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We present a Landau-type theory for the nonlinear elasticity of biopolymer gels with a part of the order
parameter describing induced nematic order of fibers in the gel. We attribute the nonlinear elastic behavior
of these materials to fiber alignment induced by strain. We suggest an application to contact guidance of cell
motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat
homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good
agreement between theory and simulation. We also consider a localized perturbation which is a simple model for
a contracting cell in a medium.
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I. INTRODUCTION

Biopolymer gels are complicated materials consisting
of a network of cross-linked polymer chains. Almost all
of these materials show nonlinear elasticity, usually strain
stiffening. Typically, the shear modulus increases by an order
of magnitude under applied strain [1–3]. These materials are
important in biology; for example, in the body there is almost
always a gel, the extracellular matrix (ECM) which gives tissue
its structure. The biopolymer Collagen-I is the most common
constituent of the ECM. When cells migrate within tissue—for
example, in wound healing and cancer invasion—they crawl
by attaching to the gel fibers [4]. When cells move in this
fashion they deform the ECM. However, deformation also
affects cell motility. In particular, if the fibers in the ECM
are partially aligned, cells tend to move along the aligned
direction—this is called contact guidance [5,6]. Since cells
deform and align the ECM, and their motility is affected by
this deformation, mechanically mediated cell-cell interactions
are to be expected [4,6]. In this paper we formulate a theory
for the nonlinear elasticity in biopolymers to give a framework
for understanding moving cells.

We concentrate on a model for Collagen-I. We note that it
is an athermal biopolymer: i.e., the elasticity of the individual
fibers is purely mechanical because the thermal correlation
length is far larger than the mesh size [7]. The model we
present is specialized to this case. Further, the strain on
individual fibers is modest so that the nonlinear strain stiffening
of the matrix arises from linear elements [7,8] in contrast
to other biopolymers [3]. For small strains the elasticity is
dominated by the (small) bending modulus of the fibers—
different parts of the disordered material turn with respect
to one another so that the deformation is nonaffine because
there are soft bending modes. As strains increase, bending
modes are “exhausted” and for large strains the material is
aligned, and must stretch (Fig. 1). The large stretching modulus
then determines the response and the deformation is affine. A
plausible order parameter to describe the transition is precisely
the alignment of the fibers: it is a measure of the exhaustion
of the soft modes. The claim is that the nonlinear elasticity
of Collagen-I is usefully connected to the “hidden” variable,
alignment.

To quantify alignment we use the nematic order parameter,
familiar from the study of liquid crystals. Collagen-I does not
have a nematic instability, but it can be aligned by stress to
give a nonzero value of the nematic tensor, Q, describing the
local directions of the polymers,

Q(r) ≡
〈
ν̂ν̂ − 1

d
I

〉
. (1)

Here ν̂ is the unit vector pointing along the orientation of the
polymers within the volume element at r, and the average
〈· · · 〉 is over all fibers within the volume element, weighted by
the fiber length. This volume element, which is the scale that
our theory applies to, is much greater than the mesh size of the
network, but much smaller than macroscopic length scale. As a
result, in the undeformed state, Q = 0 because local anisotropy
is averaged out. In what follows we will use a scalar, q, 0 �
q � 1, to characterize the strength of the alignment. We define
q = [d/(d − 1)]λm, where λm is the largest eigenvalue of Q.
In two dimensions, q = 〈cos(2θ )〉, where θ is the direction of
the polymer chain measured from the aligned direction. This
measure was used in the experiments of Ref. [6].

We proceed by formulating a Landau theory for biopoly-
mers along the lines suggested in Ref. [9] for nematic
elastomers. We use two coupled order parameters, the strain
tensor and Q. We test the framework by fitting our theory
to a disordered lattice model which share many feature with
Collagen-I [10–13]. The unique feature of our approach is
that all of the Landau coefficients are determined explicitly,
allowing a detailed test of the modeling. Then we insert a
“cell,” i.e., a localized source of deformation, to begin to
address the questions above.

II. FORMULATING A LANDAU-TYPE THEORY

A. Shear deformation

First, we model the nonlinear elastic energy under shear
deformation only. Volume-changing deformations will be
treated later. The energy is a functional of the deformation
gradient tensor [9]: �ij = ∂Ri/∂rj = δij + ∂jui . Here r is a
point in the reference space, R is its image in the deformed
space, and i,j are Cartesian indices. From this we form the
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FIG. 1. (Color online) Small area of a network before (left) and
after (right) simple shear. Red dashed lines: the part of the fiber
segments that align with the direction of strain after easy bending
modes are exhausted. Solid lines: other fiber segments before (gray)
and after (blue) deformation.

left Cauchy-Green strain tensor:

v = (1/2)(��T − I). (2)

The volume element in the deformed space is det(�) → 1 +
Tr v, where the last form is for the linear regime.

For the moment we consider simple shear so that, to lowest
order, we need the traceless part of v which we call ṽ. We
propose the following free energy:

Fs =
∫

[μ̄ Tr ṽ2 − t Tr(ṽ · Q) + V (Q)]ddr, (3)

where μ̄ is the shear modulus. The bar on μ̄ means that it
is a “bare” value. The observed shear modulus, μ, is gotten
by renormalizing μ̄ by coupling to Q, as we will see. The
potential for the nematic order, V (Q), is the energy cost to
align the network against the constraints.

The term −t Tr(ṽ · Q) is the leading-order coupling be-
tween strain and alignment allowed by symmetry. The order
parameter, Q, which describes the alignment induced by strain,
transforms as a tensor in the deformed state so that it has
the same symmetry as ṽ. Their contraction is a scalar that
can enter the free energy. Because Q is traceless, in leading
order the alignment responds to shear and not to hydrostatic
deformations. This form of coupling between strain and
local material anisotropy is similar to Cosserat (micropolar)
elasticity [14,15].

The auxiliary variable Q is not necessary in our formulation.
We could, in traditional fashion, write an explicitly nonlinear
theory instead of Eq. (3)—it would correspond to our model
after “integrating out” Q. We do not do this for several reasons:
first, Q is observable [6] and gives useful information about
the system. Also, if we formulate the model in terms of Q it
is rather simple and physically motivated. There is no obvious
way to pick the nonlinear terms in a traditional formulation,
but they arise naturally in our method. Finally, this theory gives
a good way to deal with contact guidance.

For small deformations, linear elasticity, we keep the
leading-order term for the potential, V ≈ (A/2)TrQ2. Mini-
mizing F for fixed v gives Q = (t/A)ṽ. Thus strain induced
alignment is a linear response for small deformations. Since
this relation is determined by symmetry, we expect it to hold
for all biopolymer gels. Now Q can be eliminated from F ,

recovering linear elasticity:

F →
∫

[μ Trṽ2]ddr, μ = μ̄ − t2/2A, (4)

with an effective shear modulus, μ < μ̄.
At larger deformations, nonlinear terms in V start to

dominate and Q falls below the linear response value. The
effective shear modulus increases from its value in the linear
regime, giving strain stiffening. In the extreme case of Q
reaching a saturated value Qmax independent of v, we get
μ̄ � μ.

The nonlinearity in V (Q) can be interpreted. At small
strain the deformation in a dilute network consists mostly of
nonaffine deformations involving bending of fibers. At greater
strain, the deformation crosses over into deformation involving
stretching of fibers, because the easy bending modes become
exhausted, as shown in Fig. 1. As a result, the increase of Q will
eventually saturate. In contrast, for denser networks, there are
fewer weak modes, even for small deformations the system is
mostly affine, stretching dominated, and the alignment follows
the geometry of the deformation. As a result, the crossover
disappears, and the network has a more linear increase of Q
as strain increases. We thus expect the nonlinearity in V (Q) to
be strong for dilute networks and weak for dense ones. This is
verified in simulations; see below.

B. Volume-changing deformation

Now we consider volume-changing deformations such
as hydrostatic expansion. There is a conceptual difficulty
here since, for this case, there is no average alignment.
Nevertheless, there can be nonlinearity in the bulk modu-
lus. For example, the filamentous triangular lattice model
[10–13] (discussed in more detail below) shows similar strain-
stiffening effects in bulk and shear moduli (Fig. 2). Such
strain stiffening in hydrostatic expansion has been studied in
Ref. [16] via simulation and in effective medium theory. To
capture this effect in our Landau-type theory, we note that
even for hydrostatic expansion, there will be local alignment
and weak parts of the disordered system will rotate and the
deformation is nonaffine. It is worth pointing out that similar
to the averaging volume element of our definition of Q,
such local alignment occurs at a scale much greater than the
mesh size. Thus a local nonzero Q only emerges with the
deformation, and Q = 0 in the undeformed state. The emergent
alignment at such scale is clear in the simulation. At large
strain, deformations cross over to affine, stretching dominant,
similar to the case of shear.

We treat such effects of disorder by introducing a ran-
dom tensor field, h(r) with 〈h〉 = 0,〈h(r) · h(s)〉 = gδ(r − s)I,
which accounts for disorder effects on the alignment field.
Using h we can form a scalar, Tr(h · Q), which can couple
to volume change. To characterize the volume change we
introduce Y = 2(

√
det� − 1) → Trv. The last form is in the

linear regime. We have specialized to two dimensions so that
we can compare to a two-dimensional model below. This form
of volume change is proportional to the extension of the fibers
in the network. The elastic energy for affine deformations is
strictly quadratic in Y . Now we add to Eq. (3) the following
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(a) (b)

(c) (d)

FIG. 2. (Color online) (a) Simulation (data points) and model fit (dashed curves) based on Eqs. (3) and (5) for shear stress as a function of
strain, for lattices with p = 0.6 (lower blue), and p = 0.8 (higher red). (b) Alignment order q as function of shear strain for the same deformation
and color coding as in (a). (c) Stress as a function of strain for hydrostatic deformations for lattices with p = 0.6 (lower blue), and p = 0.8
(higher red). (d) Stress strain curves for shear deformation at more values of p (from top to bottom, p = 1.00,0.80,0.70,0.65,0.60,0.55). Inset:
fitted parameter C(p), which controls the nonlinearity in V . For (a)–(d) we used κ/(ka2) = 10−3.

terms:

Fh =
∫ [

1

2
K̄Y 2 − Y Tr(h · Q)

]
ddr. (5)

The coupling term between Y and Tr(h · Q) is the leading-
order term that controls the nonlinearity in the bulk modulus.
[There is no term of the form Tr(h · v) because it would give a
net stress on the lattice in the reference state.] The total energy
is Fs + Fh. Once more, we have a bare quantity, K̄ , the bare
bulk modulus.

We follow the steps above to see how renormalization of
the bulk modulus occurs. For a hydrostatic expansion, we
minimize F with respect to Q and find, in the linear regime,
Q = (Trv/A)h, a linear response. Putting this form back into
F and taking the disorder average gives, as in the case of
μ̄, K = K̄ − 2g/A. For large strain the renormalization is
smaller, and K → K̄ , as above.

III. CALIBRATING THEORY WITH NUMERICAL
SIMULATION

To calibrate Eqs. (3) and (5) we apply the theory to a
model for biopolymer gels based on a triangular lattice of
lattice constant a, in which each bond is present with a

probability p [10–13]. Straight lines in this lattice, which
have average length (1 − p)−1, are identified as fibers with
stretching stiffness k and bending stiffness κ . The lattice sites
are freely rotating cross links. The Hamiltonian is

E = k

2a

∑
〈ij〉

gij (|Rij | − a)2 + κ

2a

∑
〈ijk〉

gijgjk	θ2
ijk, (6)

where gij = 1 for bonds that are present, and zero for removed
ones. The first term is the stretching energy; |Rij | is the distance
between sites i and j in the deformed state. The second term
is bending; 〈ijk〉 labels three consecutive sites along a straight
line in the reference state, and 	θijk the change of angle
determined by them.

The linear elasticity of this model is largely controlled by
the central force isostatic point at pc � 2/3. For p > pc the
deformations are mostly affine; below pc disorder induced
by the removal of bonds leads to nonaffine response. This is
because the bending stiffness of the fibers is much smaller than
the stretching stiffness: κ/(ka2) 	 1. When κ = 0, the system
is a central-force lattice, with a rigidity percolation transition at
pc. The network with weak bending can be viewed as central-
force network with a relevant perturbation of bending stiffness.
The elasticity of such networks can be thought of as a crossover
at the central-force isostatic point [11].
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(a) (b)

FIG. 3. (Color online) Simulation results (data points) and theory prediction (dashed lines) for simple extension at p = 0.6 (lower blue),
and p = 0.8 (higher red) and κ/(ka2) = 10−3 using parameters fitted from shear and the hydrostatic expansion.

We studied this model in the nonlinear regime using
128 × 128 lattices. We applied three types of homogeneous
deformations: simple shear, hydrostatic expansion, and simple
extension. We found the stress and q as functions of strain,
γ , at various values of p and κ/(ka2). The stress is expressed
in unit of k and we take the value of the relative bending
stiffness κ/(ka2) to be varying from 10−4 to 10−2. This is
consistent with this parameter of real collagen fibers, because
the ratio κ/(ka2) is of the order of (d/a)2, where d and a are
the diameter and mesh size of the fibers, modeling the fibers
as simple elastic rods.

For shear, some results are shown in Fig. 2. In agreement
with our theory, the nematic order tensor Q does have the
form η(γ )ṽ, where η(γ ) is a scalar. Thus the orientation of the
nematic order is determined. The strength of the alignment,
q = 〈cos 2θ〉, is a nontrivial function of γ . For small strain, the
alignment is less than the purely geometric effect which occurs
for affine deformations because of bending; see the Appendix.
The strain at which q falls below a linear dependence on γ is
hard to see in Fig. 2(b), but it is not inconsistent with the onset
of nonlinearity in Fig. 2(a). For very large γ , q → 1, but this
is beyond the range of validity of our theory.

These results are consistent our picture. Shear stiffening is
strong for p 	 pc and vanishes for p > pc. The characteristic
strain, γ ∗, where the strain stiffening takes place is large
at small p and vanishes near pc. These observations are
consistent with the exhaustion of bending modes as the
network enters the stretching dominated regime. They are
related to stiffening in jammed packings [17], where scaling
γ ∗ ∼ |p − pc| occurs.

To make the comparison with our lattice simulation quanti-
tative, we use Eqs. (3) and (5) in two dimensions, and expand
the potential V , up to fourth order in Q:

V (Q) = (A/2)Tr Q2 + (C/4!)Tr Q4. (7)

The odd terms vanish by symmetry in two dimensions. Since
we are using an expansion of this type, we should not expect
the scheme to work deep in the nonlinear regime; we expect
quantitative results for relatively small q. The parameters in
the theory are {K̄,μ̄,g,t,A,C}.

Consider the linear regime, which is characterized by three
independent slopes for stress-strain curves in simple shear
and in hydrostatic expansion, and the nematic-strain curve in
simple shear; the corresponding slopes are the shear modulus,
μ = μ̄ − t2/(2A), the bulk modulus, K = K̄ − 2g/A, and
t/A. By symmetry, there cannot be any average induced
nematic order in the hydrostatic expansion case, and this is
what we find in simulation. The rest of the parameters are
obtained in the nonlinear regime. We fit them using simulation
for hydrostatic expansion for g and simple shear for the
rest, separately via least-square fitting. The details of the
computation are given in the Appendix. The results are shown
in Fig. 2.

Strain-stiffening depends strongly on p. This is captured by
the parameter C, which controls where the potential becomes
strongly nonlinear and increases μ. Consider C(p), Fig. 2(c):
there is a sharp peak at pc, showing that γ ∗ vanishes as p →
p−

c . Also, consider the strain-alignment curve. Its slope is t/A

for small strain. When p → 1 the deformations are affine; the
alignment is a geometric quantity so that t/A → a constant.
This is consistent with our fitting results. However, above pc

we expect little renormalization of μ, so that t2/A is small. We
conclude, and we do find that both t and A go to zero above
pc in such a way that their ratio is constant.

We used the fitted parameters to calculate the stress-strain
and nematic-strain curves for simple extension. In Fig. 3 we
compare to simulation. The agreement is fairly good, except
for q at large alignments which is beyond the range of validity
of our theory.

IV. LOCALIZED PERTURBATION: A CONTRACTING
CELL IN A MEDIUM

We now put a “cell” in the ECM by cutting a circular hole
in the material and applying a negative pressure to the exposed
surface to represent the contractile force of the cell [4,18]. This
is done in Landau theory by applying boundary conditions.
For the lattice model, we apply forces to nodes of the lattice at
radius of several lattice spacings and relax the lattice. A real
cell is more like a force dipole, and we could use an elliptical
hole to represent this. We start with the simplest case.
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(a) (b)

FIG. 4. (Color online) Simulation results (points) and theory predictions (solid lines) for a model for a cell in ECM using the parameters
from the homogeneous deformation case.

To use Eq. (3) in this case, we note that we have two
variables which depend on the distance, r , from the center
of the hole: they are the radial component of the displacement,
u(r), and the radial alignment, q(r). If we minimize F with
respect to u,q we find

u′′(r) + u′(r)

r
− u(r)

r2
= t

K + μ̄

(
q ′(r)

2
+ q(r)

r

)
, (8)

t

2

(
u′(r) − u(r)

r

)
= V ′(q). (9)

For large r the deformation is small, and the system is linear. If
we use V ≈ Aq2/2 we get the familiar result for deformation
in two dimensions [19] u(r) ∼ 1/r . Equation (9) implies q ∼
1/r2. As r decreases we enter the nonlinear regime. Thus there
is a radius within which nonlinear effects and alignment are
important [4].

Alignment localization of this type is captured by our
theory. For small r , q is large and the nonlinear potential leads
to a weak dependence of q(r) on r; that is, alignment is more
or less constant near the cell [4]. We calculated u(r),q(r) by
numerically solving Eq. (8); see Fig. 4. We did a simulation
in the lattice by choosing a node and pulling in on nodes a
few lattice spacings away. The two kinds of results agree, as
shown in Fig. 4. This calculation applies equally to the case
of a tumor spheroid in the ECM [20]. The same problem has
been studied with a different elastic model in Ref. [18], and a
change of sign in strain has been reported. We do not find this
in our simulation or our model.

V. CONCLUSION

Now we return to contact guidance which is experimentally
studied [5,6] but not well understood. Our methods give us a
natural framework for modeling this effect. Suppose we have
a cell moving randomly with an effective diffusion coefficient,
D◦, if there is no alignment. Based on symmetry, the simplest
expression for the effect of alignment is D = D◦(1 + αQ),
where α is a coefficient which could be measured. Experi-
mental studies on three-dimensional cell migration showed
interesting deviations from random walk behavior, especially

anisotropy [21], and our model may provide a theoretical
framework to understand such phenomena.

We have given a Landau theory for elastic nonlinearity in
biopolymer gels. The key idea is the introduction of Q as a part
of the order parameter to measure the exhaustion of the bending
modes. Of course, this calculation is only the beginning of a
treatment for cells. In further study we will represent the cell
as a force dipole rather than a spherical hole. And we will put
more than one cell in the system to see the interactions.
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APPENDIX A: DETAILS IN FORMULATING
LANDAU-TYPE THEORY

We model the nonlinear elastic energy of biopolymer gels
with the following effective free energy:

F =
∫

[2K(
√

Det� − 1)2 + μ̄ Tr ṽ2 − t Tr(ṽ · Q)

− 2(
√

Det� − 1)Tr(h · Q) + V (Q)]d2r,

where K,μ̄ are the bulk and shear modulus, respectively, and
ṽ is the traceless part of (left) Cauchy-Green strain tensor. It
has the following definition:

v = 1

2
(��T − I),

(A1)
ṽ = v − dimension−1 · (Tr v)I,

where �ij = ∂Ri

∂rj
. R(r) is the position after(before) deforma-

tion. Under this definition, the strain tensor depends on the
displacement field u(r):

vij ≡ (∂iuj + ∂jui + ∂luj ∂luj )/2. (A2)
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In our free-energy expression, we substitute the term Trv with
2(

√
Det� − 1) to avoid redundant nonlinearity in Trv under

large deformation. As we will see, these two terms are equal
for small deformation.

The first term in our free-energy expression is the energy
caused by the change of volume. The second term is the
energy contributed by the change of shape. The third shows
coupling between strain and alignment. The fourth term tells a
fixed random field h guides the alignment. The last one is the
alignment energy.

1. Hydrostatic deformation

For hydrostatic deformation, it satisfies

� =
(

1 + γ 0
0 1 + γ

)
. (A3)

[We can easily test that Trv = 2(
√

Det� − 1) = 2γ , for small
γ .] Suppose (ignoring higher-order terms)

V (Q) = A

2
TrQ2 + C

4!
TrQ4. (A4)

From symmetry, we know the average Q is a zero matrix. So
in this case, only the fluctuation of Q will contribute to free
energy. When the system gets to equilibrium:

∂F

∂Qij (r)
= −2(

√
Det� − 1)hij (r) + AQij (r)

+ C

6
Qik(r)Qkl(r)Qlj (r) = 0, (A5)

2D traceless tensors have the following property:

Qik(r)Qkl(r) = −(DetQ)δil . (A6)

Thus we can rewrite Eq. (A5) as

−2(
√

Det� − 1)hij + AQij − C

6
(DetQ)Qij = 0. (A7)

Therefore, one must have Qij (r) = b · hij (r), based on the
structure of Eq. (A7). We further assume that h has the
following form:

h(r) = η(r)
(
m̂(r)m̂(r) − 1

2 I
)
, (A8)

where η is magnitude and m̂ is a unit vector indicating locally
easy direction to align. This gives statistics of h (assuming m̂
has random direction)

〈h(r)〉 = 0,
(A9)

〈hij (r)hjk(r′)〉 = η(r)2

4
δ(r − r′)δik.

Let g = η(r)2

4 . Then DetQ = b2η(r)2Det[m̂(r)m̂(r) − 1
2 I] =

− 1
4b2η(r)2 = −b2g. Equation (A7) simplifies to

0 =
(

− 2(
√

Det� − 1) + Ab + C

6
gb3

)
hij

∴ 0 =
(

− 2(
√

Det� − 1) + Ab + C

6
gb3

)
. (A10)

This is a scalar equation, which is independent of the direction
m̂. We can get the value of b, given a fixed deformation γ , by

solving Eq. (A10). Use solution b in Qij (r) = b · hij (r) and
plug into F (ṽ is zero, for hydrostatic case):

F =
∫

[2K(
√

Det� − 1)2 − 2(
√

Det� − 1)Tr(h · Q)

+V (Q)
]
d2r,

=
∫ [

2K(
√

Det� − 1)2 − 2(
√

Det� − 1)Tr(h · Q)

+ A

2
Tr Q2 + C

4!
Tr Q4

]
d2r,

=
∫ [

2K(
√

Det� − 1)2 − 2(
√

Det� − 1)bTrh2

+ Ab2

2
Trh2 + Cb4

4!
Trh4

]
d2r. (A11)

By taking an average, Trh2 = 2g, Trh4 = 2g2. Therefore,

F =
∫ [

2K(
√

Det� − 1)2 − 4gb(
√

Det� − 1) + Agb2

+ Cg2

12
b4

]
d2r. (A12)

This is the elastic energy of hydrostatic deformation. In small
deformation limit, we can further ignore C

4! Tr Q4 in free-

energy expression. Then Eq. (A10) tells b = 2(
√

Det�−1)
A

and
free-energy density f = 2K(

√
Det� − 1)2 − 4 g

A
(
√

Det� −
1)2 = (2K − 4 g

A
)γ 2. The initial slope of stress-strain curve

Slopeinitial = ∂2f

∂γ 2 = 4(K − 2 g

A
), which tells the random field

could cause a shift in the initial slope of stress-strain curve.

2. Pure shear

For pure shear, it satisfies

� =
(

1 γ

0 1

)
, Q =

(
qa qb

qb −qa

)
. (A13)

Let ∂F
∂qa

= 0 and ∂F
∂qb

= 0, and plugging the value of qa,qb back
into F , we can get the free energy for the pure shear case. In
particular, we can get

ηqa
= 0, ηqb

= t

2A
,

ηq = 2ηqb
= t

A
, (A14)

ησ = μ̃ − t2

2A
,

where ηqa
, ηqb

, ηq , and ησ are the initial slope of qa-strain,
qb-strain, q-strain, and stress-strain curves, respectively.

3. Simple extension

For simple extension, it satisfies

� =
(

1 + γx 0
0 1 + γy

)
, Q =

(
1
2q 0
0 − 1

2q

)
. (A15)
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The simple extension case is more complicated, since both
the shape and the volume (area for 2D case) are changed
during the process. Here we apply a method similar to that
for hydrostatic deformation to solve this problem. Note the
method here is applicable to any kind of deformation. We start
from free-energy density:

f = 2K(
√

Det� − 1)2 + μ̄ Tr ṽ2 − t Tr(ṽ · Q)

− 2(
√

Det� − 1)Tr(h · Q) + A

2
Tr Q2 + C

4!
Tr Q4.

For convenience we introduce the notation

Y = 2(
√

Det� − 1). (A16)

We can easily test that Y = Trv for small γ . The equation for
variation of Q (it contains two parts, nonzero expectation and
fluctuation, but it’s still traceless) is

∂F

∂Qij (r)
= −Yhij − t ṽij + AQij (r) + C

6
QikQklQlj = 0.

(A17)
Repeating what we did in the hydrostatic case and letting
M = −Yh − t ṽ, we have

M + AQ − C

6
(DetQ)Q = 0. (A18)

Take ansatz Q = αM, where α is a scalar and then cancel M ,

1 + Aα − C

6
α3(DetM) = 0. (A19)

By solving Eq. (A19) we know the value of α. Plugging α

into the free-energy expression, we can get the free energy
in the end. This procedure is exactly the same as in the
hydrostatic case, although the calculation is more complicated.
In particular, we can get

ηq = 4K ′t
2A(K ′ + μ̃) − t2

,

ησ = 4K ′(2μ̃A − t2)

2A(K ′ + μ̃) − t2
, (A20)

where K ′ = K − 2g

A
.

Not surprisingly, the initial slopes of the pure extension case
can be expressed as a function of initial slopes of the pure
shear case and hydrostatic case:

ηq,extension = 4ησ,hydroηqb,shear

ησ,hydro + 4ησ,shear
,

(A21)

ησ,extension = 4ησ,hydroησ,shear

ησ,hydro + 4ησ,shear
.

Equation (A21) is a simple way to test the correctness of our
theory. The second equation here can also be derived from the
free-energy expression in Landau’s book, which is to say that
our theory is consistent with Landau’s in the small deformation
limit.

4. Circular symmetry case

From homogenous deformation, we can see the nonlinearity
in the shearing case attributes to the expectation of alignment

Q, while in the hydrostatic extension case attributes to the
fluctuation of alignment Q. Generally speaking, both the
expectation and variation of Q play roles in stiffening for
an arbitrary deformation mode. However, in the circular
symmetry case we study here, the expectation of Q is more
important. We can see that from a slightly different free-energy
expression form:

F =
∫

[2K(
√

Det� − 1)2 + μ̄ Tr ṽ2 − t Tr(ṽ · Q)

+Knonlinear(
√

Det� − 1)3 + V (Q)]d2r.

In this free-energy expression, we substitute −2(
√

Det� −
1)Tr(h · Q) with Knonlinear(

√
Det� − 1)3. Now we only con-

sider the expectation of Q and the new term explains the non-
linearity in hydrostatic extension. By solving the equilibrium
equation of the system, we find the value of Knonlinear has little
influence on the solution (for network with bending stiffness
κ

ka2 = 10−3). That is to say the nonlinearity in u − r and q − r

curves are mainly caused by the change of shape in this case.
As we have mentioned above, in linear regime of hydro-

static deformation, f = 2K(
√

Det� − 1)2 − 4 g

A
(
√

Det� −
1)2 = (2K − 4 g

A
)γ 2 = (K

2 − g

A
)Trv2 = K ′

2 Trv2, where K ′ =
K − 2g

A
. Since the nonlinearity caused by the change of area

does not matter much in this problem, we can use this linear
approximation to simplify the free-energy expression:

f = μ̃ṽij
2 + 1

2K ′(vii)
2 − t ṽijQij + V (q), (A22)

Now the only effect of random field is a shift in the bulk
modulus. By definition, Q = q(n̂n̂ − 1

2 I), where n is the
director of nematic order tensor Q. Then we can calculate
the differential of free-energy density:

df = [K ′δij vll + (2μ̃ṽij − tQij )]dvij

+
[

− t ṽij

(
n̂i n̂j − 1

2
δij

)
+ V ′(q)

]
dq. (A23)

Now we have the relation between strain v and stress σ :

σij = K ′δij vll + (2μ̃ṽij − tQij ). (A24)

In linear elasticity, v = u, we can write

σij = K ′δij vll + 2μ̃vij − μ̃vllδij − tQij

= (K ′ − μ̃)vllδij + 2μ̃vij − tQij . (A25)

By force equilibrium, ∂jσij = 0,

(K ′ − μ̃)∂i∂lul + μ̃(∂2
j ui + ∂j ∂iuj ) − t∂jQij = 0. (A26)

We can rewrite it in the following form:

[K ′ � (� · u) + μ̃ � u]i − t∂jQij = 0. (A27)

Using �(� · u) = �u in the 2D case,

[(K ′ + μ̃) � u]i − t∂jQij = 0. (A28)

For the circular symmetry case, it satisfies

u = u(r)r̂,
(A29)

Qij = q(r)

(
r̂r̂ − 1

2
I
)

.
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Plug Eq. (A29) into ∂jQij ; after some simplification, we have

∂jQij = r̂i

(
q ′(r)

2
+ q(r)

r

)
. (A30)

Plugging Eq. (A30) into Eq. (A28), we finally have

u′′(r) + u′(r)

r
− u(r)

r2
= t

K ′ + μ̃

(
q ′(r)

2
+ q(r)

r

)
. (A31)

When free energy is minimized, ∂F
∂q

= 0, according to
Eq. (A23),

− t ṽij

(
r̂i r̂j − 1

2
δij

)
+ V ′(q) = 0,

(A32)

∴ −t

(
vrr − 1

2
Trv

)
+ V ′(q) = 0.

Using the fact that vrr = u′(r),Tr(v) = u(r) + u′(r)
r

, here is the
final form:

t

2

(
u′(r) − u(r)

r

)
= V ′(q). (A33)

Here V (q) = A
2 Tr(Q2) + C

4! Tr(Q4).
Now we have two coupled equations: Eq. (A31) and

Eq. (A33). By solving them, we can get the numerical solution
of the system.

In far field, q value is small enough that we only keep the
leading term in V (q):

V (q) = A

2
Tr(Q2) = A

4
q2. (A34)

Also, we can drop the nonlinear term g Tr(v)3 since the
nonlinearity is weak in far field. Under these conditions, we
get solution

u(r) ∼ 1

r
, q(r) ∼ 1

r2
. (A35)

APPENDIX B: SIMULATION

1. Homogeneous case

We studied this lattice numerically in the nonlinear regime
using 128 × 128 triangular lattices. Three different types
of homogeneous deformations are applied here: Pure shear,
hydrostatic extension, and simple extension. For hydrostatic
extension, we apply fixed boundary condition, while periodic
boundary condition is applied for pure shear and simple
extension. For each γ , we deform the network according to its
value and deformation mode, then relax the internal degrees of
freedom by minimizing the energy using a conjugate-gradient
algorithm. By varying the value of γ , the stress and nematic
order as functions of γ are obtained.

For all figures in our paper, κ
ka2 = 10−3. (We also explore

κ
ka2 from 10−1–10−4, which generates similar results.) The
value of γ is the range of [0.001,1].

The value of parameters in our model are obtained in the
following procedure.

(1) The initial slope of stress-strain curve of hydrostatic
extension is 4(K − 2 g

A
).

(2) From Eq. (A14), we can know the value of t
A

and μ̃ − t2

2A

from the initial slope of q-strain and stress-strain curve under

pure shear. (Actually we get the value of t
2A

from qb-strain
curve to reduce the effect of residue alignment.)

(3) The value of K and μ can be decided in the following
way.

(i) For a network with the same parameters except the
probability of bond existence p = 1, stress-strain and q-strain
curves are purely linear. The initial slope of stress-strain curve
of hydrostatic extension for this network is 4K100. The initial
slope of stress-strain curve of shearing is μ100.

(ii) μ,K satisfy μ = p · μ100 and K = p · K100. For exam-
ple, if p = 0.6, then μ = 0.6 · μ100.

(4) Now all parameters except C have been determined.
We decide the value of C by minimizing the error between
simulation result and our theory. [Three curves are involved:
stress strain (hydrostatic), stress strain (shearing), and q strain
(shearing).]

After all parameter values are collected in our model, a
prediction for simple extension can be made.

2. Circular symmetry case

For the circular symmetry case, p = 0.6 and κ
ka2 = 10−3.

The value of parameters are first collected by fitting the
network with the same p, κ value under homogeneous
deformation. To simulate the circular symmetry case, a central
node in the network is picked and nodes are pulled at the
distance at r = 4 bond length (inner boundary) and at r = 15
bond length (outer boundary) towards the central node. Then
the nodes on the boundary are fixed and internal degree
of freedom are relaxed by minimizing free energy. u(r)
and q(r) are calculated by taking the average value within
a ring, which is r bond length away from the center. In
the end, we set the boundary condition of Eq. (A31) and
Eq. (A33) with the displacement of nodes on the boundaries in
simulation and plug in the parameter value. By solving these
two nonlinear equations, our model provides a prediction for
simulation.

3. Alignment in affine vs nonaffine deformations

In this paper we defined the alignment order parameter
Q using the actual deformation of the lattice sites, which

FIG. 5. (Color online) Comparison of qaffine (top red), q (middle
blue), and q − qaffine (bottom green) for a simple extension at p = 0.6
and κ/(ka2) = 10−3.

042710-8



ALIGNMENT AND NONLINEAR ELASTICITY IN . . . PHYSICAL REVIEW E 91, 042710 (2015)

is necessarily nonaffine due to the disordered structure of
the lattice. In an affine deformation (same deformation
everywhere; usually not the lowest-energy configuration in
disordered systems) the fibers also become aligned, and this

alignment, which we call Qaffine, is a pure geometrical quantity
and can be easily calculated. The full alignment Q can be either
greater or smaller than Qaffine, depending on the deformation.
In Fig. 5 we show one example of such a comparison.
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