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Role of protein fluctuation correlations in electron transfer in photosynthetic complexes
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We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties
of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of
connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph
processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We
derived an exact closed system of first-order linear differential equations with constant coefficients, for the average
density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for
the electron transfer rates and found the range of parameters for their applicability by comparing with the exact
numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically
that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or
decrease the electron transfer rates.
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I. INTRODUCTION

In a photosynthetic organism, sunlight is absorbed in
the light-harvesting complex or antenna, by a light-sensitive
(chlorophyll or carotenoid) molecule. This is the first step in
transforming solar energy into electron energy in the form of
the exciton. This exciton travels through many connected sites
(pigments) of the antenna complex, and finally reaches the
reaction center where charge separation and chemical reactions
take place. (See, for example, [1,2], and references therein.)

The time scale of the primary processes of electron
(exciton) transfer (ET) and charge separation are very fast,
tprime ≈ 1–3 ps. There are two major theoretical challenges
in describing these primary processes. The first problem
is that the constant of interaction λn between the electron
site n and the protein environment is usually not small.
Indeed, the well-known Marcus formula for the ET rate kda

between the donor and the acceptor, under the influence of
the collective protein thermal fluctuations, has the form [3,4]
kda = (2π |Vda|2/

√
4πεrT ) exp[−(ε − εr )2/4kBT εr ]. Here ε

is the difference between the donor and the acceptor site
energies, Vda is the matrix element of the donor-acceptor
interaction, T is the absolute temperature, kB is the Boltzmann
constant, and εr is the so-called reconstruction energy, εr ∝ λ2.
As one can see, the interaction constant λ occurs in the
denominators of both the preexponential factor and in the
exponent. This result cannot be obtained by using standard
perturbative approaches by expanding the initial expressions
in a power series in the interaction constant λ.

It is known that the Marcus formula is derived in the high-
temperature limit but can also be used for room temperature
[4]. A significant development of the Marcus theory was
achieved in [5,6], where the extensions for a wide range of
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temperatures and for different properties of a solvent were
incorporated. Note that in [3–6] a single protein environment
was used which acts on both donor and acceptor, but with
different coupling constants. However, the important question
remains: What modifications for the ET process will occur if
a combination of correlated and independent (uncorrelated)
protein environments acts on different electron sites?

In [7,8], stochastic models, with uncorrelated noises acting
on different sites, were used to elucidate the unidirectionality
of the primary charge separation process in bacterial reaction
centers with two symmetric methods of ET, starting from the
common electron donor. These papers addressed the well-
known problem of highly asymmetric ET in photosynthetic
reaction centers.

Note that, in real photosynthetic organisms, uncorrelated
protein fluctuations can act on their neighboring pigments as
well as on other pigments. Experimentally, this can be verified
by measuring the corresponding correlation functions of the
protein fluctuations between different donor-acceptor sites.
The correlation properties of protein fluctuations at different
electron sites can also be modeled and simulated numerically
using standard molecular dynamics approaches.

In [9,10], we introduced a quantum mechanical nonpertur-
bative model to describe multilevel donor-acceptor systems.
The model was used to describe multiscale ET dynamics
and nonphotochemical quenching by a charge transfer state
in photosynthetic biocomplexes. In our approach the protein
environment is modeled by a random telegraph process (RTP).

In this paper, we extend our model to the case in which
the random protein environment can act both collectively and
independently on all light-sensitive electron sites (pigments).
Namely, for all electron sites, we introduce both collective
(correlated) and independent (uncorrelated) protein fluctua-
tions, modeled by RTP’s. We apply our model to determine the
quantum ET dynamics of the simplest donor-acceptor system.
Our main goal is to clarify the similarities and differences in the
actions of correlated and uncorrelated protein environments
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on the ET processes. Under some conditions, we derived
analytic expressions for the ET rates that are a generalization of
the Marcus-type expression for a noisy protein environment.
We compared our analytic expressions, in a wide range of
parameters, with the results of exact numerical simulations. We
demonstrated numerically that the uncorrelated fluctuations of
the protein environment can either increase or decrease the ET
rates.

Although protein environments modeled by random pro-
cesses and by the thermal bath usually produce different
long-time asymptotic behavior for the ET dynamics, we
believe that our approach is appropriate for problems when
the stationary states are realized before thermal equilibrium
is approached [8,10]. Note also that protein environments in
living organisms have both noisy and thermal components
[3,4,7,8,11–21].

The structure of the paper is as follows. In Sec. II, we
describe our model, and derive the closed system of differential
equations for the averaged density matrix elements and for
their moments. In Sec. III, we apply our approach to a specific
“donor-acceptor” system, introduce the characteristic param-
eters, and present the results of the numerical simulations for
both the exact and approximate solutions. In the Conclusion,
we summarize our results and formulate some challenges
for future research. In the Supplemental Material [22], we
present mathematical details of our approach, and additional
illustrations of the actions of correlated and uncorrelated
protein environments on the ET.

II. DESCRIPTION OF THE MODEL

Consider a quantum system which is described by a time-
dependent HamiltonianH(t). We assume that this Hamiltonian
depends on some control parameters λa . The noise associated
with fluctuations of these parameters is described by the
functions δλa(t), which depend on the random variables ξa(t).
Expanding the Hamiltonian to first order in ξa(t), we have

H(t) = H0 +
∑

a

Vaξa(t), (1)

where H0, is the Hamiltonian of the system under consider-
ation, and Va is a matrix that describes the interaction with
noise. Using (1), we obtain the following equations of motion
for the density matrix (� = 1):

dρ

dt
= i[ρ,H0] + i

[
ρ,

∑
a

Va,ξa(t)

]
. (2)

For the density matrix averaged over noise this yields

d〈ρ〉
dt

= i[〈ρ〉,H0] + i
∑

a

[〈ρξa(t)〉,Va], (3)

where the average 〈· · · 〉 is taken over the random processes.
To close this system of differential equations (3), we assume

that the fluctuations are produced by the independent random
telegraph processes

〈ξa(t)〉 = 0, (4)

〈ξa(t)ξb(t ′)〉 = δabσ
2
a e−2γaτ . (5)

Employing the differential formula for the RTP [23],(
d

dt
+ 2γa

)
〈ξa(t)R[t ; ξa(τ )]〉 =

〈
ξa(t)

d

dt
R[t ; ξa(τ )]

〉
,

(6)

where R[t ; ξa(τ )], is an arbitrary functional, we obtain from
Eq. (3) the following system of differential equations:

d〈ρ〉
dt

= i[〈ρ〉,H0] + i
∑

a

σa[〈Xa〉,Va], (7)

d〈Xa〉
dt

= i[〈Xa〉,H0] + iσa[〈ρ〉,Va]

+ i
∑
b �=a

σb[〈Xab〉,Vb] − 2γa〈Xa〉, (8)

d〈Xab〉
dt

= i[〈Xab〉,H0] + iσa[〈Xb〉,Vb]

+ iσb[〈Xa〉,Vb] − 2(γa + γb)〈Xab〉, (9)

where 〈Xa(t)〉 = 〈ξa(t)ρ(t)〉/σa and 〈Xab(t)〉 =
〈ξa(t)ξb(t)ρ(t)〉/(σaσb) (a �= b). Not, that by using the
properties of the RTP, one can show that 〈Xaa(t)〉 = 〈ρ(t)〉.
Therefore, the diagonal elements of the matrix 〈Xab(t)〉 do
not add new equations to the system (7)–(9).

In the rest of this paper, we use Eqs. (7)–(9) to study the
two-level donor-acceptor system (TLS) embedded in a noisy
protein environment. We assume that two uncorrelated RTPs
(generally with different interaction constants) act one each on
the donor and the acceptor.

III. TWO-LEVEL DONOR-ACCEPTOR SYSTEM

For simplicity of consideration, we apply our approach to
a TLS with the following Hamiltonian:

H̃ =
∑

n

εn|n〉〈n| +
∑
m�=n

Vmn|m〉〈n|

+
∑
m,n

λmn(t)|m〉〈n|, m,n = 0,1, (10)

where the functions λmn(t) describe the influence of noise.
When the matrix elements Vnm are absent, the diagonal matrix
elements λnn(t) are responsible for decoherence—the decay
of the nondiagonal density matrix elements. When λmn(t) = 0
(m �= n), relaxation in the system occurs only if Vmn �= 0.
When Vmn = 0, the off-diagonal matrix elements λmn(t) (m �=
n) lead to “direct” relaxation processes.

In what follows, we restrict ourselves to diagonal noise
effects produced by two independent (uncorrelated) protein
environments described by the RTPs ξ1,2(t). Then one can
write λmn(t) = δmn

∑2
a=1 λ(a)

n ξa(t), where λ(a)
n is the interac-

tion constant with the ath environment ξa(t) at the site n

(a,n = 1,2). Note that, in our approach, each noise can act
on both donor and acceptor sites. (See Fig. 1.) The limit of a
single collective noise, acting on both the donor and acceptor
sites, corresponds to λ

(1)
1,2 �= 0 and λ

(2)
1,2 = 0, or λ

(1)
1,2 = 0 and

λ
(2)
1,2 �= 0. The limit of two uncorrelated noises, acting one
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FIG. 1. (Color online) The two-level donor-acceptor system in-
teracting with two uncorrelated noisy environments ξ1(t) and ξ2(t);
λ(a)

n are the constants of interaction. The superscript a = 1,2 indicates
the noisy environment, and the subscript n = 1,2 indicates the
electron site.

on the donor and the other on the acceptor, corresponds to
λ

(2)
1 = λ

(1)
2 = 0 or λ

(1)
1 = λ

(2)
2 = 0.

We consider the stationary telegraph noise described by the
random variable ξa(t) = ζa(t) − ζ̄a , so that

〈ξa(t)〉 = 0, (11)

〈ξa(t)ξb(t ′)〉 = δabχa(t − t ′), (12)

where χa(t − t ′) = σ 2
a e−2γa |t−t ′| is the correlation function of

the ath noise, described by the random variable ξa(t). The

average value 〈ζa(t)〉 = ζ̄a is included in the renormalization
of the electron energy at each site n in Eq. (10) as εn →
εn + ∑

a λ(a)
n ζ̄a .

A. Integro-differential equations and rates

The dynamics of the TLS can be described by the following
system of integro-differential equations [19,24] (for details see
[22]):

d

dt
〈ρ11(t)〉 = −

∫ t

0
K(t − t ′)[〈ρ11(t ′)〉 − 〈ρ22(t ′)〉]dt ′

+ iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (13)

d

dt
〈ρ22(t)〉 =

∫ t

0
K(t − t ′)[〈ρ11(t ′)〉 − 〈ρ22(t ′)〉]dt ′

− iV21〈ρ12(0)〉 + iV12〈ρ21(0)〉, (14)

where

K(t − t ′) =2V 2(t − t ′) cos (ε(t − t ′)), (15)

ε = ε1 − ε2, and (t − t ′) is the characteristic functional of
the random process.

For the case of two uncorrelated environments described
by RTPs, one can show that (t) = 1(t)2(t). The charac-
teristic functional a(t) of each independent RTP is given by
[25,26]

a(t) = e−γat

(
cosh

(√
γ 2

a − d2
a t

) + 1√
γ 2

a − d2
a

sinh
(√

γ 2
a − d2

a t
))

, a = 1,2, (16)

where da = (λ(a)
1 − λ

(a)
2 )σa denotes the amplitude of the ath noise.

When the condition, | ∫ ∞
0 τK(τ )dτ | � 1, is satisfied, we can approximate Eqs. (13) and (14) by the following system of

ordinary differential equations,

d

dt
〈ρ11(t)〉 = −R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉) + iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (17)

d

dt
〈ρ22(t)〉 =R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉) − iV21〈ρ12(0)〉 + iV12〈ρ21(0)〉, (18)

where R(t) = ∫ t

0 K(τ )dτ .
Assume that initially the off-diagonal components of the density matrix (and, correspondingly, their average values) are zero,

ρ12(0) = ρ21(0) = 0. Then the exact solution of Eqs. (17) and (18) can be written as

〈ρ11(t)〉 = 1
2 + (〈ρ11(0)〉 − 1

2

)
e−2

∫ t

0 R(t ′)dt ′ , (19)

〈ρ22(t)〉 = 1
2 + (〈ρ22(0)〉 − 1

2

)
e−2

∫ t

0 R(t ′)dt ′ , (20)

where 〈ρ11(0)〉 = ρ11(0) and 〈ρ22(0)〉 = ρ22(0). As one can see, in the limit t → ∞, the presence of noise results in equal
populations in the TLS.

The solution given by Eqs. (19) and (20) can be approximated by replacing R(t) by its asymptotic value �/2 = limt→∞ R(t).
The result is

〈ρ11(t)〉 = 1
2 + (

ρ11(0) − 1
2

)
e−�t , (21)

〈ρ22(t)〉 = 1
2 + (

ρ22(0) − 1
2

)
e−�t . (22)
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1. Two uncorrelated noises

When the environment is described by two uncorrelated RTPs, the asymptotic rate � is given by (see [22] for details)

� = 2|V12|2
α1 α2 (γ1 + γ2)

Re

(
(g1 g2 − α1 α2) (1 + iν) + (α1 g2 − g1 α2) (α1 − α2)

(α1 − α2)2 − (1 + iν)2

− (g1 g2 + α1 α2) (1 + iν) + (g1 α2 + α1 g2) (α1 + α2)

(α1 + α2)2 − (1 + iν)2

)
, (23)

where

α1 =
√

g2
1 − μ2

1, α2 =
√

g2
2 − μ2

2, g1 = γ1

γ1 + γ2
, g2 = γ2

γ1 + γ2
,

(24)

ν = ε

(γ1 + γ2)
, μ1 = d

(1)
1 − d

(1)
2

γ1 + γ2
, μ2 = d

(2)
1 − d

(2)
2

γ1 + γ2
.

In Eq. (23), we used the following notation: d (a)
n = λ(a)

n σa

(a,n = 1,2).
As was mentioned above, the condition of the applicability

of Eqs. (17) and (18) is | ∫ ∞
0 τK(τ )dτ | � 1. To analyze this

condition analytically is rather complicated. Our numerical
calculations show that the approximate condition of applica-
bility is |V1,2| � (γ1 + γ2). Note that the same condition is
also required for the exact solutions of Eqs. (7)–(9) to be
approximated by Eqs. (21) and (22). (See [22] for details.)

2. Single collective diagonal noise

In the case of a single collective noisy environment, acting
on both the donor and acceptor, the rate � in Eq. (23) has the
form

� = 8V 2μ2

γ ((μ2 − ν2)2 + 4ν2)
. (25)

Substituting μ = d/γ and ν = ε/γ , we obtain

� = 8γ |V12|2d2

(d2 − ε2)2 + 4γ 2ε2
, (26)

where d = (λ1 − λ2)σ denotes the amplitude of the noise. As
one can see, the rate � reaches its maximum,

�max = 4γ |V12|2√
ε4 + 4γ 2ε2 − ε2

, (27)

at the “resonance” amplitude of the noise,

dres = (ε4 + 4γ 2ε2)1/4. (28)

(See also [9,10].) When the amplitude of the noise is far from
the resonance value, the rate � becomes very small.

3. The “nonlinear” regime of electron transfer

The dependence of the ET rate � in Eq. (26) on the ampli-
tude d of the noise (the external random force) is a nonlinear
one. Indeed, the amplitude d appears in � in both the numerator
and the denominator. Suppose that the value of d is small
(d � ε). In this case, � ≈ 8γ |V12|2/ε2(ε2 + 4γ 2), and the rate
is proportional to the intensity of the external random process.
So, in this “linear” regime (small d), there are no resonances
in the �(d) behavior. In the opposite case of strong noise
(d � ε), the ET rate is � ≈ 8γ |V12|2/d2, and it decreases as d

increases. We can say that the strong noise does not allow the
electron to move from the donor to the acceptor, a kind of ET
Zeno effect. Only for intermediate noise amplitudes d does the
“resonance” in the behavior of �(d) take place. In this sense,
the regime of the ET is a nonlinear one. A similar situation
occurs when two uncorrelated noises are applied to the system.
In this case, two “interacting nonlinear resonances” occur.

There are two limiting cases in which the expression for
�max can be simplified. (1) ε � 2γ . In this case, �max ≈
2|V12|2/γ . (2) ε � 2γ . In this case, �max ≈ 2|V12|2/ε. An
approximate condition for applicability of Eq. (26) for the rate
is |V12| � γ,d.

B. Results of numerical simulations

In the numerical simulations, it is convenient to measure
the energy parameters in units of ps−1, while time is measured
in ps. Then the energy ε = 1 ps−1 ≈ 0.66 meV.

In Fig. 2, we show the rate � defined by Eq. (26) (for a
single noise), as a function of the amplitude of noise d and
the correlation rate of noise (inverse correlation time) γ . As
one can see, � reaches its maximum value at the resonance

FIG. 2. (Color online) Dependence of the rate � in Eq. (26) on
the noise amplitude d and the correlation rate γ . Parameters: V12 = 5,
ε = 30.

042702-4



ROLE OF PROTEIN FLUCTUATION CORRELATIONS IN . . . PHYSICAL REVIEW E 91, 042702 (2015)

FIG. 3. (Color online) Asymptotic rate � of Eq. (23) vs the
dimensionless amplitudes of two uncorrelated noises μ1 and μ2.
Parameters: V12 = 3, ε = 30. Top: γ1 = 5, γ2 = 15. Bottom: γ1 =
γ2 = 10.

amplitude of the noise dres given by Eq. (28). At the same time,
as one can see from Eq. (28), for a given value of the redox
potential ε the value of �max depends on γ . This behavior is
demonstrated in Fig. 2, for ε = 50, |V1,2| = 5, and 10 ≤ γ ≤
50. One case see that for these parameters �max � 6 ps−1.

For two uncorrelated noises, the rate � in Eq. (23) is shown
in Fig. 3 as a function of two dimensionless amplitudes of
noise μ1 and μ2. As one can see, two “interacting” resonances
are present. The amplitudes of these resonances depend on the
values of μ1,2. These resonances can be either nonsymmetric,
as in Fig. 3 (top), for different correlation rates γ1 = 5 and γ2 =
15, or symmetric, as in Fig. 3 (bottom), for equal correlation
rates γ1,2 = 10. Note that in both cases γ1 + γ2 = 20. For these
chosen parameters, �max � 3.6 ps−1.

1. Weakly and strongly coupled dimers

The donor-acceptor system shown in Fig. 1 represents
a coupled dimer (realized, for example, by two coupled
chlorophyll molecules.) This dimer can be either weakly or
strongly coupled. Let us introduce the parameter μd = |V12/ε|.

(a)

(b)

FIG. 4. (Color online) Strongly coupled dimer (μd = 1). Time
dependence (in picoseconds) of the density matrix components:
ρ11(t) (blue) and ρ22(t) (red). Parameters: V12 = 30, ε1 = 60,ε2 = 30,
γ1 = 10, γ2 = 15. (a) d

(1)
1 = 10, d

(1)
2 = 10, d

(2)
1 = 0, d

(2)
2 = 0; (b)

d
(1)
1 = 10, d (1)

2 = 0, d (2)
1 = 0, d (2)

2 = 10. Initial conditions: ρ11(0) = 1,
ρ22(0) = 0.

It is easy to see that, when μd � 1, both eigenstates |u+〉
and |u−〉 of the Hamiltonian H0 in (2) become close to the
unperturbed states |u1〉 and |u2〉 when V12 = 0. In this case,
we say that the dimer is “weakly coupled.” The dimer is called
“strongly coupled” when the value of μd is not too small. We
can say that the dimer is strongly coupled when μd � 1.

In Figs. 4–7, we present the results of the numerical
simulations of the dynamical behavior of the system shown
in Fig. 1, for different parameters, and for both correlated and
uncorrelated noisy environments. All simulations were per-
formed using the exact system of equations (7)–(9). In Fig. 7,
we also compare the exact results with the corresponding
approximate solutions. (In [22], more details of the comparison
of the exact and approximate solutions are presented.) We also
consider weakly and strongly coupled dimers. For simplicity,
in all cases, the initial conditions were chosen when the donor
was populated: ρ11(0) = 1, ρ22(0) = ρ12(0) = 0.

In Fig. 4(a), a single correlated noise, corresponding to
a = 1, is applied to a strongly coupled dimer (μd = 1). In this
case, the amplitudes of the noises acting on donor and acceptor
are equal, d

(1)
1 = d

(1)
2 = 10. So the effective noise acting on

the system is absent: d (1) = d
(1)
1 − d

(1)
2 = 0. This regime is

easy to understand, as the matrix Va in Eq. (1) becomes
the unit matrix. In this case, the dynamics of the system
exhibits Rabi oscillations. Because the matrix element is equal
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(a)

(b)

FIG. 5. (Color online) Time dependence (in picoseconds) of the
density matrix components: ρ11(t) (blue) and ρ22(t) (red). Parameters:
V12 = 10, ε1 = 60,ε2 = 30, γ1 = 10, γ2 = 15. (a) d

(1)
1 = 10, d

(1)
2 =

10, d
(2)
1 = 0, d

(2)
2 = 0, (b) d

(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10.

Initial conditions: ρ11(0) = 1, ρ22(0) = ρ12(0) = 0.

to the redox potential V1,2 = ε = 30, the Rabi oscillations
have large amplitude. The situation changes significantly
when two uncorrelated noises with the same amplitudes,
d

(1)
1 = 10 (applied to the donor) and d

(2)
2 = 10 (applied to the

acceptor), influence the same dimer. [See Fig. 4(b).] In this
case, the dynamics experiences rapid relaxation and saturates
[ρ1,2(t) → 1/2] at approximately ts ≈ 2 ps. We can conclude
that, in this case, two uncorrelated noises (environments) with
equal amplitudes are more effective in assisting the ET than
a single correlated noise with the same amplitude. Similar
results are shown in Fig. 5 for the intermediately coupled dimer
(μd = 1/3). In this case, the amplitude of the Rabi oscillations
in Fig. 5(a) decreases, and the saturation time in Fig. 5(b)
increases, ts ≈ 6 ps. In both cases shown in Figs. 4(b) and
5(b) the electron transfer dynamics is accompanied by coherent
oscillations of the populations ρ11(t) and ρ22(t). In Fig. 6, the
case of a weakly coupled dimer is demonstrated, for μd = 0.1
and for the same amplitudes of the noisy environments as
in Figs. 4 and 5. As one can see, the amplitude of the Rabi
oscillations in Fig. 6(a) decreases significantly (to less than
0.05), and the saturation time of the ET in Fig. 6(b) increases
significantly, ts ≈ 35 ps. The populations ρ11(t) and ρ22(t) do
not experience visible oscillations in this case.

In Fig. 7, we show the dynamics of the ET for two
noises, which act on both donor and acceptor, but with
different amplitudes and interaction constants. The solid
curves correspond to the solutions of the exact equations

(a)

(b)

FIG. 6. (Color online) Weakly coupled dimer (μd = 0.1). Time
dependence (in picoseconds) of the density matrix components: ρ11(t)
(blue) and ρ22(t) (red). Parameters: V12 = 3, ε1 = 60,ε2 = 30, γ1 =
10, γ2 = 15. (a) d

(1)
1 = 10, d (1)

2 = 10, d (2)
1 = 0, d (2)

2 = 0; (b) d
(1)
1 = 10,

d
(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10. Initial conditions: ρ11(0) = 1, ρ22(0) =

ρ12(0) = 0.

(7)–(9). The dashed curves correspond to the approximate
solutions given by Eqs. (21) and (22). The initial conditions
are the same for all cases presented in Fig. 7: ρ11(0) = 1,

FIG. 7. (Color online) Weakly coupled dimer (μd = 0.1). Time
dependence (in picoseconds) of the density matrix components: ρ11(t)
(blue and green curves) and ρ22(t) (red and orange curves). Choice
of parameters: V12 = 3, ε1 = 60,ε2 = 30, γ1 = 5, γ2 = 15. Blue and
red curves: d

(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0, d

(2)
2 = 0, � = 3.6 (μ1 =

1.5; μ2 = 0). Green and orange curves: d
(1)
1 = 20, d

(1)
2 = 0, d

(2)
1 = 0,

d
(2)
2 = −10, � = 0.73 (μ1 = 1; μ2 = 0.5). Solid curves correspond

to the solutions of the exact Eqs. (7)–(9). Dashed curves correspond
to the approximate solutions given by Eqs. (21) and (22). Initial
conditions: ρ11(0) = 1, ρ22(0) = ρ12(0) = 0.
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ρ22(0) = ρ12(0) = 0. Blue and red curves correspond to the
noise amplitudes d

(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0, d

(2)
2 = 0. In

this case, even though two noises are present in the system, the
second noise (with a = 2) has zero constants of interaction
with both the donor and acceptor: λ

(2)
1,2 = 0. So effectively

only one collective noise (with a = 1) acts on both the donor
and acceptor. The dimensionless amplitudes of the noise are
(μ1 = 1.5,μ2 = 0), and the ET rate is � = 3.6.

Green and orange curves correspond to the amplitudes of
noise d

(1)
1 = 20, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = −10. In these case,

both noises act on the system. The dimensionless amplitudes of
the noise are (μ1 = 1,μ2 = 0.5), and the ET rate is � = 0.73.
The presented ET rates correspond to the results shown in
Fig. 3. As one case, for the chosen parameters, the results of the
approximate solutions (dashed curves) are in good agreement
with the results of the exact equations (solid curves). As our
results demonstrate, the saturation time depends significantly
on (i) the presence of collective or independent (uncorrelated)
noises acting on the donor and acceptor, (ii) the amplitudes of
the noises, and (iii) the interaction constants with the noises.
Indeed, for the parameters chosen in Fig. 7, for the blue and red
curves, the saturation time is tsat ≈ 1.8 ps. For the parameters
chosen for the green and orange curves, the saturation time is
tsat ≈ 8 ps.

IV. CONCLUSION

When modeling the primary quantum exciton transfer pro-
cesses in photosynthetic complexes, two major problems oc-
cur. The first is related to strong pigment-protein interactions.
The second problem is related to the large number of pigments
(or light-sensitive sites) in the light-harvesting complexes.
This results in a multiscale electron transfer dynamics and in
the necessity to develop adequate coarse-grained procedures.
Moreover, the number N of light-sensitive pigments in the
subcomplexes of plants and algae is neither small nor large,
but rather of an intermediate value N ≈ 10–20 [1,2]. Then it is
difficult to apply the well-developed methods from solid state
physics which are used either for rare impurities or for systems
with electron band structures.

In this situation, it is useful to design a simple and “exactly
solvable” (at least numerically) quantum model which can
be used to describe the electron transfer in these complex
biological systems. Such a model, which is reduced to an exact
closed system of first-order linear differential equations with
constant coefficients, is described in this paper. This model can
be applied for rather general photosynthetic complexes and for
any values of the pigment-protein coupling constants. Note
that the term “exactly solvable” which we use here is rather

conditional. It means that the model consists of a closed system
of ordinary differential equations with constant coefficients,
which can be easily solved numerically. (See also the close
approach used in [7,8].) Our model also includes different cor-
related and uncorrelated random telegraph processes, acting on
different sites. This allows one to analyze in a straightforward
way the dependences of the electron transfer dynamics on both
the amplitudes and correlation times of random processes. In
particular, it is demonstrated that the influence of noise on the
electron transfer reveals a resonant character, which will allow
one to design photosynthetic complexes with optimal electron
transfer properties.

We demonstrated that uncorrelated protein fluctuations can
either increase or decrease the electron transfer rates. We also
derived analytical expressions for the ET rates and for the
evolution of the density matrix elements, which approximate
the exact solutions for large time intervals for a wide range of
parameters.

Although our model is relevant to describing some im-
portant effects considered in the paper, it does not include
many important effects, such as temperature dependencies,
the internal structures of the electron sites (which usually
are represented by light-sensitive chlorophyll and carotenoid
molecules), multiexciton or multielectron states, etc.

Our approach can easily be applied for many concrete
light-harvesting complexes and reaction centers. The solutions
which follow from our model can be used for developing
adequate coarse-grained procedures and for comparison with
the results of different approximations and perturbation ap-
proaches. Our results can also be used for engineering the
protein environment to achieve desired properties for the ET
dynamics. In order to verify the properties of the protein
environment, standard molecular dynamics methods can be
used to simulate the time-dependent correlation functions
between different electron sites. The generalization of our
approach for thermal protein environments is one focus of our
future research. One way to do this is to develop a perturbation
theory not by the constants of interactions between the electron
sites and the protein fluctuations, but by the matrix elements of
the interactions between different electron sites. This research
is now in progress.
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[8] M. Pudlak and R. Pinčák, Modeling charge transfer in the
photosynthetic reaction center, Phys. Rev. E 68, 061901
(2003).

[9] S. Gurvitz, A. I. Nesterov, and G. P. Berman, Noise-assisted
quantum electron transfer in multi-level donor-acceptor system,
arXiv:1404.7816 [physics.bio-ph].

[10] G. P. Berman, A. I. Nesterov, S. Gurvitz, and R. T. Sayre,
Possible role of interference and sink effects in nonphotochem-
ical quenching in photosynthetic complexes, arXiv:1412.3499
[physics.bio-ph].

[11] M. Pudlak, Electron transfer driven by conformational varia-
tions, J. Chem. Phys. 108, 5621 (1998).

[12] M. Pudlak, Primary charge separation in the bacterial reaction
center: Validity of incoherent sequential model, J. Chem. Phys.
118, 1876 (2003).

[13] S. Westenhoff, D. Palecek, P. Edlund, P. Smith, and D.
Zigmantas, Coherent picosecond exciton dynamics in a photo-
synthetic reaction center, J. Am. Chem. Soc. 134, 16484 (2012).

[14] T. G. Dewey and J. G. Bann, Biophys, Protein dynamics and 1/f
noise, J. Biophys Society 63, 594 (1992).

[15] B. H. McMahon, P. W. Fenimore, and M. X. LaBute, Fluc-
tuations and noise in biological, biophysical, and biomedical
systems, Proc. SPIE, 5110, 10 (2003).

[16] M. Pudlak, Effect of the conformational transitions on electron
transfer in biological systems, Physica A 341, 444 (2004).

[17] M. Pudlak, K. N. Pichugin, R. G. Nazmitdinov, and R. Pincak,
Quantum nonequilibrium approach for fast electron transport in
open systems: Photosynthetic reaction centers, Phys. Rev. E 84,
051912 (2011).

[18] S. S. Skourtis, D. H. Waldeck, and D. N. Beratan, Fluctuations
in biological and bioinspired electron-transfer reactions, Annu.
Rev. Phys. Chem. 61, 461 (2010).

[19] A. I. Nesterov, G. P. Berman, and A. R. Bishop, Non-Hermitian
approach for modeling of noiseassisted quantum electron trans-
fer in photosynthetic complexes, Fortschr. Phys. 61, 95 (2013).

[20] J. M. Moix and J. Cao, A hybrid stochastic hierarchy equations
of motion approach to treat the low temperature dynamics of
non-Markovian open quantum systems, J. Chem. Phys. 139,
134105 (2013).

[21] V. Abramavicius and D. Abramavicius, Excitation transfer
pathways in excitonic aggregates revealed by the stochastic
Schrdinger equation, J. Chem. Phys. 140, 065103 (2013).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.91.042702 for mathematical details of our
approach.

[23] V. Klyatskin, Dynamics of Stochastic Systems (Elsevier,
Amsterdam, 2005).

[24] A. I. Nesterov, G. P. Berman, J. M. Sánchez Martinez, and
R. Sayre, Noise-assisted quantum electron transfer in photosyn-
thetic complexes, J. Math. Chem. 51, 1 (2013).

[25] J. Bergli, Y. M. Galperin, and B. L. Altshuler, Decoherence in
qubits due to low-frequency noise, New J. Phys. 11, 025002
(2009).

[26] A. I. Nesterov and G. P. Berman, Modeling of low- and high-
frequency noise by slow and fast fluctuators, Phys. Rev. A 85,
052125 (2012).

042702-8

http://dx.doi.org/10.1016/0301-0104(94)00016-6
http://dx.doi.org/10.1016/0301-0104(94)00016-6
http://dx.doi.org/10.1016/0301-0104(94)00016-6
http://dx.doi.org/10.1016/0301-0104(94)00016-6
http://dx.doi.org/10.1063/1.453184
http://dx.doi.org/10.1063/1.453184
http://dx.doi.org/10.1063/1.453184
http://dx.doi.org/10.1063/1.453184
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1103/PhysRevE.64.031906
http://dx.doi.org/10.1103/PhysRevE.64.031906
http://dx.doi.org/10.1103/PhysRevE.64.031906
http://dx.doi.org/10.1103/PhysRevE.64.031906
http://dx.doi.org/10.1103/PhysRevE.68.061901
http://dx.doi.org/10.1103/PhysRevE.68.061901
http://dx.doi.org/10.1103/PhysRevE.68.061901
http://dx.doi.org/10.1103/PhysRevE.68.061901
http://arxiv.org/abs/arXiv:1404.7816
http://arxiv.org/abs/arXiv:1412.3499
http://dx.doi.org/10.1063/1.475950
http://dx.doi.org/10.1063/1.475950
http://dx.doi.org/10.1063/1.475950
http://dx.doi.org/10.1063/1.475950
http://dx.doi.org/10.1063/1.1531630
http://dx.doi.org/10.1063/1.1531630
http://dx.doi.org/10.1063/1.1531630
http://dx.doi.org/10.1063/1.1531630
http://dx.doi.org/10.1021/ja3065478
http://dx.doi.org/10.1021/ja3065478
http://dx.doi.org/10.1021/ja3065478
http://dx.doi.org/10.1021/ja3065478
http://dx.doi.org/10.1016/S0006-3495(92)81603-X
http://dx.doi.org/10.1016/S0006-3495(92)81603-X
http://dx.doi.org/10.1016/S0006-3495(92)81603-X
http://dx.doi.org/10.1016/S0006-3495(92)81603-X
http://dx.doi.org/10.1117/12.497137
http://dx.doi.org/10.1117/12.497137
http://dx.doi.org/10.1117/12.497137
http://dx.doi.org/10.1117/12.497137
http://dx.doi.org/10.1016/j.physa.2004.03.091
http://dx.doi.org/10.1016/j.physa.2004.03.091
http://dx.doi.org/10.1016/j.physa.2004.03.091
http://dx.doi.org/10.1016/j.physa.2004.03.091
http://dx.doi.org/10.1103/PhysRevE.84.051912
http://dx.doi.org/10.1103/PhysRevE.84.051912
http://dx.doi.org/10.1103/PhysRevE.84.051912
http://dx.doi.org/10.1103/PhysRevE.84.051912
http://dx.doi.org/10.1146/annurev.physchem.012809.103436
http://dx.doi.org/10.1146/annurev.physchem.012809.103436
http://dx.doi.org/10.1146/annurev.physchem.012809.103436
http://dx.doi.org/10.1146/annurev.physchem.012809.103436
http://dx.doi.org/10.1002/prop.201200069
http://dx.doi.org/10.1002/prop.201200069
http://dx.doi.org/10.1002/prop.201200069
http://dx.doi.org/10.1002/prop.201200069
http://dx.doi.org/10.1063/1.4822043
http://dx.doi.org/10.1063/1.4822043
http://dx.doi.org/10.1063/1.4822043
http://dx.doi.org/10.1063/1.4822043
http://dx.doi.org/10.1063/1.4863968
http://dx.doi.org/10.1063/1.4863968
http://dx.doi.org/10.1063/1.4863968
http://dx.doi.org/10.1063/1.4863968
http://link.aps.org/supplemental/10.1103/PhysRevE.91.042702
http://dx.doi.org/10.1007/s10910-013-0226-8
http://dx.doi.org/10.1007/s10910-013-0226-8
http://dx.doi.org/10.1007/s10910-013-0226-8
http://dx.doi.org/10.1007/s10910-013-0226-8
http://dx.doi.org/10.1088/1367-2630/11/2/025002
http://dx.doi.org/10.1088/1367-2630/11/2/025002
http://dx.doi.org/10.1088/1367-2630/11/2/025002
http://dx.doi.org/10.1088/1367-2630/11/2/025002
http://dx.doi.org/10.1103/PhysRevA.85.052125
http://dx.doi.org/10.1103/PhysRevA.85.052125
http://dx.doi.org/10.1103/PhysRevA.85.052125
http://dx.doi.org/10.1103/PhysRevA.85.052125



