a new
node with m new links. Let k denote the degree of a node, and
N the number of nodes in the network. The degree distribution
is assumed to converge to a power law (for k � m) of the
form k−γ , and we obtain an exact implicit relationship for
γ , m, and N . We verify this with numerical calculations over
several orders of magnitude. Although this expression is exact,
it provides only an implicit expression for γ (m). Nonetheless,
we provide a reasonable guess as to the form of this curve
and perform curve fitting to estimate the parameters of that
curve, demonstrating excellent agreement between numerical
fit, theory, and simulation.

Preferential attachment [2] is the archetypal growth mech-
anism for scale-free networks. Asymptotically, under certain
circumstances, such networks produce a degree distribution
which converges asymptotically to a power law with exponent
3. But this is not true in general, and it is not true for arbitrary
finite networks generated along the way. In this appendix
we derive straightforward analytic results for the expected
exponent γ of a scale-free network with power-law degree
distribution p(k) ∝ k−γ .

We assume that the network is grown with a BA process
as described in Ref. [2]. With each new node we add m links,
and the growth process is terminated when the network has N

nodes. We make the approximation that the degree distribution
of this finite network follows a shifted power law [24] with
some exponent γ .

Hence, a BA network with minimum degree m will add
exactly m new links for each new node. The expected degree

E(k) = 2m (A1)

(since each link has two ends and contributed to the degree of
two nodes). Conversely, the probability that a node has degree
k is given by

P (k|γ,d) =
{

0 k < m

k−γ

K(γ ) k � m
,

where the normalization factor K(γ ) is inconvenient. How-
ever,

ζ (γ ) =
(

m−1∑
k=1

+
∞∑

k=m

)
k−γ =

m−1∑
k=1

k−γ + K(γ ),

and hence it is easily computable.
The expected degree is

E(k) =
∞∑

k=1

kP (k|γ ) =
∑∞

k=m k1−γ

ζ (γ ) − ∑m−1
k=1 k−γ

. (A2)

Equating (A1) and (A2), we have that the asymptotic value of
γ satisfies

ζ (γ ) =
m−1∑
k=1

k−γ + 1

2m

∞∑
k=m

k1−γ . (A3)

Replacing the left-hand side of (A3) with the corresponding
infinite sum and canceling identical terms we obtain

∞∑
k=m

(2m − k)k−γ = 0. (A4)

Solving (A4) allows us to determine the expected value of γ

for the BA algorithm with a particular choice of minimum
degree m. In particular, for m = 1 we recover 2ζ (γ ) = E(k).

In Fig. 8 we illustrate the agreement between sample
preferential attachment networks of various sizes and the
prediction of (A4). The curve appears to be asymptotic to γ =
3, and so we fit a function of the form γ̂ (m) = 3 − (m + α)−β

to the solution of the series (A4). We find that

γ (m) ≈ 3 − 1

(m + 0.925)0.9932
.

These results are required to explain expected degree distribu-
tions observed in Sec. II (Fig. 4), and in that case also show
excellent agreement.

As noted above, this is not the same answer as that
provided in the review of Albert and Barabási [23]. The
discrepancy arises from the methods used to estimate the
exponent γ . Essentially, the standard maximum likelihood
approach described by Newman [25] imposes a minimum
degree xmin and estimates γ using a maximum likelihood
expression:

γ = 1 + n

/ ∑
xi>xmin

xi

xmin
.
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FIG. 8. (Color online) Left panel: Expected values of γ as a function of m [Eq. (A2)] (heavy magenta line) and estimated values of
γ from 30 independent realizations of BA networks of size N (mean ± standard deviation). We take m ∈ [1,10] and N = 103 (red), 104

(green), 105 (blue). Right panel: γ as a function of m computed via the solution of (A4) (stars) and estimated from a function fit of the form
γ̂ (m) = 3 − (m + α)−β . The best fit (obtained from a fit on m ∈ [1,10]) is then extrapolated over the domain. Parameter values are α = 0.9205
and β = 0.9932.

This expression becomes independent of xmin only once xmin >

mini=1,...,N xi and invokes Bayes’ rule with a uniform prior on
γ . Consequently, for xmin sufficiently large one observes that
for preferential attachment γ → 3 independent of m. Instead,
we choose to maximise likelihood directly over the finite
degree histogram.

The review paper [23] derives this asymptotic degree
distribution in three different ways:

(1) Continuum theory: Critically, the continuum approach
assumes that ki is a continuous real variable when it is in fact
a discrete random process. Moreover, the results hold only
asymptotically. The continuity assumption holds only in the
tail of the distribution, avoiding the systematic bias away from
the power law for low-degree nodes.

(2) Master equation: This approach actually obtains a
slightly different expression for P (k), which is dependent on
m and scales as the inverse of a cubic polynomial. Again, this
is an approximation that is valid in the tail but not the head of
the distribution.

(3) Rate equation: Similar to the previous approach,
one will obtain an equivalent expression under the same
assumption.

Of these three approaches it is only the continuum approach
which faithfully yields the claimed result that P (k) ∝ k−3,
and this is true only in the tail (where the the assumption
the ki is a continuous real variable is valid). Albert and
Barabási acknowledge this in Sec. VII C of their review: “these
methods (the master- and rate- equation approaches), not using
a continuum assumption, appear more suitable for obtaining
exact results in more challenging network models.”

To estimate γ in the case of pure preferential attachment
(the BA process) there is no reason to insist on any choice other
than xmin = m; the entire distribution should be scale-free and
to do otherwise unnecessarily favors the presumed asymptotic
behavior of the tail of a finite graph. We stress that we employ
our estimate of γ as nothing more than a descriptive statistic.
For this purpose, it makes no sense to seek the asymptotic
value which is independent of the structure we are trying
to quantify. However, as the graphs we generate conform to
the power law over their entire range, the characterization

we produce here is also the correct exponent to describe that
distribution.

APPENDIX B: GENERALIZED MAXIMUM
LIKELIHOOD GROWTH

In the main text we focus on growth by adding a single
new node or a single edge at each time step. However, the
BA model of preferential attachment adds each new node and
m edges simultaneously. The resulting degree distribution is
not (1) and has the additional constraint that pk = 0 for k < m

where m > 1. In particular p1 = 0, and there is no chance of
encountering a node with degree 1 (or any degree less than
m). One possible computational expedient to overcome this
problem is to replace pk = 0 with pk = ε > 0 for k < m.
In this appendix we provide the exact likelihood expression:
extension of (5) and (4) for the case where one adds m > 1
links simultaneously.

LetDm,N denote the sequence of degrees of m nodes chosen
from among the nodes of the existing graph of N nodes. The
degrees of these m nodes in N are denoted as below, and qk

here denotes the number of nodes in N having degree k:

Dm,N = {k1,k1, . . . ,k1︸ ︷︷ ︸
qk1

, k2, . . . ,k2︸ ︷︷ ︸
qk2

, . . . , ks, . . . ,ks︸ ︷︷ ︸
qks

},

(B1)

where k1 < k2 < · · · < ks and
∑s

i=1 qki
= m. From the main

text, we know that Qnode can be described as

Qnode = P (GN+1)

(N + 1)p̃P (GN )
.

However, the expression for connecting simultaneously to m

nodes is far less straightforward than the case (4) for m = 1. In
order to provide a more tractable formula, we need to change
our notation. Let l1 = k1. If k2 = k1 + 1, then l1 + 1 = k2; if
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not, let l2 = k2. Hence we can rewrite Dm,N as

Dm,N = {l1,l1 + 1, . . . ,l1 + b1,l2,l2 + 1, . . . ,l2 + b2, . . . lt ,lt + 1, . . . ,lt + bt ,}, (B2)

where k1 = l1, . . . , kb1+1 = l1 + b1 and k(
∑t−1

i=1 bi )+t−1 = lt , . . . ,km = lt + bt . The sequence on the right-hand side of (B2) is a
complete list of available node degrees (not counting multiplicities) parameterized under the li and bj .

Using this new notation, the same counting argument as described in the main text for m = 1 now yields

Qnode−m(Dm,N ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pm

nm+1
1
p̃

∏t
i=1

p
qli+bi
li+bi+1

p
qli
li

nli+bi+1!
(nli+bi+1+qli+bi

)!
nli

!
(nli

−qli
)! × · · ·∏bi

j=1 p
qli+j−1−qli+j

li+j

nli+j !
(nli+j −qli+j +qli+j−1)! l1 > m

pm

(nm+1−qm)
1
p̃

∏t
i=1

p
qli+bi
li+bi+1

p
qli
li

nli+bi+1!
(nli+bi+1+qli+bi

)!
nli

!
(nli

−qli
)! × · · ·∏bi

j=1 p
qli+j−1−qli+j

li+j

nli+j !
(nli+j −qli+j +qli+j−1)! l1 = m

. (B3)

There are several things we need to notice. First, when m = 1,
formula (B3) is the same as the formula (4) given in the main
text. Second, when we add a new edge, Qedge−j is identical
to (5). Finally, when a new node added, it connects to the

m nodes at the same time. The following is not allowed: if
nk = 0, and nk−1 > 0, the new node is connected to a node
with degree k − 1 and then connected to the same node which
now has degree k. So if nk = 0, then k /∈ Dm,N .
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[15] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Eur. Phys. J,

B 38, 205 (2004).
[16] M. Small, in IEEE International Symposium on Circuits and

Systems Proceedings (IEEE, Piscataway, 2013), pp. 2509–2512.
[17] H. Zhang, J. Zhang, C. Zhou, M. Small, and B.-H. Wang, New

J. Phys. 12, 023015 (2010).
[18] X.-K. Xu, J. Zhang, and M. Small, Phys. Rev. E 82, 046117

(2010).
[19] V. Colizza, A. Flammini, M. Serrano, and A. Vespignani, Nature

Phys. 2, 110 (2006).
[20] M. Small, X. Xu, J. Zhou, J. Zhang, J. Sun, and J.-a. Lu, Phys.

Rev. E 77, 066112 (2008).
[21] M. Catanzaro, M. Boguná, and R. Pastor-Satorras, Phys. Rev. E

71, 027103 (2005).
[22] Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Phys. Rev.

Lett. 112, 114102 (2014).
[23] R. Albert and A.-L. Barabási, Rev. Modern Phys. 74, 47

(2002).
[24] That is, exactly a power law for degree k � m where m � 1 is

the number of edges added with each new node.
[25] M. Newman, Contemp. Phys. 46, 323 (2005).

042801-11

http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1103/PhysRevE.64.041902
http://dx.doi.org/10.1209/0295-5075/103/58004
http://dx.doi.org/10.1209/0295-5075/103/58004
http://dx.doi.org/10.1209/0295-5075/103/58004
http://dx.doi.org/10.1209/0295-5075/103/58004
http://dx.doi.org/10.1103/PhysRevLett.99.188702
http://dx.doi.org/10.1103/PhysRevLett.99.188702
http://dx.doi.org/10.1103/PhysRevLett.99.188702
http://dx.doi.org/10.1103/PhysRevLett.99.188702
http://dx.doi.org/10.1103/PhysRevE.72.066107
http://dx.doi.org/10.1103/PhysRevE.72.066107
http://dx.doi.org/10.1103/PhysRevE.72.066107
http://dx.doi.org/10.1103/PhysRevE.72.066107
http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1103/PhysRevLett.107.178701
http://dx.doi.org/10.1103/PhysRevLett.107.178701
http://dx.doi.org/10.1103/PhysRevLett.107.178701
http://dx.doi.org/10.1103/PhysRevLett.107.178701
http://arxiv.org/abs/arXiv:1309.0961v2
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1209/epl/i2000-00227-1
http://dx.doi.org/10.1209/epl/i2000-00227-1
http://dx.doi.org/10.1209/epl/i2000-00227-1
http://dx.doi.org/10.1209/epl/i2000-00227-1
http://dx.doi.org/10.1209/0295-5075/81/28005
http://dx.doi.org/10.1209/0295-5075/81/28005
http://dx.doi.org/10.1209/0295-5075/81/28005
http://dx.doi.org/10.1209/0295-5075/81/28005
http://dx.doi.org/10.1103/PhysRevE.79.036114
http://dx.doi.org/10.1103/PhysRevE.79.036114
http://dx.doi.org/10.1103/PhysRevE.79.036114
http://dx.doi.org/10.1103/PhysRevE.79.036114
http://dx.doi.org/10.1140/epjb/e2004-00038-8
http://dx.doi.org/10.1140/epjb/e2004-00038-8
http://dx.doi.org/10.1140/epjb/e2004-00038-8
http://dx.doi.org/10.1140/epjb/e2004-00038-8
http://dx.doi.org/10.1088/1367-2630/12/2/023015
http://dx.doi.org/10.1088/1367-2630/12/2/023015
http://dx.doi.org/10.1088/1367-2630/12/2/023015
http://dx.doi.org/10.1088/1367-2630/12/2/023015
http://dx.doi.org/10.1103/PhysRevE.82.046117
http://dx.doi.org/10.1103/PhysRevE.82.046117
http://dx.doi.org/10.1103/PhysRevE.82.046117
http://dx.doi.org/10.1103/PhysRevE.82.046117
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1038/nphys209
http://dx.doi.org/10.1103/PhysRevE.77.066112
http://dx.doi.org/10.1103/PhysRevE.77.066112
http://dx.doi.org/10.1103/PhysRevE.77.066112
http://dx.doi.org/10.1103/PhysRevE.77.066112
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevLett.112.114102
http://dx.doi.org/10.1103/PhysRevLett.112.114102
http://dx.doi.org/10.1103/PhysRevLett.112.114102
http://dx.doi.org/10.1103/PhysRevLett.112.114102
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444



