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Approximate analytical solutions for excitation and propagation in cardiac tissue
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It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At
the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium
release (SCR). However, it is not understood how the size and morphology of these focal excitations are related
to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model
is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this
analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage
dependence of the inward rectifier potassium current (IK1), and is insensitive to the detailed properties of the
sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required
to induce a propagating action potential (AP), and argue that this relationship determines the necessary number
of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once
a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the
critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially
lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel
properties and important tissue scale processes such as excitation and propagation.
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I. INTRODUCTION

A variety of cardiac arrhythmias are initiated by a focal
excitation that propagates in heart tissue [1–5]. These exci-
tations are typically generated by intracellular currents that
are independent of the electrical activation due to the regular
beating rate of the heart. An example that has been extensively
studied in the literature is the case where focal excitations
are caused by spontaneous calcium (Ca) release (SCR) within
cardiac cells [6–11]. In this scenario, Ca is released in the
cell via the formation of propagating Ca waves which then
activate Ca sensitive inward currents, such as the sodium Ca
exchanger, which can lead to membrane depolarization. These
excitations are particularly dangerous since they disrupt the
rhythmic beating of the heart, and they have a larger likelihood
of inducing wavebreak and fibrillation [12–14].

The presence of inward currents in a single cell is not
sufficient to induce a propagating excitation in cardiac tissue.
This is because electrotonic coupling to neighboring quiescent
cells will suppress membrane depolarization and therefore
substantially increase the current requirements required to
bring a region of tissue to threshold [1,15]. Thus, in order to
induce an ectopic excitation, inward currents will have to occur
within a population of cells, at roughly the same time, in order
to raise that region of tissue to threshold. However, the precise
requirements for this to occur are unknown since an ectopic
excitation is dependent on a wide variety of factors such as ion
channel gating kinetics, the gap junction coupling between
cells, and the electrophysiological heterogeneities present in
cardiac tissue [1,15]. Analytic approaches to determine the
necessary requirements for an excitation to occur in tissue
have been developed by several authors [16–20]. In particular,
Idris and Biktashev [19,20] have highlighted the importance
of “critical fronts” in order to demarcate the set of initial
conditions which either propagate or decay. These studies
make important progress in our theoretical understanding of
threshold phenomenon in excitable media. However, despite

this progress it is still not known how the criteria for
excitation in cardiac tissue depends on the detailed properties
of physiological ion currents.

In this study we apply an analytic and computational
approach to determine the current requirements for a focal
excitation to occur in isotropic three-dimensional (3D) heart
tissue. Our analytic approach is based on the method of
projected dynamics, first introduced by Neu et al. [18], which
is applied to determine the current necessary to excite cardiac
tissue. We apply this technique to an experimentally based
ionic model due to Fox et al. [21] in order to determine how
key ion channel properties dictate the threshold for excitation.
Our main result is that focal excitation in heart tissue is largely
dictated by the voltage dependence of the inward rectifier
potassium current (IK1). More precisely, we show that inward
currents, due to intracellular processes such as SCR, need
only raise the voltage from the resting membrane potential
V ∼ −96 mV to roughly V ∼ −70 mV, which is the voltage
at which IK1 attains its maximum, and not to the threshold of
V ∼ −55 mV that is required to activate the sodium current.
We argue that this feature is crucial to understanding how SCR
in cardiac cells can induce an ectopic excitation, and explains
the propensity of Ca release abnormalities to induce dangerous
focal excitations. Our approach also yields an accurate analytic
expression that relates the necessary current applied to a
volume of cells required to induce a propagating AP. We argue
that this expression can be used to determine the number of
cells undergoing SCR necessary to induce a focal excitation
in cardiac tissue. Finally, we have applied the method of
projected dynamics to understand the propagation of a cardiac
excitation in isotropic three-dimensional (3D) cardiac tissue.
We show that the sodium current plays the dominant role
to determine propagation characteristics and that potassium
currents play a much less important role. This is in sharp
contrast to excitation properties which are dictated primarily
by the voltage dependence of IK1. Finally, we argue that these
results can serve as a starting point to guide the development
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of pharmacological interventions which seek to target specific
excitation and propagation processes in the heart.

II. A SIMPLIFIED MODEL DESCRIBING
CARDIAC EXCITATION

The transmembrane potential in 3D isotropic cardiac tissue
is described by the cable equation

Cm

∂V

∂t
= D ∇2V − (INa + ICa + IK + Is) , (1)

where V is the transmembrane voltage, Cm is the cell mem-
brane capacitance, and D is the effective diffusion coefficient
of voltage in cardiac tissue. The main ion currents regulating
the voltage time course are the sodium (INa), potassium (IK ),
and Ca (ICa) currents, whereas Is is an external stimulus
current that is necessary to initiate an excitation. Under resting
conditions, the membrane voltage is held at a resting potential
determined primarily by the inward-rectifier potassium current
IK1. However, if the voltage is raised above the activation
threshold of the sodium current then an action potential (AP)
will occur. Under suitable conditions, if a sufficient mass of
tissue is depolarized, then a propagating wave will be induced
in tissue. In this study, we will consider a stimulation current
that is turned on for a finite duration and applied to a spherical
region of tissue. Our stimulus current has the form

Is(t) =
{−I t � τ

0 t > τ

}
, (2)

for |r| � R, and Is(t) = 0 for |r| > R, where R is the radius of
tissue in which the inward current I is applied for a duration τ .
Our goal is to determine the critical current I = Ic, for a fixed
size R, such that a propagating wave is induced in isotropic 3D
cardiac tissue.

In this study we will model the cell membrane numerically
using an experimentally based ionic model of the ventricular
myocyte due to Fox et al. [21]. In this model there are 13
different ionic currents which regulate the membrane potential.
To understand the dynamics of excitation in this system we will
first identify the essential ionic currents that are relevant to the
excitation of an AP. We first note that excitation of cardiac
tissue is determined primary by ionic processes that occur
between the resting state at V ∼ −96 mV and the threshold
for sodium activation V ∼ −55 mV. In this range the dominant
ionic currents are IK1 and the sodium current INa. Hence, for
the purpose of computing the critical current Ic we can simplify
the system by making the approximation that IK ≈ IK1. The
detailed formulation of this current in the Fox model is given
by

IK1(V ) = GK1 K(V )
[K+]o

[K+]o + 13
(V − VK), (3)

with K(V ) = 1/{2 + exp[1.62(V − VK)F/RT ]}, where F is
Faraday’s constant, R is the gas constant, [K+]o is the
external potassium concentration, T is the temperature, and
where GK1 = 2.8 mS/μF is the channel conductance. Here
VK = −96 mV is the reversal potential of IK1 which sets
the resting membrane potential of the cell. In Fig. 1 we
plot the voltage dependence of IK1 showing the characteristic
inward rectifying feature close to VK followed by an increase
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FIG. 1. (Color online) The inward rectifier potassium channel
(IK1) as a function of the membrane potential V . The resting
membrane potential is at VK = −96.6 mV, while the maximum of
the current occurs at Vm = −71 mV.

in the amplitude to a global maximum at Vm ∼ −70 mV.
We note here that these features are consistent with existing
experimentally based ionic models such as Shannon-Bers [22]
and Luo-Rudy [23].

In most ionic models, including the Fox model used here,
the sodium current has the form INa = GNam

3hj (V − VNa),
where GNa is the channel conductance, where m,h, and j

are the activation and inactivation gating variables, and where
VNa ≈ 70 mV is the reversal potential of sodium [21,23].
Inward currents due to SCR typically have a duration in
the range 50–500 ms [9,10], which is substantially longer
than the relaxation time of the fast sodium activation gate
(τm ∼ 0.1 ms). Thus, to model excitation from the resting
potential we can make the approximation that m = m∞(V ),
where m∞(V ) is a sigmoid function that rises sharply from zero
at the sodium activation threshold Vc ∼ −55 mV. Similarly,
the dynamics of excitation should be largely dictated by
voltages between the resting state at VK and the sodium
threshold at Vc. In this regime of voltages we can make the
approximations that h = 1 and j = 1 since these gates only
inactivate once the voltage rises substantially above Vc. Thus,
for the purposes considered here, we can simplify the sodium
current to the form INa ≈ GNam

3
∞ (V − VNa). Later we will

validate these simplifying assumptions by a direct comparison
with numerical simulations of the full Fox ionic model.

III. DYNAMICS OF EXCITATION OF AN ISOLATED CELL

In order to explore the conditions that promote an excitation
to propagate in tissue it is first necessary to understand the
excitation of a single cardiac cell. In this case we analyze the
conditions such that a current stimulus induces the membrane
voltage to rise from the resting potential to a voltage at the
plateau of the AP. The voltage dynamics near the resting
potential obeys an equation of the form dV/dt = F (V,I ),
where F (V,I ) = −IK1(V ) − INa(V ) − Is(t). Here all currents
are expressed per unit capacitance (A/F), and we consider the
case where the stimulus current I is switched on at time t = 0
for a duration τ . In Fig. 2 we plot the total current F (V,I )
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FIG. 2. (Color online) Plots of the total membrane current
F (V,I ) for three different values of the current stimulus amplitude
I . the black line indicates the case I = Ic, where F (V,Ic) = 0.

for three distinct values of the current amplitude I . In the case
where I = 0 (red line) we note that the system has a stable fixed
point at V = VK and an unstable fixed point at V = Vu. Now,
when the stimulus current is turned on, the function F (V,I )
rises (black and blue curve) so that the membrane voltage
will rise accordingly since dV/dt > 0. Thus, the criteria for
an excitation to occur is that the voltage reaches the unstable
fixed point Vu before the current stimulus is turned off at time
τ , since, if it does not, then the system will return to the resting
potential once the stimulus is turned off at time t = τ . Hence,
the critical current Ic required to escape the stable fixed point
is given by the condition∫ Vu

VK

1

F (V,Ic)
dV = τ. (4)

To estimate the location of the unstable fixed point at Vu we
note that the sodium activation gate is m3

∞(V ) ∼ 0 for V < Vc

and m3
∞(V ) ∼ 1 for V > Vc. Also, once the sodium current

is activated it is substantially larger than the repolarizing
potassium currents so that INa � IK1. Thus we have that
F (V,0) < 0 for V < Vc and F (V,0) > 0 for V > Vc, which
suggests that a good approximation for the unstable fixed
point is at Vu ≈ Vc = −55 mV. To find the critical current we
evaluate Eq. (4) with F (V,I ) ≈ −IK1(V ) + I since INa ≈ 0
in the range VK < V < Vc. To proceed, we note that IK1 can
be well approximated by a quadratic fit to Eq. (3) in the range
VK < V < Vc, so that IK1(V ) ≈ gk(V − VK) − σ (V − VK)2,
where gk and σ are fitting parameters. With this approximation,
evaluation of Eq. (4) then gives the excitation criteria as an
algebraic condition

gkτ = 2A(Tan−1(A) − Tan−1{[−1 + 2(Vc − VK)σ/gk]A}),
(5)

where A = (−1 + 4Icσ/g2
k )−1/2. Note that this result applies

only in the case where the maximum of IK1 occurs at a
voltage Vm < Vc, which is indeed the case in the Fox model.
Consequently, Eq. (5) has real solutions providing that Ic �
g2

k/4σ , which is the condition that the minimum of F (V,I ) is
greater than zero.

To simplify this condition we will consider parameters
relevant to SCR in which inward currents are applied for a
duration τ ∼ 50–500 ms. A quadratic fit to Eq. (3) gives gk =
0.215 (ms)−1 so that gkτ � 1, which requires that 1/A ∼ 0
and yields a critical current of Ic ≈ g2

k/4σ. Graphically, this
solution corresponds to that current Ic that raises the total
current F (V,Ic) so that its minimum crosses the x axis (Fig. 2,
black line). This is because in the limit this condition ensures
that the dynamics of V will escape the stable fixed point at
VK. Alternatively, the critical current is simply Ic ≈ IK1(Vm),
where Vm ∼ −70 mV is the voltage where IK1 attains its global
maximum. Indeed, given a quadratic approximation to IK1,
then the global maximum is indeed IK1(Vm) = g2

k/4σ , which
is consistent with Eq. (5).

In summary, we have shown that the excitation dynamics
of a single cardiac cell is dictated primarily by the voltage
dependence of IK1. In particular, for inward currents with a
duration τ > 1/gk ∼ 5 ms, which is what is expected during
SCR, then the critical current is simply given by the maximum
of IK1. We note here that this feature is shared by a wide range
of ionic models [22,23] where the maximum of IK1, at Vm ∼
−70 mV, occurs at a lower voltage than the sodium threshold
at Vc ∼ −55 mV. Surprisingly, in these models the sodium
current does not play a role in the condition for excitation of
an isolated cardiac cell.

IV. THE METHOD OF PROJECTED DYNAMICS

To analyze the dynamics of excitation in 3D isotropic
cardiac tissue we will apply the method of projected dynamics
first introduced by Neu et al. [18]. This approach relies on the
observation that a partial differential equation (PDE) of the
form

∂v

∂t
= D∇2v + f (v) (6)

can be written as the gradient flow of an energy functional

∂v

∂t
= −δE [v]

δv
, (7)

where the energy is

E [v] =
∫

dd r [D(∇v)2 + U (v)], (8)

and where the effective potential is U (v) = −∫v f (v′)dv′.
The energy functional can be evaluated by parametrizing the
solution to the PDE using a function of the form v(r,t) =
v[a(t),r], where a(t) represents a vector of N parameters
that specify the time evolution of the solution to the PDE.
Then Eq. (7) requires that these parameters evolve according
to a system of ordinary differential equations (ODEs) of the
form

M
da
dt

= −∇ E, (9)

where ∇i = ∂/∂ai , and where M is an N × N matrix with
entries

Mij =
∫

dd r
∂v

∂ai

∂v

∂aj

. (10)
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Thus, by choosing a suitable ansatz for the solution of
the PDE we can compute the time evolution of the system
in the projected parameter space. In this study we will show
that this approach can be used to attain quantitative analytic
formulas for the wave excitation and propagation criteria of an
experimentally based AP model.

V. DYNAMICS OF EXCITATION IN 3D TISSUE

As a starting point we will rewrite Eq. (1) using the
variable v = V − VK. In this notation the threshold for sodium
activation is written as vc = Vc − VK. This gives

∂v

∂t
= D ∇2v − I (v), (11)

where I (v) = IK1(v) + INa(v) + Is(t). As in the single cell
analysis, we will make the approximation that IK1(v) ≈
gkv − σv2, which is valid in the range of voltages relevant
to excitation. To model the sodium current we note that
m3

∞(v) increases rapidly from zero near the threshold for
sodium activation near v ∼ vc. To model this property we
will approximate the voltage dependence of the sodium
current just above vc as a quadratic of the form INa(v) ≈
−g̃na (v − vc)2 �(v − vc), where �(x) is the Heaviside step
function. Here g̃na is a fitting parameter that is proportional to
the sodium conductance GNa, and is found by fitting a quadratic
to the sodium current INa(V ) ≈ GNam

3
∞(V )(V − VNa) in the

range Vc < V < Vc + 15 mV.
To apply projected dynamics it is necessary to choose an

appropriate ansatz that will capture the main features of the
solution to the PDE. In spherical coordinates we will use the
function

v (r,t) =
{

s r � R,

s R exp[−(r−R)/l]
r

r > R,
(12)

where l = √
D/gk is the electrotonic length. This ansatz

approximates the voltage in the region r < R as a constant
s which parametrizes our solution, while for r > R we use
an exponentially decaying function that is the spherically
symmetric solution of the 3D cable equation with a linear
repolarizing current IK1(v) ≈ gkv. The time evolution of the
voltage amplitude s, for times t < τ , is then given by

M
ds

dt
= − dE

ds
, (13)

where M = ∫ d3r (∂v/∂s)2 = (4/3)πR3 + 2πR2l. To eval-
uate the energy functional given by Eq. (8) we make
the approximation that the contribution due to the effec-
tive potential U is dominated by the region r < R so
that ∫ d3r U [v(r)] ≈ (4/3)πR3U (s), which gives E(s) ≈
DπR(R/l + 2)s2 + (4/3)πR3U (s). Equation (13) simpli-
fies to the form Mds/dt = f (s,R,I ), where f (s,R,I ) =
−2DπR(R/l + 2)s + (4/3)πR3I (s). Analysis of the func-
tion f (s,R,0) shows that the dynamics has a stable fixed point
at s = 0 and an unstable fixed point at s = su. The presence of
the unstable fixed point indicates that if the voltage is raised
above su then the amplitude will increase without bound. Thus,
as in the single cell case, the criteria for s to cross the threshold

at su in the time duration τ , is given by the condition∫ su

0

1

f (s,R,Ic)
ds = τ

M
, (14)

which gives an analytic criterion to determine the critical
current Ic as a function of the size of the stimulus R. We note
here that the critical current computed using this condition
only ensures that the voltage pulse will exceed the unstable
fixed point su, but it does not ensure that the resulting AP
will propagate in tissue. However, we will show later, using
numerical simulations of the Fox model in 3D isotropic tissue,
that the critical current Ic is always sufficient to induce wave
propagation, i.e., the critical current for excitation, given
by Eq. (14), is equivalent to the critical current for AP
propagation.

As in the single cell case, we will solve Eq. (14) analytically
for the case that is directly relevant to SCR induced excitation.
In this case gkτ � 1 so that the critical current is the current
necessary to raise f (s,R,I ) such that its minimum is at zero.
Thus, Ic is determined by the algebraic conditions df/ds|sm

=
0 and f (sm,R, Ic) = 0. Here sm is the minimum of the function
f (s,R,I ) and is the solution of the algebraic condition

3D(2 + R/l) + 2R2[gk − 2σsm

− 2g̃na(sm − vc)�(sm − vc)] = 0. (15)

In the case where sm < vc we have sm = gk/2σ +
3D(2 + R/l)/2σR2, which holds for R > Rc, where Rc is
the solution when vc = sm. In this regime the critical current
is found by solving the algebraic condition f (sm,R, Ic) = 0,
which gives the critical current

Ic = g2
k

4σ
�2, (16)

where

� = 1 + 3

2

(
l

R

)
+ 3

(
l

R

)2

. (17)

However, for R < Rc this solution is no longer valid since
sm > vc and the term proportional to g̃na in Eq. (15) must be
taken into account. In this case we find that the critical current
is

Ic = −σv2
c + gkvc� + g2

k

4g̃na

�2, (18)

where we have made the approximation that g̃na � σ , which
is valid in our system (see the Fig. 3 caption for parameters
derived from a fitting to the Fox ionic model). Equations (16)
and (18) give a full description of the excitation threshold Ic

as a function of system parameters.
In order to interpret the predictions of Eq. (16)–(18) we

will consider physiological parameters derived from the Fox
ionic model. First, we note that the critical current is a function
of the dimensionless parameter l/R where l = √

D/gk is the
electrotonic length. In this study we use a standard value of
D = 5 × 10−3cm2/ms and gk = 0.215 ms−1, which gives l ∼
0.15 cm. So that, according to Eq. (17), the critical current
begins to rise substantially when R < l. Now, in the limit R >

l, we find that the critical current decreases to the single cell
limit where Ic ∼ IK1(Vm) ∼ 2.6 A/F. On the other hand, in
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FIG. 3. (Color online) The critical current Ic for AP propaga-
tion for a spherically symmetric stimulus of radius R. Numerical
prediction (black line) and analytic prediction for R > Rc (red)
and R � Rc (blue). A fitting of IK1 and INa in the voltage range
−95 < V < −40 mV, yields parameters gk = 0.215 (ms)−1, σ =
0. 0045 (mV ms)−1, vc = −55 mV, g̃na ∼ 1.0 (mV ms)−1, and where
we used D = 5 × 10−3 (cm2/ms).

the case where R < Rc the critical current is given by Eq. (18)
and exhibits a dependence on properties of INa such as the
conductance g̃na and the threshold for activation vc. However,
examination of the terms reveals that g2

k/4g̃na ∼ 0.01 so that
the third term is substantially smaller than the first two terms.
This result indicates that the critical current in this regime is
mainly sensitive to the sodium current via the threshold for
activation vc.

To confirm our analytic predictions for the critical curve
we have solved the cable equation in 3D spherical coordinates
using a standard finite difference scheme. All ionic currents
are taken directly from the Fox model with all ionic currents
included, and we have taken the effective diffusion coefficient
of voltage to be D = 5 × 10−3cm2/ms. Here we consider only
spherically symmetric solutions and solve the radial equation
with a space step of 	r = 5.0 × 10−3cm and time step of
2.5 μs. Our current pulse is applied in a region r � R for a
duration τ = 50 ms, and initial conditions are chosen so that
the tissue is at the resting membrane potential (∼−96 mV). To
generate the critical curve we increase the stimulus amplitude
I in small increments until the voltage at r = 0 rises rapidly
from the resting state at −96 mV to a value above 20 mV. A
plot of the threshold Ic vs the stimulus radius R then gives
the critical curve for excitation. In Fig. 3 we have plotted the
critical curve for the full Fox model, which is in excellent
agreement with the analytic prediction given by Eqs. (16) and
(18) above. In both cases we find that as the region of excitation
R decreases the critical current increases substantially. The
analytic prediction indicates that this increase occurs near
the electrotonic length l ∼ 0.15 cm, which is consistent with
the numerical predictions. We note here that we find similar
agreement between the approximate and numerical predictions
for a wide range of D and gk values, and that the critical
current always increases when the stimulus size is near
l = √

D/gk .
The critical current for excitation given by Eqs. (16)–(18)

determines an approximate condition such that an applied

current will induce the voltage in that region to rise above
the threshold for excitation. However, this condition is itself
not sufficient to ensure propagation of an AP. To determine
the criteria for propagation it is necessary to determine the
critical current after which an AP will propagate to r � R. To
compute the critical current for propagation numerically we
again increase I in small increments and then record the critical
current Ip when the voltage at r = 2 cm exceeds V = 20 mV,
within a 50 ms interval after the stimulus has been turned
off. Our numerical simulation results reveal that Ip ≈ Ic so
that for the Fox ionic model the critical curve for excitation
serves as an excellent approximation for the critical curve for
propagation.

Our analytical approximation for the critical curve gives
a quantitative estimate of the critical current for excitation
of a physiologically detailed ionic model. Here we discuss
the limitations of the approximation and the source of the
deviation between the analytic and numerical results. Recall
that an important feature of our approximation was the ansatz
for voltage shape [Eq. (12)], which determined the parameter
space of the projected dynamics. While this functional form
captured the essential features of the excitation process, it
overly simplified the spatial dependence of the solutions. In
particular, we approximated the voltage to be constant for
r � R while the exact solution displays a more complex space
dependence. Hence, the reduced parameter space used here
neglects spatial information which contributes to the observed
difference between the theory and simulation results. However,
we stress here that a more accurate ansatz will have to be
represented by more parameters, and will thus yield a projected
dynamics that will be substantially more difficult to analyze.
In fact, it is not clear that the critical curve can be found in
higher dimensions since this will correspond to an unstable
manifold, for which a concise analytic form is in general
difficult to determine. Hence, the advantage of our approach is
that it is analytically tractable, yet captures the main features
of the parameter dependence of the critical curve. A second
source of the discrepancy is that we have approximated the
nucleation dynamics by assuming that the time scale for
inactivation of the sodium current is much slower than the
excitation process. However, these time dependent processes
in the physiologically detailed ionic model do lead to small
corrections to the critical curve, and these effects are not
captured by the method of projected dynamics. Again, we
stress that despite these limitations our approach yields simple
quantitative expressions that capture the essential features of
the critical current for excitation.

VI. APPLICATION OF PROJECTED DYNAMICS TO
DETERMINE PROPERTIES OF AP PROPAGATION

In this paper we have shown that the method of projected
dynamics gives an excellent description for the critical current
for propagation. However, this analysis does not shed light
on the characteristics of wave propagation once it has been
excited. Here we will apply projected dynamics to determine
the propagation velocity and the critical radius for propagation
for a spherically symmetric AP excitation. Our aim in this
analysis is twofold. First, our analysis will shed light on
the role of specific ion currents that determine important
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properties of wave propagation in tissue, and second, we
will demonstrate that projected dynamics serves as a powerful
tool to derive quantitative analytic expressions that describes
propagation characteristics of an experimentally based ionic
model.

As a starting point we will consider the evolution of a
spherically symmetric AP pulse with an interface at r = R

so that V (r < R) = Vp and V (r > R) = VK. Here Vp is
the voltage during the AP, and VK is the resting membrane
potential. To apply the method of projected dynamics we will
again approximate these currents with simple functional forms
that capture the main current contributions in the relevant
voltage range. In particular we will make the approximation
that m3 = m3

∞(V ) = �(V − Vc). This approximation is valid
for our purposes here since m3 ∼ 0 or 1 for a large fraction

of the voltage range at the excitation front. Also, we make the
approximation that the inactivation gate is turned off once the
voltage reaches the plateau potential Vp, so that we have h =
h∞(V ) = 1 − �(V − Vp). Finally, we assume that the slow
activation gate is given by j = 1 for the region of cells near
the AP front. Thus, we will approximate the sodium current as
INa ≈ gna(V − VNa)�(V − Vc) [1 − �(V − Vp)]. To model
IK1 we will use the approximation that IK1 ≈ gk[1 − �(V −
Vc)](V − VK), so that the IK1 current is turned off when V >

Vc. This approximation is justified by the fact that above Vc

the inward current is dominated by INa so that the contribution
of IK1 is negligible. Later we will justify the validity of these
simplifications via a direct comparison to the Fox ionic model.
To proceed, the effective potential energy defined in Eq. (8) is
given by

U (V ) =
{

(gk/2) (V − VK)2 VK � V � Vc

(gk/2) (Vc − VK)2 − (gna/2) ((VNa − Vc)2 − (VNa − V )2) Vc < V � Vp

. (19)

To apply projected dynamics we will consider a propagating
pulse that is approximated as a piecewise linear function along
the radial direction, as illustrated in Fig. 4. We model the
excited phase by a constant voltage Vp for a radial distance
R, and use a straight line interface of width l to connect Vp to
the resting membrane potential at VK . Thus, in the interface
region, the voltage profile will have the form V (r) = Vp −
(Vp − VK)r/ l. In this approach the motion of the wave front is
projected into the two-dimensional subspace of the interface
width l and the pulse radius R.

To evaluate the energy of our spatial profile we assume that
the interface width l is sharp so that l 
 R. The total energy
can then be approximated as

E(R,l) ≈ 4
3 πR3 U (Vp) + 4πR2W, (20)

where the interface energy is given by

W = D

2

(Vp − VK)2

l
+ 	U l, (21)

 

FIG. 4. (Color online) Illustration of the radial profile of a lin-
early piecewise function used to approximate the shape of an AP
front. Application of projected dynamics yields ODEs governing the
time evolution of the front position R, and the interface width l.

where 	U = Uint − U (Vp), and where

Uint = 1

Vpk

[
gkV

3
ck

6
+ gkV

2
ckVpc

2
− gna

6
V 2

pc(Vnp − 2Vnc)

]
,

(22)

with Vck = Vc − VK, Vpc = Vp − Vc, Vnp = VNa − Vp, Vnc =
VNa − Vc. The projected dynamics is then given by the 2 × 2
matrix equation

M
d

dt

(
l

R

)
= −

(
∂E
dl
∂E
∂R

)
, (23)

where the matrix elements are M11 = ∫∞
0 dr 4πr2 (∂V/∂l)2,

M22 = ∫∞
0 dr 4πr2(∂V/∂R)2, and M12 = M21 =

∫∞
0 dr 4πr2(∂V/∂l)(∂V/∂R). We note that for our

piecewise function V (r) derivatives with respect to the
parameters l and R are nonzero only at the interface.
Thus, r ∼ R where the integrands are nonzero and
M11 ≈ 4πR2 ∫∞

0 (∂V/∂l)2dr, M22 ≈ 4πR2 ∫∞
0 (∂V/∂R)2dr,

and M12 ≈ 4πR2 ∫∞
0 (∂V/∂l)(∂V/∂R) dr . We note that

∂V/∂l is antisymmetric around the position of the interface
R, so that in the thin interface limit M12 ∼ 0. Time
evolution of the interface width is then governed by
dl/dt = −(∂W/∂l)/M11, so that the steady state interface
width is given by l∗ = √

D/2	U . The radial equation
dR/dt = −(∂E/∂R)/M22 can be simplified to the form

dR

dt
= v

(
1 − Rn

R

)
, (24)

which predicts that a spherical pulse of radius R will propagate
providing that R > Rn, where

Rn = −2
√

2D	U
Vpk

U (Vp)
, (25)

with a steady state conduction velocity (CV) given by

v = −
√

D

2	U

U (Vp)

Vpk

, (26)
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FIG. 5. (Color online) Application of projected dynamics to de-
termine the parameter dependence of propagation characteristics
of a spherical AP pulse. (a) and (b) CV vs D and gna . (c) and
(d) The critical radius Rn vs D and gna . When not varied we fix
D = 5 × 10−3 (cm2/ms), and gna = 10 (ms)−1.

which is valid in the limit R → ∞. These expressions give
an analytic description of the key properties of a propagating
spherical pulse in cardiac tissue.

To extract the physical interpretation of Eqs. (25) and (26)
we again apply physiological parameters to determine the
leading order behavior relevant to cardiac tissue. Inspection
of the Fox ionic model gives gna = 10 (ms)−1 so that
gk/gna ∼ 0.02, and Uint and U (Vp) are dominated by terms
proportional to gna . Keeping only the dominant terms gives
U (Vp) ≈ −gnaV

2
nc/2 and 	U ≈ gnaV

2
nc/2, which yields v ≈√

gnaD (Vnc/2Vpk) and Rn ≈ 4
√

D/gna (Vpk/Vnc). This result
indicates that AP propagation is largely dictated by INa and
the gap junction conductance, which determines the voltage
diffusion coefficient D. Here IK1 plays a role in the leading
order behavior only by setting the resting membrane potential
VK. However, the detailed properties of this channel, such as
the conductance and voltage dependence, play a minor role in
the AP propagation characteristics.

In order to check the validity of Eqs. (25) and (26) we
have numerically simulated the Fox ionic model to compute
the propagation characteristics of a spherical AP pulse.
As a starting point we computed the CV by initiating a
spherical pulse and measuring the wave front velocity far
from the point of stimulation. In Figs. 5(a) and 5(b) we plot
the CV as a function of both the sodium current conductance
and the effective diffusion coefficient of voltage in cardiac
tissue. On the same graph we show the predictions due
to Eq. (26) showing semiquantitative agreement. Here we
note that the Fox ionic model is developed for the canine
ventricular myocyte. For the range of diffusion constants
simulated we see that the Fox model predicts a CV in the
range ∼0.05–0.1 cm/ms, while our analytic approximation
overestimates the CV in the range 0.08–0.15 cm/ms. Here
we point out that experimental measurements of the CV in
the canine heart have been performed in classic experiments,
and a wide range of values have been reported depending

upon the location in the heart [24–26]. For example, in the
ventricle the CV is measured in the range 0.045–0.075 cm/ms
in the longtitudinal direction, while in Purkinje fibers the CV
is substantially more and is roughly ∼0.2 cm/ms [26]. Also,
in the His bundle branch the CV was measured in the range
0.13–0.17 cm/ms [27]. Thus, our analysis does yield a semi
quantitative range of CVs, and should be a good starting point
to analyze the functional dependence of CV on physiological
parameters.

Using projected dynamics we have also computed the
critical radius for propagation by choosing initial conditions
so that V (r) = Vp = 1 mV within a radius of r < R and
V (r) = VK = −96 mV for r > R. We then increased the
initial radius R until a pulse propagates to r � R. Again,
we find that the analytic predictions due to Eq. (25) gives a
semiquantitative description of the critical radius for prop-
agation. These results show that the method of projected
dynamics can be used to derive analytic expressions that can
be compared to an experimentally based ionic model. Insights
from this analysis will be discussed in detail in the discussion
section.

VII. DISCUSSION

The physiological parameters that govern the excitation
of an AP pulse. In this paper we have applied the method
of projected dynamics to derive the relationship between the
critical current and the size of the stimulus. Our analytic
results, given by Eqs. (16)–(18), are in excellent agreement
with numerical simulations of the Fox ionic model. These
results indicate that for R > l ∼ 0.15 cm the critical current is
well approximated by the value of IK1 at its global maximum.
Existing ionic models of IK1 give Ic ∼ 2.6 A/F, which is
the minimum inward current due to SCR that can induce
a cardiac excitation in tissue. More precisely, during SCR
the stimulus current will be generated by the sodium-calcium
exchanger, which is activated by the release of Ca into the
cell. To estimate this current we rely on the experimental
measurements of Schlotthauer et al. [28] who found that
the total charge pumped out of the cell during Ca release
from the sarcoplasmic reticulum (SR) in rabbit myocytes
is roughly ∼1 C/F. Assuming this charge is pumped out
of the cell in roughly 100–500 ms, this gives a current of
INaCa ∼ 2–10 A/F. Thus, if SCR occurs in a region of cells
with R > l, and is synchronized over a time scale ∼100 ms,
then sufficient current can be induced to generate a propagating
excitation. Here we stress the observation that in this regime
the critical current for excitation is independent of the sodium
current INa. This is because the maximum of IK1 occurs at
a voltage that is ∼15 mV lower than the sodium activation
threshold at Vc ∼ −55 mV. Thus, while the activation of the
sodium channel plays an important role to drive an excitation,
the current requirements to reach the excitation threshold is
dictated entirely by the voltage dependence of IK1. On the
other hand, for stimulus regions of size R < l we find that
the critical current for excitation increases as a power of the
dimensionless number l/R. This is because at the electrotonic
length scale l, neighboring quiescent cells more effectively
suppress membrane depolarization due to inward currents
generated inside the volume of radius R. Our analysis reveals
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further that for R < Rc the critical current for excitation
attains a dependence on the sodium current [Eq. (18)] via
a dependence on the sodium activation threshold. Thus, our
analysis suggests that excitation is dependent on the sodium
threshold, but is likely insensitive to other properties of the
sodium channel.

The number of cells required to undergo SCR in order to
induce an ectopic excitation. In this paper we have found that
the critical current increases rapidly with decreasing stimulus
size R. Here we will argue that this length scale dictates the
typical number of cells that will induce a focal excitation in
cardiac tissue. We first note that SCR is a stochastic process
that must occur in an ensemble of cells in tissue in order for that
region to reach threshold. Now, if we denote the probability
that a single cell undergoes SCR in a given time duration,
say the diastolic interval (DI), as p, then the probability
P (n) that a region of n cells undergoes SCR at roughly
the same time is just P (n) ∼ pn, since each SCR event is
independent. Thus, P (n) should decrease exponentially with
the number of cells n required to fire. This result implies that
excitations will occur, with overwhelming likelihood, in the
smallest volume of tissue such that the inward current will
just exceed Ic. Thus, the length scale of excitation should be
well approximated by the intersection of the critical current
curve (Fig. 3) and the inward current generated by SCR via
the INaCa current. For example if we take INaCa ∼ 10 A/F,
which is on the higher range of SCR according to [28] then the
minimum size of tissue to induce an excitation is Re ∼ 0.3 cm.
Given that the size of a cell is roughly lcell ∼ 100 μm, the
number of cells required to induce SCR in 3D cardiac tissue is
n ∼ (Re/lcell)3 ∼ 27 000. Now, for Purkinje fibers, which are
effectively one-dimensional strands of tissue, the number of
cells within an electrotonic length is roughly n ∼ Re/lcell ∼
30. Thus, given that SCR is a stochastic event the likelihood
of SCR originating from the Purkinje system is substantially
larger than in 3D connected tissue. This result is consistent with
experimental findings indicating that ectopic activity in mice
suffering from catecholaminergic polymorphic ventricular
tachycardia (CPVT), a lethal familial disease characterized
by a higher likelihood of SCR, originate from the Purkinje
system [29].

IK1 dictates excitation while INa determines propagation.
In this paper we have applied the method of projected dynamics
to analyze both excitation and propagation properties of an AP
pulse. This approach gave quantitative analytic expressions
for the excitation criteria, the conduction velocity, and also
the critical radius for an AP pulse to propagate. Our results
reveal that IK1 is the dominant ion current that determines the
criteria for excitation from the resting membrane potential.
On the other hand, once an AP is nucleated, INa and the
gap junction conductance dictate the main properties of AP
propagation. In fact, our analysis predicts that the conductance
of IK1 only enters via the ratio gk/gna which is small in all the
existing ionic model formulations. This is in sharp contrast
to Eq. (18) where the sodium conductance contribution enters
via the ratio g2

k/g̃na which is also small compared to the other
terms. These observations highlight the relative importance of
IK1 and INa in distinct excitation and propagation processes in
cardiac tissue. We argue here that our results provide a guide
to possible pharmacological interventions that seek to target
cardiac arrhythmias. In particular, our results suggest that
any pharmacologic intervention that seeks to suppress ectopic
activity must target the voltage dependence of IK1, while
interventions that modulate INa will have little or no effect.
More precisely we point out that it is the voltage at which IK1

attains its maximum that plays an important role. Hence, this
work identifies the precise feature of IK1 that must be modified
in order to more efficiently suppress the formation of ectopic
activity. On the other hand, interventions that seek to modify
propagation characteristics such as conduction velocity must
target detailed features of INa. Our analytic results indicate
that IK1 influences wave propagation behavior only via the
resting potential VK, but that detailed properties of this current
play a relatively minor role in propagation characteristics.
Thus, our findings provide a framework to assess how specific
ion currents influence the key physiological processes that
determine cardiac excitation and propagation.
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