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The dynamics of a local community of competing species with weak immigration from a static regional
pool is studied. Implementing the generalized competitive Lotka-Volterra model with demographic noise, a rich
dynamics with four qualitatively distinct phases is unfolded. When the overall interspecies competition is weak,
the island species recapitulate the mainland species. For higher values of the competition parameter, the system
still admits an equilibrium community, but now some of the mainland species are absent on the island. Further
increase in competition leads to an intermittent “disordered” phase, where the dynamics is controlled by invadable
combinations of species and the turnover rate is governed by the migration. Finally, the strong competition phase
is glasslike, dominated by uninvadable states and noise-induced transitions. Our model contains, as a special
case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we show that slight
deviations from perfect neutrality may lead to each of the phases, as the Hubbell point appears to be quadracritical.
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I. INTRODUCTION

Trying to characterize and quantify the factors that govern
the dynamics of natural populations, community ecologists
were often surprised by the large number of competing species
that can be found in a relatively small area. Having in mind the
Darwinian picture of natural selection and the survival of the
fittest, one may expect that a few fittest species will dominate
the community (perhaps with some sporadic presence of a few
individuals of inferior species) as suggested by the competitive
exclusion principle [1]. This is definitely not the case in many
important communities, from tropical forests to coral reef to
freshwater plankton. In fact, an understanding of the factors
that allow the maintenance of biodiversity under selective
dynamics is considered as one of the most important challenges
for modern science [2].

One of the versions of the biodiversity puzzle has to do
with a local community which is coupled by migration to
a regional pool. The simplest example of this scenario is
the mainland-island system, where the mainland dynamics
is assumed to be relatively slow so one can assume that the
island is interacting with (i.e., receiving immigration from) a
static pool on the mainland. This mainland-island model may
describe any local community, provided that the length scale
involved in biological interactions (e.g., competition) is much
smaller than the migration scale [3].

In general, the dynamics of natural ecological communities
is subject to substantial noise. Populations are exposed to envi-
ronmental variations that affect their reproductive ability and
death rate. This effect is, typically, quite strong [4,5]. Even un-
der strictly fixed environmental conditions, the stochasticity of
the birth-death-migration process (demographic stochasticity)
adds randomness to the dynamics. Under demographic noise,
every finite population goes extinct eventually, so theories of
community dynamics must include a stabilizing mechanism
that makes these extinctions extremely rare (stable coexis-
tence) or allow for either immigration or a speciation process
to maintain the species richness (unstable coexistence) [6].

In the mainland-island system the role of noise is more
subtle. On the one hand, in a local community there are at
least a few extinction-prone low-abundance species. On the

other hand, there are no absorbing states in the strict sense, as
individuals of any species arrive at a fixed average rate from
the mainland. Nevertheless, if the migration is relatively weak
and the local population is not huge, some or perhaps all of the
species may undergo temporary extinctions, leaving the island
without individuals of this species until an immigrant arrives
from the mainland and manages to reestablish the species.
The statistics of these local extinction-recolonization events
for birds in North America was recently analyzed by Bertuzzo
et al. [7]. In the discussion section, we will consider the relation
between our model and these empirical results.

Community dynamics theories are usually classified along
the line between niche and neutral. A niche theory assumes
that every species that has a nonsporadic presence on the island
has its own niche. For example, a few bird species each having
a different beak size and (correspondingly) different diet may
coexist on the island if the overlap between the niches is not
too large. At the other extreme, a perfectly neutral dynamics
admits no niche partitioning at all, with all species using the
same resources with the same efficiency, and the dynamics
governed solely by stochasticity. In-between, one can find a
few “continuum models” [8–11] that were suggested in the
last decade and incorporate elements of neutral dynamics with
(usually weak) selective effects.

The simplest model for island dynamics is the generalized
competitive Lotka-Volterra model (GCLV) with migration.
This model is widely used in ecology and for other applications
[12–14]. Our primary focus is on an individual based stochastic
version of the model which incorporates demographic noise.
We will see that the model, despite its simplicity, is very rich
and exhibits a wide range of different behaviors. Our goal
here is to exhibit this panoply of “phases” and understand
their origins. A parallel study of the much more tractable
deterministic version of the model will be a key tool in
unraveling the dynamics.

Moreover, we shall show in the following that the most cel-
ebrated models of island biogeography, the Wilson-MacArthur
theory of island biogeography [15,16] and Hubbell’s neutral
theory of biodiversity [17,18], are two special cases of this
model. Following a few recent publications that emphasized
some specific aspects of the dynamics [19,20], we would like
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to show how the phase structure of the model is governed
to a large extent by these two special limits. Finally, we will
consider the relevance of this model to the empirical findings.

II. STOCHASTIC GCLV MODEL

In this section, we introduce our model and set notation. Let
us consider a regional pool of Q species on the mainland. Each
individual of these species may immigrate to the island with
a certain probability per unit time, and we denote the average
rate at which individuals of the ith species reach the island
as λi .

Denoting by Ni the abundance of the ith species on the
island, the deterministic part of the dynamics satisfies

Ṅi = λi + αiNi − Ni

Ki

(
Ni +

∑
j �=i

di,jNj

)
; i = 1, . . . ,Q.

(1)
Here, αi is the growth rate of the ith species on the island, and
Ki sets the carrying capacity of the ith species. Interspecific
interactions are expressed by the elements of the matrix di,j .
In this work, we study a purely competitive system where all
the di,j � 0.

As our goal is to identify the different phases of this model,
not to fit it to a specific empirical system, we make a few
simplifications. First, we assume (as in [21], for example) that
all species have the same flux of immigrants from the mainland
λi = λ, the same linear growth rate that we scale to one (αi =
1), and the same carrying capacity K . We are interested here
specifically in small values of λ, so that immigration primarily
serves to “rescue” extinct species, but does not swamp the
intrinsic competitive dynamics on the island, as discussed in
the following. The interaction matrix takes the form di,j =
Cci,j , where C sets the overall strength of the interaction and
the set of ci,j is normalized such that∑

i �=j

ci,j = Q(Q − 1). (2)

In other words, the average magnitude of a ci,j is unity. We
consider here the case where the ci,j are chosen randomly
from a distribution with unit mean and variance σ 2; the ci,j

values are kept fixed throughout the process. The current work
considers the case of a purely competitive community without
symbiosis or food web features. Accordingly, we do not
consider here the case of interaction matrices with a modular
or nested structure. As we shall show in the following, this
structureless matrix provides a natural generalization of the
Hubbell neutral theory [17]. For our simulations, the ci,j were
chosen from a gamma distribution with probability distribution
function

P (c) = c1/σ 2−1σ−2/σ 2
e−c/σ 2

�(1/σ 2)
. (3)

The final form of our (deterministic) GCLV model is then

Ṅi = λ + Ni − Ni

K

(
Ni + C

∑
j �=i

ci,jNj

)
. (4)

For small immigration rate λ, extinctions and recoloniza-
tions play a crucial role in the dynamics. We treat this by

constructing a stochastic individual based version of the model,
so that demographic noise is explicitly included. The number
of individuals in each species is an integer. At each time
step of duration �, a Poisson number of immigrants of each
species, with mean λ�, is generated. A Poisson number of
offspring of each species, with mean Ni�, is generated as
well. The Ni veteran inhabitants are subject to death, with
the number of individuals of species i that expire drawn from
a binomial distribution with parameters Ni and probability
�

∑
j (δi,j + Cci,j )Nj . Clearly, � needs to be chosen to be

sufficiently small that this probability does not exceed unity.
The number of individuals of species i after this process is
then updated to reflect the new immigrants, offspring, and
deaths. On average, these changes are exactly those given by
the deterministic model.

The stochastic model is specified by four parameters: K , λ,
C, and σ . In what follows, we will focus our attention on the
phases in the σ − C plane, keeping K and the migration rate
fixed. Once this behavior is understood it is straightforward to
figure out at least the qualitative features of the dynamics for
other values of migration and K . The different phases in the
σ − C plane are sketched in Fig. 1. In the following, we intend
to discuss each phase in detail; before doing that, let us focus
on two very interesting limits that correspond to the x and y

axes of Fig. 1.

FIG. 1. (Color online) A schematic sketch of the C-σ 2 plane,
showing the different phases of the generalized competitive Lotka-
Volterra system, as will be discussed following. On the C = 0
line there is no competition, all species have the same carrying
capacity, and the extinction-recolonization dynamics is described
by the Wilson-MacArthur theory. At the Hubbell point, C = 1 and
σ = 0, all individuals are equivalent and the system supports a
marginally stable manifold on which the dynamics is governed only
by the noise. In the weak competition region (small C, labeled “full
coexistence phase”) all the mainland species are still semiresident
on the island, but with heterogeneous abundance and extinction
times. Above C1, some species are transients, with O(λ) abundance
(“partial coexistence phase”). Another increase in the strength of
competition takes the system to the disordered, intermittent phase,
where the community structure changes dramatically over time and
the instantaneous assembly is usually invadable. Finally, in the
glasslike phase a few uninvadable equilibria control the system and
the transitions are noise induced.
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III. WILSON-MACARTHUR LINE C = 0

When C = 0, species do not interact with each other and the
dynamics of each species is logistic with carrying capacity K .
Deterministically, an infinitesimally small population grows
exponentially and then saturates to the steady state value
K . With demographic noise, the first immigrant may fail to
establish a community (e.g., it may die before reproduction,
even if the birth rate is larger than the death rate), so not
every immigration results in successful colonization. The
chance of a successful colonization depends on the details
of the stochastic process (in particular, the variance in the
number of offspring per individual, see the analysis of [22] for
the mathematically equivalent SIS infection model). After a
successful recolonization, the population will again fluctuate
around K , and in the long run it must go extinct as well
since (without migration) the zero population is an absorbing
state. The rate of these long-term extinctions (as opposed to
colonization failures that take place at short times) depends,
again, on the details of the process and the value of K [23].

Accordingly, in the C = 0 limit of our model the history
of every species is made of a series of local extinctions
and recolonization events, and the rates of extinction and
recolonization are equal for all species. What emerges from
this scenario is the celebrated Wilson-MacArthur model of
island biogeography: the species richness on the island S

satisfies Ṡ = −eS + r(Q − S), where e is the extinction rate
and r is the recolonization rate, and both rates depend on K and
on the details of the stochastic process. The Wilson-MacArthur
prediction for the average species richness is S̄ = rQ/(r + e),
the typical size of species richness fluctuations is

√
reQ/(r +

e), and the statistics of persistence times [24], the periods
between colonization and extinction (as well as the periods
between extinction and colonization), is exponential.

When the only stochastic effect taken into account is
demographic noise, as is the case in this paper, the chance of
extinction decreases exponentially with K [25] and therefore
for the typical values of K considered here e � 1. If this
is actually the case, or when λ is large so that r → ∞,
all mainland species are present on the mainland except
for rare short-term fluctuations and so S ≈ Q. Accordingly,
in our model one observes Wilson-MacArthur dynamics on
reasonable time scales only when K is relatively small. More
realistic models have to take into account other types of noise
(including environmental variations, attacks by pathogens,
etc.) that may lead to extinction, and the Wilson-MacArthur
model will then be relevant even for higher values of K .

IV. SYMMETRY LINE AND THE HUBBELL POINT

On the x axis, the σ = 0 line, species do interact with
each other but the interaction is symmetric, i.e., no change in
community dynamics occurs upon switching the species labels
of any given populations. C measures the strength of interspe-
cific competition: if C < 1, the intraspecific competition is
stronger than the interspecific (reflecting mechanisms such as
resource partitioning or frequency dependent predation) and a
low-density species may invade the system. On the other hand,
for any C > 1 the intraspecific competition is weaker than the
interspecific, resulting in competitive exclusion [6]. At the

boundary between these regimes, one finds the Hubbell point
C = 1 (see Fig. 1). At the Hubbell point, the model is neutral:
any individual competes equally with any other individual and
the strength of each pair competition is fixed and independent
of species affiliation.

Without immigration, the deterministic GCLV supports,
to the left of the Hubbell point, an egalitarian coexistence
stable fixed point where all species are present on the island
with the same abundance K/[1 + (Q − 1)C], while above
the Hubbell point the stable solution admits only one species
with abundance K , and all other species have zero abundance
(the identity of the surviving species is determined by initial
conditions). At the Hubbell point, the deterministic dynamics
supports a marginal manifold: every combination of Ni’s such
that the total population is K is a solution of Eq. (4). The
simplicity of the GCLV at the Hubbell point allows one to solve
analytically for the species abundance distributions (SAD)
even with demographic noise [26], environmental stochasticity
[27], or a combination of demographic and environmental
noise [28].

About 15 years ago, Hubbell [17] put forward his very
influential neutral theory of biodiversity, suggesting that all
species and all individuals are demographically equivalent and
the only mechanism that drives the system is pure demographic
noise and the (typically slow) rate at which new species
are introduced. Hubbell’s model has two versions. In the
metacommunity version, speciation is the mechanism that
leads to the introduction of a new species, while in the
mainland-island version colonizers of new species arrive from
the mainland (assuming large Q). Some patterns predicted
by this neutral theory, and in particular the species abundance
distribution (SAD) on the island, fit quite nicely those recorded
in many empirical studies [18,29].

Moving off the Hubbell point but remaining on the x axis,
σ = 0, the infinite degeneracy is lifted, but the analysis of the
stochastic system is still relatively easy since every species
may be analyzed independently, the effect of all individuals
from other species being encapsulated into a single parameter.
This feature was exploited in [20] to solve the (metacommunity
version) stochastic GCLV analytically along the σ = 0 line.
As expected, below the Hubbell point, the SAD shows a peak
around the deterministic value QK/[1 + (Q − 1)C], and the
sharpness of this peak increases as C decreases.

V. AN OVERVIEW OF THE DYNAMICS

Having examined the σ = 0 and C = 0 limits, we now turn
to the results of the model for general σ , C. We present in Fig. 2
sample runs of the system for K = 100, λ = 0.01, σ = 0.5,
Q = 20, for varying C. The abundance of each species is
indicated by color. The horizontal axis is time, with snapshots
of the system taken every t = 0.08/λ. The vertical axis is
species number, and runs from 1 to Q = 20. It is clear that the
system exhibits very different behavior as C is varied. One can
identify four different generic behaviors, which we shall call
“phases.” Very briefly, in the first, low C, phase (represented
by the first panel in Fig. 2), all Q species are present
essentially all the time. In the second (represented by the next
two panels), some species are basically no longer present,
supported only by the infrequent stochastic immigration of
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FIG. 2. (Color) Snapshots of the abundance for all species in the stochastic model for various levels of competition C. Red is high
abundance, dark blue low, as shown in the color bar at the right. Q = 20, K = 100, σ = 0.5, λ = 0.01. The time is measured in units of 0.08/λ.
The first panel exhibits full coexistence, the second and third partial coexistence, the fourth and fifth disorder dynamics, and the last glasslike
dynamics.

new individuals, while the rest have a more or less continuous
existence, with occasional temporary extinctions. The third
phase (represented by the fourth and fifth panels) at yet higher
C is the most complicated, with the system jumping from one
set of dominant species to a completely different set. These
states would be stable in the absence of immigration, but a
successful colonization by some specific species drives the
system to a new quasistable state. In the last phase (represented
by the last panel), the system spends a preponderance of time in
some stable state. In the following, we will attempt to explicate
in more detail the various features of each of these phases.

One way to quantify the different behaviors is via the
“inverse participation ratio” (IPR), defined as

IPR ≡
(∑Q

i=1〈Ni〉
)2

∑Q
i=1〈Ni〉2

. (5)

The angle brackets refer to an average over time. The IPR
varies from 1 to Q. In the case where only one species is
present, it takes the value unity, and if all species have equal
abundance, its value is Q. Thus, the IPR is a measure of how
many different species are active in the system altogether. It can
differ enormously from the time average of the instantaneous
number of species present. We show in Fig. 3 the IPR as a
function of C for runs with the same parameters as in Fig. 2.

We see that the IPR is not monotonic in C. It initially decreases
from Q, reaches a minimum, and then starts to increase. It then
achieves a local maximum and then starts to decrease again.
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FIG. 3. The inverse participation ration (IPR), as a function of
C. N = 20, K = 100, σ = 0.5, λ = 0.01. The onset of Phase III is
associated with the beginning of the rise of the IPR at C ≈ 0.47 and
the onset of Phase IV with the beginning of the fall at C ≈ 0.80.
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This change in behavior of the IPR is clearly reflective of the
different patterns captured in Fig. 2. We shall elaborate on the
behavior of the IPR as we investigate each phase.

VI. PHASE I: THE FULL COEXISTENCE PHASE

We start by considering the leftmost region of Fig. 1, the
area where C is relatively small. Increasing C from zero, at
a fixed value of σ , corresponds to an increase of interspecific
competition; for example, different species of birds that live
happily together, each having a different diet of worms, may
start to interact with each other if the supply of worms is
decreased and different species begin to consume the same
resource. In such a case, species-specific niches are “squeezed”
towards each other, increasing the niche overlap.

Once the species start to compete, the heterogeneity of the
ci,j ’s (as reflected in the parameter σ ) implies that some species
are impacted by the competition more than the others. As a
result, the abundance Ni of the ith species is no longer K (as
on the Wilson-MacArthur line C = 0); instead, all abundances
are reduced by a species-dependent amount and one gets a
distribution of species abundance values. Still, as long as C is
not too large, the deterministic dynamics of Eq. (1) supports a
single attractive fixed point that corresponds to the case where
all the Q species of the mainland are represented on the island.
In this case, the effect of migration (λ) is weak since the small
external flux does not qualitatively change the steady state,
which in any case has all species present. The steady state is
then well approximated by the solution of Eq. (1) with λ = 0,
which is easily seen to be

Ni = KB−11, (6)

where 1 stands for the length Q column vector consisting of
all ones, and B is the matrix

Bi,j = δi,j + Cci,j . (7)

Figure 4 illustrates the process. For C small enough that
coexistence fixed point solution is physical, such that all
Ni are positive, there is a unique stable solution and all Q

mainland species will be present on the island. Their respective
abundances decrease as a function of C, but no species goes
extinct in the deterministic theory. As long as this remains
true, for reasonably large K one can more or less neglect
the noise, given the stability of the fixed point solution. The
species that have lower abundance are those who suffer more
from the competition, and even if demographic noise drives a
few of them to extinction, the effect on the rest of the network
is minor and the system will restore itself by immigration.
This situation is illustrated by the first panel of Fig. 2, the case
C = 0.05, where there are no extinctions seen in the timeframe
shown. Examined over a much longer period, there are indeed
a few occasional extinctions, followed by recolonization via
immigration, of various species. The most extinction prone
species, for example, was seen to go extinct a total of four
times over a period of 24 000 snapshots. The IPR, initially
equal to Q at C = 0, will decrease with increasing C, due to
the increasing nonuniformity of the various population sizes.

In such a scenario, one expects deviations from the Wilson-
MacArthur formula. When the abundance of the species
are different from each other, the chance of extinction e
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FIG. 4. (Color online) Abundance vs competition. The abun-
dance of Q = 10 species on the island is plotted vs the competition
parameter C, for a deterministic GCLV model with K = 100 and
σ = 0.5, without immigration (λ = 0). Each color represents the
abundance of a different species. In the noninteracting limit C = 0
the abundance of all species is identical and equal to K . At C1 ≈ 0.28
the abundance of the “weakest” species reaches zero; this is the May
transition, where the system enters the competitive exclusion phase.
Upon increasing C, more and more species go extinct until (here,
around C = 0.78) a species comes back to life, as the competitors
that suppressed it were themselves suppressed.

becomes species dependent, so once C > 0 the persistence
times will reflect a convolution of exponents with different
time scales. When the community heterogeneity increases,
the Wilson-MacArthur extinction-recolonization dynamics is
most relevant for the smaller species, again with heterogeneous
statistics of extinction times.

VII. MAY TRANSITION AND THE PARTIAL
COEXISTENCE PHASE

As C increases even more, the deterministic dynamics
(without immigration) no longer supports a steady state with
all the Q mainland species coexisting. In the full coexistence
phase, as discussed above, the λ = 0 steady-state system
admits a solution [Eq. (6)], which is both feasible (Ni > 0)
and stable (the real part of all the eigenvalues of the linear
stability matrix are negative). As follows from the work of
May [30], the chance for the system to fulfill these requisites,
for fixed heterogeneity σ , decreases exponentially with Q. In
fact, for the GCLV in the coexistence phase, the main obstacle
is feasibility [31]. Equation (6) suggests that the solution will
be feasible when the sum of all the rows of B−1 is positive. As
the average sum of a row approaches zero with C, the chance
to pick only positive values for Ni decreases exponentially
with Q.

In Fig. 4, one observes that for the particular realization
of the ci,j being simulated here, with Q = 10, the abundance
of the weakest species reaches zero around C = 0.28. This
point marks the transition from the full coexistence phase
to the partial coexistence phase. In this phase, the island
species richness S is smaller that the mainland richness Q,
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as some populations are not supported anymore on the island.
Weak competitors (species that suffer from strong competition
against others that do not suffer as much) are selected out.

This is the deterministic picture without migration. With
migration, “exclusion” does not correspond to exactly zero
density. Instead, above the May transition the deterministic
density of these species is O(λ). Since we assume that λ is
small, demographic noise induces frequent extinction of these
transient species. As opposed to the other, “semiresident”
species (the “semi” prefix taking account of the possibility
of a short-lived absence due to demographic fluctuations),
the growth rate of a transient species immigrant is negative,
rendering its average persistence times small, independent
of K .

Technically speaking, the May transition takes place at
a critical value of the competition parameter C1, where the
smallest Ni reaches zero. Above the transition one can define
a reduced system, eliminating the row and column of B

associated with the eliminated species. This reduced system
does admit a solution where all the (remaining) species have
positive abundance. This is clear since at the exact value of C at
which the next species vanishes, the remaining Ni’s constitute
a solution of the reduced problem. In addition, the equation
for the species with vanishing abundance (call it k) reads as

0 = 1 − (C/K)
∑
j �=k

ck,jNj . (8)

The right-hand side of this equation is just the growth rate of
the kth species, so that for C smaller than the critical value,
the growth rate of this species is positive, and for C above this
value, it is negative. Thus, the kth species cannot invade for C’s
slightly larger than the value at which that species disappears
from the community.

In Fig. 5, we present the May line in the C-σ plane,
showing the dependence of C1 on σ . The data were obtained by
calculating the May point for a set of 100 random ci,j matrices
for a given σ and averaging. We see that C1 increases with
decreasing σ , and appears to approach unity for σ → 0. We
shall return to this point later.

Increasing C in this manner in the partial coexistence
phase, one obtains a nested hierarchy of solutions, each with
less diversity, which are immune to invasion by any of the
extinct species. As mentioned, this hierarchy is completely
independent of the carrying capacity K . This prescription
eventually breaks down. At some point, there is a “resurrec-
tion” of one of the eliminated species. This happens when
the species in question was strongly suppressed by another
species. As C increases, this suppressor species is itself
reduced in abundance, and so the suppressed species is able
to stage a comeback. Thus, there is a value of C at which this
suppressed species is able to invade. At this point, it needs to
be added back to the reduced system since the small external
flux will reintroduce it and it will then grow in abundance.
Increasing C further, things continue on in this fashion, losing
and regaining species. The main characteristic of the partial
exclusion phase, the distinction between semiresident species
that admit a finite population and O(λ) transients that cannot
invade, still holds.
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FIG. 5. (Color online) The phase boundaries in the C, σ plane.
The leftmost, red, line is the May line where the deterministic solution
with all species present disappears. The next, solid black, line to
the right is the simulationally determined line where the concave
downward part of the species occupancy curve disappears, for the
case K = 100, λ = 0.01. The dotted black line to the right of the solid
black line is the same line for K = 200, λ = 0.01. The rightmost,
blue, line marks the region where the system spends more than 20%
of its time in a particular state, for K = 100, λ = 0.01. The May line
was determined by averaging over 100 different realizations of the
interaction matrix. The other lines result from averages over 10 or
20 matrices.

An example of the stochastic version of this partial
coexistence phase can be seen in the second and third panels
of Fig. 2. For this realization of the ci,j , with Q = 20, the May
transition point is at approximately C1 ≈ 0.169. We show in
Fig. 6 the time-averaged abundances of the species for an
extended version of the run presented in the second panel
of Fig. 2, with C = 0.25, past the May point. We see that
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FIG. 6. (Color online) The time-averaged abundance (open cir-
cles) vs species number for an extended run of the second panel
of Fig. 2. C = 0.25, N = 20, K = 100, σ = 0.5, λ = 0.01. Also
shown is the deterministic time-independent solution (filled squares).
The lines are shown just to guide the eye.
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the deterministic solution is essentially missing three species,
{4, 11, 16}. The stochastic run shows that the overall structure
of the abundance versus species of the deterministic model is
preserved. The smaller species are, as might be expected, more
severely impacted by the demographic noise, to the benefit
of the larger species, which do not have to suffer as much
competition from these small species. As C increases, not
only does the number of species present in the deterministic
solution decrease, but a significant fraction of these have very
small abundances. This is reflected in the sharp fall of the IPR
in this range of C.

VIII. PHASE III: THE “DISORDERED” PHASE

At some point, C2, the partial coexistence picture breaks
down. In the deterministic model (with immigration), random
initial conditions no longer always converge to a fixed steady
state, or to any steady state. Typically, slightly beyond C2

the deterministic system supports a large amplitude periodic
attractor. This is demonstrated in Fig. 7, where the percentage
of runs that converged to a steady state for a particular Q =
20, σ = 0.5 system is plotted as a function of C. We see
that between C = 0.66 and 0.67, the percentage of runs that
converge to a steady state drops precipitously. This behavior
was also seen at a range of different Q’s ranging for Q = 10
to 100 (data not shown).

The dynamics in the stochastic model in this Phase III
diverges significantly from its deterministic counterpart.
During the large amplitude deterministic excursions, some
species attain low abundance, and are then very vulnerable to
extinction. Once extinct, it takes a while for them to return and
meanwhile the system falls into a different mode of operation.
The system thus irregularly jumps from a set of dominant
species to another, in sharp contrast to the deterministic
dynamics. An example of this can be seen in Fig. 8, where
the deterministic behavior in the left panel stands in sharp
contrast to that of the stochastic system with K = 100 in

0 0.5 1

C

0

20

40

60

80

100

%
 In

it 
C

on
ds

 −
−>

 S
te

ad
y-

S
ta

te

FIG. 7. The percent of runs with random initial conditions that
converged to a steady state, as a function of the competition strength
C. The matrix ci,j is the same as in Fig. 4, so that Q = 20, σ = 0.5.
Also, λ = 0.01, K = 100.

the right panel. There is no longer a fixed set of “resident”
species which are always present in large numbers. Instead,
there is a constant turnover in the set of species present, with
the dominant species of the deterministic attractor playing no
special role in general. This is reflected in the rise seen in the
IPR in Fig. 3 for C � 0.45.

This rise in the IPR occurs significantly before the onset
of Phase III in the deterministic model, as the stable state
is evidently fragile even before the nontrivial deterministic
attractor is born. Thus, as is usual, the sharp transition in the
deterministic model is smeared somewhat in the stochastic
system. To get a handle on the effective onset of Phase III in
the stochastic model, we need to define an “order parameter” to
characterize the transition. One such measure is the IPR, which
however is computationally expensive to measure accurately.

FIG. 8. (Color) Comparison of the time evolution of the deterministic and stochastic dynamics, showing snapshots of the abundance for all
species for the two models. Red is high abundance, dark blue low. Q = 20, K = 100, C = 0.675, σ = 0.5, λ = 0.001. Left: The deterministic
model, with time between snapshots of λt = 0.015. Right: The stochastic model, with time between snapshots of λt = 0.128. This larger
period was chosen in order to exhibit the wide variety of states generated by the stochastic model.
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FIG. 9. (Color online) The occupancy vs rank species order (of
increasing occupancy) for an extended run of the second, third, and
fourth panels of Fig. 2. C = 0.25 (open circles), C = 0.45 (filled
squares), C = 0.65 (x’s). Q = 20, K = 100, σ = 0.5, λ = 0.01. The
lines are shown just to guide the eye.

Instead we use a measure based on the “occupancy” of each
species, the fraction of time that it is present on the island.
In Fig. 9, we show the occupancy for the (extensions of
the) runs in Fig. 2. We see that for C = 0.25, in the partial
coexistence phase, there is a set of seven species with relatively
high occupancy. These give the overall curve for C = 0.25
a concave downward form at high rank order. The number
of high occupancy species drops to three at C = 0.45, and
at C = 0.65 the concave downward part of the curve has
disappeared and the entire curve is convex upward. Thus,
beyond the rise in the IPR, another sign of the end of the
partial coexistence phase is the disappearance of the concave
downward part of the occupancy curve. We will adopt this as
our operational criterion for the location of the phase boundary.
In practice, what we do is construct the straight line curve
connecting the first and last points of the occupancy curve. If
any point in the right half of the occupancy curve lies above this
line, the value of C is assigned to the partial coexistence phase.
In Fig. 5, we show the phase boundary measured in this manner.
We find that the partial coexistence phase becomes narrower
as σ decreases, and disappears below some value of σ . In the
stochastic model, the transition as measured according to our
operational definition clearly depends on the carrying capacity
K . Increasing K moves the start of the “disordered” phase to
larger C, as can be seen in Fig. 5, consistent with our finding
for the deterministic transition point.

As we have mentioned above, the dramatic difference
between the deterministic and the stochastic dynamics in this
phase has to do with local extinctions. Under demographic
noise, a species with a deterministic orbit that takes it close
enough to zero abundance may go extinct, and once this
happens, it goes out of the game until the next immigrant
from this species arrives from the mainland and manages to
establish. With small values of λ, this quasistable state persists
for relatively long times, many species are absent from the
competition so the effective number of species is smaller, and
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FIG. 10. (Color online) The average dwell time of the invadable
state with species {15,18,20} for the Q = 20, C = 0.675 system
simulated in Fig. 4, as a function of 1/λ, showing that the dwell time
is inversely proportional to λ. The dotted curve is a straight line to
help guide the eye.

the system can find a steady state, as if it was in the partial
coexistence phase.

However, unlike the local minima in a glassy energy
landscape, here every local attractor is unstable to invasion
by at least one of the Q species on the mainland. The dwell
time distribution for an invadable state is exponential, with the
mean dwell time inversely proportional to the migration rate λ

(at least for not too small K). This relationship is seen clearly
in Fig. 10, where the mean dwell time is plotted against 1/λ

for a particular invadable state. Accordingly, the stability of a
local attractor is determined by two factors. One is the number
of potential invaders, and the other is the low-density growth
rate(s) of the invader(s).

This insight suggests the use of a snapshot quenching
method to clarify the behavior of the stochastic system. As with
a physical system at finite temperature which has a number of
metastable states, the momentary state of the system is not
at the bottom of a given well, but rather somewhere in its
vicinity due to the thermal fluctuations. The way to identify
the transitions is to ask, at every instance of time, in which well
the system is in. Then, we have a description of the system
which is constant as long as the system remains in the well
surrounding a given fixed point, and jumps discontinuously
when it transitions from one well to another. This description
serves to filter out the less interesting small fluctuations within
a given well while preserving the major qualitative regime
shifts between different wells. One way to determine which
well the system is currently in is to quench the system, turning
off the thermal fluctuations. We essentially adopt the same
procedure here, where instead of potential wells, we have
basins of attraction of various steady-states. Taking the state
of the stochastic system at a certain time t , we have used
it as an initial condition for the deterministic dynamics of
Eq. (4) with λ = 0, and integrate numerically this system
until it relaxed to a steady state. (Very rarely, the system
relaxes to a more complicated dynamical state, which we
characterize by its time-averaged abundances.) This snapshot
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FIG. 11. (Color) Snapshots of the time evolution of the quenched
state, i.e., the species abundances of the deterministic λ = 0 steady-
state attractor associated with each of the 200 snapshots in time
illustrated in the right panel of Fig. 8.

quenching procedure indicates the species composition of the
local attractor at t . Repeating this procedure for every snapshot,
taken at intervals of �t , the quenching produces a description
where the system is quiescent for some period of time and then
jumps to a new state. These various states are metastable with
respect to the species that are present, but typically invadable
by species which are currently not represented on the island.
Figure 11 shows the results of the quenching procedure for the
same stochastic dynamics depicted in the right panel of Fig. 8.
We see that it reproduces the species content of the dominant
species at each instant of time, but has removed the short-time
fluctuations inherent in the stochastic model.

Once successfully invaded, the system leaves the local
attractor and wanders around until it finds another local
attractor. One may think about the local attractor as an abstract
network, where each local attractor is a node and two attractors
are connected by a link if the system may jump directly
from one of them to the other. This network is seen to
have an interesting structure. Figure 12 shows the statistics
of number of visits per local attractor, which is very wide
and suggests a (cutoff) power law. There are a relatively
few number of hub states which are visited in a significant
fraction of the transitions, with a large number of states that
are visited relatively infrequently. For example, for C = 0.75,
the most frequently visited state is the invadable state {6, 14},
which was visited 1351 times out of 37 543 transitions.
The next most visited states had 1231, 907, and 732 visits,
respectively.

It should be emphasized that the topology of this network
is much more important, dynamically, than the stability
properties of a state. Actually, for C = 0.75 there are three
stable uninvadable states. The stable state {1,3,15,18,20},
however, was only visited twice, and each time lasted only
one snapshot. The other two stable states were not visited at
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FIG. 12. (Color online) Probability distribution for the number
of visits to the various invadable metastable states in a run of total
duration λt = 2 × 104, with snapshots taken each λt = 0.08 for a
total of 2.5 × 105 snapshots. Data are shown for C = 0.75 and 0.85.
For C = 0.75, a total of 598 different states were visited, out of a total
of 2045 states. N = 20, K = 100, λ = 0.01. Also shown is the power
law P (x) ∼ x1.1, which is a good description of the distribution for
all but the most visited states.

all. Thus, these stable states, for the value of K = 100 we
are studying, are dynamically irrelevant. We shall return to
this point later when we discuss the phase at higher C where
various stable states do play a significant role.

The power-law distribution of numbers of visits suggests
an interesting transition network, with a very heterogeneous
structure. Quantifying the degree distribution of the emerging
network we have found that is quite close to be scale free.
It shows a power-law decay of the probability of a node to
have k links, P (k), with a small exponent (≈ 1.1), in the case
demonstrated in Fig. 13, superimposed on a slow exponential
cutoff.
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FIG. 13. (Color online) Distribution of the in and out degrees for
the transitions between the 3729 states encountered in a long run
N = 40, C = 0.4, K = 100, λ = 0.01.

042705-9



DAVID A. KESSLER AND NADAV M. SHNERB PHYSICAL REVIEW E 91, 042705 (2015)

IX. STRONG COMPETITION AND PHASE IV:
THE GLASSLIKE PHASE

We have already mentioned that above C2, nonstationary
attractors can coexist with one or more stable stationary states.
However, these stationary states had small basins of attraction
in addition to containing species with small abundances. Thus,
in the stochastic dynamics they were visited infrequently and
had short lifetimes (at least for K’s less than 104 or so) and
so their dynamical relevance was marginal. This situation
changes qualitatively beyond some larger value of C, C3. This
can be seen by extending our measurements of the fate of
random initial conditions to larger C. We see in Fig. 7 that
between C = 0.84 and 0.86, the percent of runs that converge
to a (one of a number of) steady state rises to 100%. This
change in behavior is also readily apparent in the last panel of
Fig. 4, and is correlated with the fall of the IPR at large C.

In the stochastic model, the steady states have finite
lifetimes, of course. These lifetimes are controlled by K and
only weakly impacted by decreasing λ. Due to the small
number of species represented in these states, they also are
visited relatively frequently. As C increases further, the depth
of the various stable solutions increases nonuniformly, and one
state eventually dominates. We operationally define the onset
of this fourth phase in the stochastic model as the value of
C in which the system dwells in a single state for over 20%
of the time. The last phase boundary is illustrated in Fig. 5. It
should also be noted that as opposed to a true glass, the number
of attractors here is not exponentially large. Nevertheless, the
dynamics is very slow compared to the disordered Phase III.

X. ENCOUNTER AT THE HUBBELL POINT

As indicated in Fig. 5, the transition lines between the
various phases appear to meet at the Hubbell point. Clearly,
for any fixed C < 1 the deterministic model supports full
coexistence when σ → 0, implying that the May line must hit
the Hubbell point. Similarly, for fixed C > 1 and vanishingly
small σ every solution with one species of abundance K is
uninvadable, so the line separating the “disordered” phase
from the glasslike phase also has to reach to the Hubbell
point. It is difficult to implement our operational procedures for
determining the phase boundaries in the vicinity of the Hubble
point, due to the weak stability of the attractive manifolds in
this region, which the noise will smear out. However, Fig. 5
indicates the merging of the May line and that separating the
partial coexistence and the “chaotic” phases moves to smaller
σ for increasing K . If the latter boundary indeed extends down
to σ = 0 for larger enough K , it must also hit the Hubbell point.

The theory of Hubbell, assuming strict neutrality of all
species in the community, was criticized for this unrealistic
assumption. In particular, it was stressed that any deviation
from a strict neutrality must lead to a fixation of the system
by the fittest species [32]. As we see here, the situation is
more complicated. C = 1, σ = 0 is apparently a quadracritical
point, with slight deviations from perfect neutrality yielding
different results, depending on the ratio between C and σ .
When superimposed on the effect of noise (and, in particular, of
demographic stochasticity that allows for the quasiabsorbing
states) the phase diagram may be very rich.
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FIG. 14. (Color online) Distribution of species lifetimes, for Q =
20, σ = 0.0156, K = 1000, λ = 0.01 for C = 0.2 (black, no marker),
0.4 (red, open circle), 0.6 (green, filled circle), 0.8 (blue, diamond),
and 1 (orange, triangle). The (dashed) line y = 0.1/(λt)2 is shown to
guide the eye.

One particular example is the distribution of persistence
(colonization to extinction) times of species (as opposed to
states, which are characterized by a given set of extant species).
Figure 14 shows this distribution slightly above the Hubbell
point, i.e., for C = 1, σ = 0.0156. We see that the distribution
of species lifetimes is quite wide. Indeed, Fig. 14 suggests
a power-law distribution with an exponent close to 2, which
resembles the findings of [7].

XI. DISCUSSION AND CONCLUDING REMARKS

The mainland-island system, considered herein, is one of
the main models of spatial ecology. It played an important
role in the empirical assessment of the two leading pictures
of neutral dynamics: the Wilson-MacArthur model (in which
all species are equivalent, i.e., admit the same extinction
and recolonization rates) and the Hubbell neutral biodiversity
model (where all individuals are demographically equivalent).
In particular, the success of Hubbell in explaining the species
abundance distribution in tropical forests, which is the main
achievement of the neutral theory of biodiversity, depends
entirely on the mainland-island structure, since the species
abundance distribution of a simple well-mixed model does not
fit the empirical data.

In light of this, the rich structure of the mainland-island
competitive Lotka-Volterra system that revealed itself in this
study appears to be very interesting. Clearly, the perfect
neutrality of Wilson-MacArthur and Hubbell models depends
on unrealistic fine tuning of the system parameters, so one
would like to figure out what happens when this assumption
is relaxed. It turns out that the answer to this question is
quite subtle, in particular close to the Hubbell point. Slight
deviations from the perfectly neutral scenario may lead to
absolutely different dynamical behaviors, and the role of noise
close to the transition is crucial.

Our work opens up a few interesting questions about the
dynamics of local and global communities. First, one would
like to characterize the dynamics of empirical communities
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as belonging to one of the four qualitative phases considered
above. With databases such as the North-American Breeding
Birds survey, giving the yearly community composition in
thousands of locations along about 45 years, this task may
be achievable. Once the dynamics of a local community is
understood, the overall species turnover rates in a system of
local patches connected by migration (a metapopulation) may
be investigated both theoretically and by an analysis of field
data. One possibility that emerges from our study is that, in
such a metacommunity of disordered or glassy patches, the
time to extinction of an extinction-prone species will be so
large that it will reach the evolutionary scale (the speciation
time) and thus the biodiversity puzzle will be solved.

Two technical points also merit some discussion. First,
although the noise introduced into the model is purely de-
mographic, i.e., it scales with the square root of the population
size, the abundance fluctuations are much larger, as clearly
seen in Fig. 2. The reason is that the demographic noise is
superimposed on the nonlinear effects of the deterministic
dynamics. This phenomenon is in agreement with many recent
studies [33–35], showing that the noise in empirical systems is
clearly stronger than demographic. Moreover, at least for large
K one should expect that the large abundance semiresident
species are less affected by the noise than the rare species,
such that the scaling of abundance fluctuations with Ni will be
stronger than the square root of Ni but weaker than Ni ; this is
indeed the case in some empirical systems [33].

A second issue, somehow connected to the first, is the effect
of “real” environmental noise, i.e., time dependent fluctuations

of the model parameters. Environmental stochasticity is
usually considered as a destabilizing factor, increasing species
turnover rate and the amplitude of abundance fluctuations, but
it may also stabilize a ci,j independent equal abundance fixed
point due to the storage effect [36]. We hope to address this
issue in a subsequent publication.

Finally, we believe that the classification presented here,
although only semiqualitative at present, is very important
to the understanding of community dynamics in general. In
most cases, the data analyzed by researchers reflect the local
species richness rather than the state of a regional pool,
but is interpreted as a fairly honest sample of the global
community, assuming, more or less, that the system is either
in the full coexistence or in the partial coexistence phase.
Such an interpretation may be misleading. In particular, in the
disordered and in the glassy phase, sudden drastic variations in
the structure of the community reflect the intrinsic dynamics of
the system and, in contrast to a very common interpretation, are
not evidence for exogenous factors that induce a catastrophic
shift. As the concerns about the impact of anthropogenic
changes rise, it is imperative to take this possibility into
account.
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