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Dynamics of generalized Gaussian polymeric structures in random layered flows
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We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence
of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the
Matheron–de Marsily model for the random layered flow. The expression for the average square displacement
(ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal
noise and the external random flow. Although the formalism is valid for branched polymers with various complex
topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of
the topology (the number and length of branches for stars and the number of generations for dendrimers) on
the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity,
persistence flow length, and flow exponent α. Our analysis shows two anomalous power-law regimes, viz.,
subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time
flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime,
while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the
value of α, the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both
the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the
subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.
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I. INTRODUCTION

The conformational and dynamical behaviors of an iso-
lated polymer in external flow fields have been subjects of
considerable interest [1–7]. This is due to the specific interest
in dynamical properties of biopolymers (e.g., DNA) [1,2],
the unusual drag reduction phenomenon (which changes
drastically the large-scale statistics of turbulent flows with the
addition of a small amount of polymer) [8,9], and emerging
technology of microfluidic and nanofluidic devices [10]. A
great deal of research has been devoted to the understanding of
the dynamics of a linear polymer in nonrandom flows [1–4,11–
15] and random flows [16–21]. Starting with the pioneering
studies of Chu and co-workers for nonrandom elongational
flow of a single chain [1,2], further investigations have been
performed for shear [3,4,11] and mixed flows [12]. Less
experimental progress has been achieved in random flows due
to the difficulty in creating a random flow in a microscopic-size
volume. This issue was resolved by Groisman and Steinberg,
who were the first to discuss the phenomenon of elastic
turbulence [18,22,23]. Polymer dynamics and statistics in
a random flow with a shear component have been studied
experimentally [24] and numerically [25–27]. Experimental
validation of the coil-stretch transition that is observed in
the single polymer in random flows (as first predicted by
Lumley [9]) was achieved by Gerashchenko et al. [19] and
other works show aperiodic tumbling and stretching in the
shear-preferred direction [24]. In a recent paper, the dynamics
and conformations of a single fluorescently stained DNA
molecule were studied in a random flow created by the same
unlabeled molecules [28].

The simplified theoretical approaches concerning the
polymer dynamics focused mainly on the elastic dumbbell
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model [20,21,25,27,29,30]. The dumbbell model is the re-
duced Rouse approach with a single spring connecting two
beads, which accounts for only the slowest oscillation mode
of the polymer. A theoretical understanding of the dynamics
of a polymer molecule in random flow was first given by
Lumley [9]. Balkovsky et al. [29] confirmed and extended
Lumley’s approach, while Chertkov [30] further improved this
methodology with the inclusion of an anharmonic resistance
contribution in incompressible turbulent flow of polymer solu-
tion. Using this approach, the dynamics of polymers is further
investigated in elongational and random flow [20,21,31] and
random flow with mean shear [25–27]. The major drawback
of the dumbbell model is that it cannot be used for branched
polymeric structures such as stars and dendrimers. It is well
known that the branching has a great influence on the polymer
dynamics [32–34]. So it offers the exciting possibility to
explore the influence of flows on the dynamics of a polymer
with complex topologies and vice versa.

The classical Rouse model [35,36] was originally for-
mulated to study the dynamics of linear flexible polymeric
chains. The extension of the Rouse model for an arbitrary
branched polymer introduced the concept of Gaussian gen-
eralized structures (GGSs) [37–40]. A deep understanding
of the various static and dynamic quantities of flexible
polymeric networks has been attained by employing the GGS
approach [32,41–51]. Also, considerable progress has been
achieved in the understanding of the connection between
the complex underlying geometries such as stars and poly-
mers [41–43,52], dendrimers [41–43,53–56], dendrimers built
from stars [44,45], various kinds of fractal polymer networks,
viz., Sierpinski gaskets [46,47] and Vicsek fractals (regular
hyperbranched polymers) [48,49], and random structures such
as small-world networks [50,51], with dynamical properties
under the influence of external forces. Here the various kinds
of external forces applied consist of a constant step force
where the external force pulls a single bead [32,41–43,46–50],
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an oscillating shear force that is used to find the dynamical
shear modulus [32,41–43,46–49,53], an alternating electric
field that is used to understand the dielectric response of polar
molecules embedded in nonpolar solvents [48,51], a truncated
step force [42], and random forces that include uncorrelated,
long-range correlated, and diblock forces [38]. These types of
forces are important in understanding the unfolding dynamics
of various polymers. The unfolding (stretching) of a star
and dendrimer with [41] and without [42] hydrodynamic
interactions under the influence of a step force has been
analyzed. It is shown here that the displacement of the bead
on which the external force acts has a constant velocity at
very short and long times, while at intermediate times the
influence of the topology of the polymer on its dynamics
is displayed. Chen and Cai [54,55] analyzed various time-
dependent correlation functions and the intrinsic viscosity.
They used an analytical procedure for diagonalization of the
connectivity matrix of trifunctional dendrimers. Proceeding to
a more complex structure, the dependence of the dynamics
of the finite Sierpinski-type networks mainly on the spectral
dimension has been investigated [46,47]. These types of
fractal networks showed scaling behavior of the dynamical
quantities in the intermediate-frequency range in the absence
of hydrodynamic interactions (HIs) [46], whereas no scaling
was observed in the presence of HIs [47]. Distinct from the
dendrimers and Sierpinski-type lattices, Vicsek fractals obey
scaling for both Rouse-type and Zimm-type models [48,49]. In
addition to the work on the flexible polymers, there have been
several attempts to understand the dynamics of semiflexible
polymers in solutions within the framework of the optimized
Rouse-Zimm approach [57], where stiffness is incorporated
by restricting the directions and orientations of the respective
bond vectors [58–61]. While the above-mentioned works
investigated branched polymer dynamics in the absence of
external flow, there have been few attempts to understand
their structural and rheological properties under shear flow
for stars [33,62] and dendrimers [34,63].

In the present paper we develop a general formalism to
study the dynamics of the GGS with complex architecture
in random layered flows. We use the Matheron–de Marsily
(MdM) model [64] for random flow, which can mimic various
flow conditions depending upon its flow parameters. Using
this model, Oshanin and Blumen [16,17] investigated the
dynamics of the Rouse (linear) polymer and showed that
the average square displacement (ASD) of the center of mass
of the chain exhibits an anomalous time dependence. The
exponent that characterizes the growth of the ASD is dependent
on the statistical properties of random flow. The main focus of
our work here is on the dynamics of the flexible star and
the dendrimer in random flow. The paper is structured as
follows. In Sec. II we introduce the concept of the GGS model
and the statistical properties of the MdM flow pattern and
present the mathematical formalism of the problem, beginning
with the basic Langevin equation of motion that governs the
dynamical behavior under arbitrary external forces. We derive
the analytical expression for the ASD of the center of mass of
branched polymers under external flow in the long-time limit.
In Sec. III we discuss our results for stars and dendrimers
and show how the ASD depends on the underlying topology
(number and length of branches for stars and the number of

generations for dendrimers). We summarize our paper with
conclusions in Sec. IV.

II. MATHEMATICAL APPROACH

In this section we develop a mathematical formalism for
the dynamics of a GGS in random layered flow. A GGS can
be represented as consisting of N spherical beads connected
to each other by harmonic springs; this is an extension
of the classical Rouse approach [36]. The configuration
of a GGS is given by the set of position vectors {Ri},
where Ri(t) ≡ (Rxi(t),Ryi(t),Rzi(t)) ≡ (Xi(t),Yi(t),Zi(t)) is
the position vector of the ith bead at time t . Its dynamics
under the influence of external force fields in the absence
of hydrodynamic interactions and excluded-volume effects is
given by the Langevin equation [36]

ζ
∂Ri(t)

∂t
= −∂U ({Rk})

∂Ri

+ fi(t), (1)

where ζ is the friction coefficient of a single bead and fi(t)
is the thermal random force on the ith bead. The random
thermal forces are centered Gaussian processes, hence their
mean is zero, i.e., 〈f (t)〉 = 0, and their correlation function
follows the fluctuation-dissipation theorem 〈fiα(t)fjβ(t ′)〉 =
2kBT ζδij δαβδ(t − t ′). Here α and β denote the directions (x,
y, or z), δij and δαβ are Kronecker delta functions, δ(t − t ′) is
the Dirac delta function, T is the temperature, and kB is the
Boltzmann constant. The explicit expression for the potential
energy U ({Rk}) in Eq. (1) is given by

U ({Rk}) = K

2

∑
α,m,n

RmαAmnRnα −
∑
α,n

FnαRnα. (2)

From this equation we can see that the potential energy
contains two terms, with the first term indicating the harmonic
interactions between monomers directly bound to each other
and the second term signifying the influence of each compo-
nent of the external random force on the beads Fnα . In the first
sum on the right-hand side of Eq. (2), all bonds have been
assumed to be equal, with the spring constant K = 3kBT /b2,
where b is the mean distance between the beads; the m,n

summation is over the bead, the α summation runs over the
components x, y, and z, and the GGS is taken into account
through an N × N matrix A = (Amn). The matrix A is the
so-called adjacency or connectivity matrix [37,38,65,66] and
is symmetric: Its diagonal elements Amm equal the number
of bonds emanating from the mth bead and its off-diagonal
elements Amn are either −1 if m and n are connected or 0
otherwise.

Random-walk arguments show that the entropy of a
polymer is quadratic in R when the extended polymer is
much smaller than the contour length L of the polymer, which
leads to Hooke’s law [29]. However, in more realistic models,
Hooke’s law is replaced by a force diverging as the size of
the polymer approaches L, which helps in accounting for
their finite extensibility by modifying the spring constant,
viz., Keff = Kf (R). The function f (R) (independent of the
system temperature) specifies the elastic properties of the
polymer and reflects the physical strength of the bonds between
the beads that can be different in different polymers. For a
finitely extensible nonlinear elastic model of polymers, f (R)
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FIG. 1. (Color online) Schematic diagram of the GGS in the
MdM flow pattern. The orientation of the velocity vector is a random
function of the X variable and is constant within each layer.

is defined by the Warner law f (R) = 1/(1 − R2/L2) and for a
wormlike chain (which is useful in biological macromolecules)
it is defined by the Marko-Siggia law f (R) = 2/3 − L/6R +
L/6R(1 − R/L)2 [7,31]. To avoid nonlinearity in this equa-
tion, one can replace R by its appropriate mean value [67].

Now inserting Eq. (2) into Eq. (1), we get a linearized
Langevin equation describing the dynamics of the ith bead of
the GGS in the external force

ζ
∂Ri(t)

∂t
+ K

N∑
j=1

AijRj (t) = fi(t) + δαY Fi, (3)

where Fi defines the force induced by the external random
flow on the ith bead. To account for random flow we use
the MdM model as shown in Fig. 1 (also see Refs. [16,17]).
This type of model can be represented as a series of different
layers parallel to each other and perpendicular to any axis,
say, the X axis. While the orientation of the force vector is
fixed within each layer, it varies randomly when going from
one layer to the other. The random flow pattern produced by
this particular model has similar randomness as in the random
telegraph signal [68]. In general, the force or the velocity
vector (as V = F/ζ ) is parallel to the Y axis and the X and
Z components of the velocity vector are equal to zero. The Y

component is taken to be a random function of the X coordinate

VY (X,Y,Z) = V [X]. (4)

The random function V [X] is assumed to be a Gaussian
random function with the mean

V [X] = 0 (5)

and covariance

V [X1]V [X2] = V 2
0 φ(|X1 − X2|). (6)

The overline represents the average over the random flow
configurations, V0 is the rms velocity of the flow, and the
correlation function φ defines the correlation between various
layers of the random flow. The random flow is assumed to be a
stationary process, hence it is dependent only on the separation
between the two layers. Another important transform of the
quantity φ is the power spectrum Q(K), which is defined by
the Fourier integral

φ(|X1 − X2|) =
∫ ∞

−∞
dKQ(K) exp[iK(X1 − X2)]. (7)

We can model different types of flow behavior by choosing
a specific form of the power spectrum Q(K). The dimension
of Q(K) is length. An important case for the random layered
flow field is that of the power-law power spectrum

Q(K) = lf

2π
|lf K|α−1

= W |Kα−1|
2πV 2

0

(0 < α � 1), (8)

where lf is defined as the persistence length of flow. It is a
measure of the distance between two layers of flow. Here α

signifies the type of flow or, in other words, the persistence of
the random flow. Its value lies between 0 and 1. Here α = 1
indicates the δ-correlated flow. As the value of α decreases,
the long-range correlation effects are enhanced, that is, they
show a higher persistence of the flow. The prefactor W of the
power-law power spectrum is a composite quantity that can be
defined as

W = V 2
0 lαf . (9)

Therefore, the power-law power spectrum of random flow can
mimic the different types of flow that are generated with a
change in α, V0, and lf . The correlation function for the power-
law spectrum in Eq. (8) can be obtained as

φ(|X1 − X2|) = 	(α) cos(απ/2)

πV 2
0

W

|X1 − X2|α , (10)

where 	(α) is the Gamma function. Equation (10) has a long-
range algebraic distance-dependent correlation [17,69], while
the simplest example of the power spectrum is the constant
value that is the white-noise power spectrum, defined as

Q(K) = lf

2π
. (11)

When α → 1, Eq. (8) reduces to Eq. (11). This spectrum
corresponds to the original MdM model with a δ-correlated
flow field

φ(|X1 − X2|) = lf δ(X1 − X2), (12)

where δ is the Dirac delta function.
Usually the strength of flow in a polymeric system is

characterized by the Weissenberg number Wi, which is the
measure of relative intensity of elastic relaxation and stretching
and is defined as the product of the longest relaxation time τP

of the polymer and the characteristic velocity gradient V0/lf ,

Wi = V0

lf
τP . (13)
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To observe the influence of the polymeric structure on random
flow, lf must be much greater than the Kuhn segment length
and can be of the order of the radius of gyration Rg of
the polymeric structure. Since τP depends on the branching
structure of the polymer, Wi will depend on the structure of
the polymer of a given molecular weight.

A convenient and general way to find the solution of Eq. (3)
is to write a matrix representation for different components of
Ri , viz., Xi,Yi,Zi . At this stage it is important to emphasize
that the simplicity in this problem arises due to the decoupling
of the components of Ri . Therefore, the matrix representation
of Eq. (3) for all components of the position vectors is given
by

∂X(t)

∂t
+ σAX(t) = f(t)

ζ
, (14)

∂Z(t)

∂t
+ σAZ(t) = f(t)

ζ
, (15)

and
∂Y(t)

∂t
+ σAY(t) = 1

ζ
[f(t) + F(t)], (16)

with σ = K/ζ , R ≡ (R1,R2, . . . ,RN )T , f ≡
(f1,f2, . . . ,fN )T , and F ≡ (F1,F2, . . . ,FN )T , where T

denotes the transposed vector. The solution of Eqs. (14)
and (15) represents the conventional diffusive motion (due
to the random thermal force) of the beads in the X and Z

directions, respectively. The solution of Eq. (16) represents
the bead motion due to both the external flow and the thermal
fluctuation (as the direction of the flow is in the Y direction).
Equations (14)–(16) have the formal solutions

X(t) = 1

ζ

∫ t

−∞
dt ′ exp[−σ (t − t ′)A]f(t ′), (17)

Z(t) = 1

ζ

∫ t

−∞
dt ′ exp[−σ (t − t ′)A]f(t ′), (18)

Y(t) = 1

ζ

∫ t

−∞
dt ′ exp[−σ (t − t ′)A][f(t ′) + F(t ′)]. (19)

Now, as we are interested in the ASD in the Y direction,
we will use Eq. (19) as the basis for our further calcu-

lations.Equation (19) can be verified by differentiating the
right-hand side with respect to t and it can also be rewritten as

Y(t) − exp[−σ tA]Y(0)

= 1

ζ

∫ t

0
dt ′ exp[−σ (t − t ′)A][f(t ′) + F(t ′)], (20)

by which the role of Y (0) is rendered explicit. Thus, in
Eq. (20) the solution starts at t = 0. An important quantity
to understand in the dynamics of branched polymers under
complex external flow is the displacement of the center of
mass. The displacement of the center of mass, written in terms
of the vector u ≡ (1,1, . . . ,1, . . . ,1,1), is defined as

Rc.m.(t) =
∑

j Rj(t)

N
= u · R(t)

N
. (21)

Simplifying Eq. (20) for the center of mass for the single
component, say, the Y th component [assuming Xc.m.(t = 0) =
0, Yc.m.(t = 0) = 0, and Zc.m.(t = 0) = 0], gives

Yc.m.(t) = 1

Nζ

∫ t

0
dt ′u · exp[−σ (t − t ′)A][f(t ′) + F(t ′)]

= 1

Nζ

∫ t

0
dt ′

∞∑
j=0

u · [−σ (t − t′)A]j

j!
[f(t′) + F(t′)].

(22)

Since u · A = 0 [either from det(A) = 0 or by construction],
in the sum over j only the term with j = 0 survives. Hence,
Eq. (22) can be written as

Yc.m.(t) = 1

Nζ

∫ t

0
dt ′u[f(t ′) + F(t ′)]. (23)

The quantity of practical interest is 〈Y 2
c.m.(t)〉, where the

angular brackets represent the thermal averaging over various
configurations of polymers and the overline represents the
averaging over various configurations of random flow. For
the sake of simplicity and avoiding the complexity of solving
the expression for the ASD, the two averages are assumed to be
independent of each other, i.e., our assumption implies that the
nature of the thermal force is independent of the presence of
the random external flow force (see Refs. [16,17]). To calculate
〈Y 2

c.m.(t)〉 we first take the square of Eq. (23), which gives

Y 2
c.m.(t) = 1

N2ζ 2

∫ t

0
dt ′

∫ t

0
dt ′′

∑
m,n

[fm(t ′)fn(t ′′) + fm(t ′)Fn(t ′′) + fn(t ′′)Fm(t ′) + Fm(t ′)Fn(t ′′)]. (24)

Using Eqs. (5) and (6) and averaging Eq. (24) over various configurations of random flow gives

Y 2
c.m.(t) = 1

N2ζ 2

∫ t

0
dt ′

∫ t

0
dt ′′

∑
m,n

[fm(t ′)fn(t ′′)] + V 2
0

N2

∫ t

0
dt ′

∫ t

0
dt ′′

∑
m,n

∫ ∞

−∞
dKQ(K)eiK[Xm(t ′)−Xn(t ′′)]. (25)

Then, taking thermal average using fluctuation-dissipation theorem, we obtain

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + V 2

0

N2

∫ t

0
dt ′

∫ t

0
dt ′′

∑
m,n

∫ ∞

−∞
dKQ(K)〈eiK[Xm(t ′)−Xn(t ′′)]〉. (26)
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We can define the quantity called the dynamic structure factor g(K,t ′,t ′′) as

g(K,t ′,t ′′) = 1

N

∑
m,n

〈eiK[Xm(t ′)−Xn(t ′′)]〉. (27)

The dynamic structure factor for t ′ = 0 gives

g(K,0,t ′′) = 1

N

∑
m,n

〈eiK[Xm(0)−Xn(t ′′)]〉. (28)

For a Gaussian process, Eq. (28) is simplified using a cumulant expansion [36,68], where we use the fact that 〈Xi(t ′)〉 = 0 for
all i,

g(K,0,t ′′) = 1

N

∑
m,n

e−K2〈[Xm(0)−Xn(t ′′)]2〉/2. (29)

Since the random process Xm(t ′) − Xn(t ′′) is stationary in time and also due to the symmetry of the dynamic structure factor
with respect to the time variables, the ASD of the center of mass can be written as

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 2V 2

0

N

∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ ∞

−∞
dKQ(K)g(K,t ′′). (30)

The first term in Eq. (30) indicates the diffusion of the N -bead polymeric system due to the thermal fluctuations and it does
not possess any structural information, while the second term depends upon the structure of the polymer through the dynamic
structure function. The additional contribution to the ASD arises due to the weighted average from the power spectrum and the
dynamic structure function.

In order to obtain a formal expression for the influence of the power spectrum of random flow on the ASD, we combine
Eqs. (29) and (30). The ASD equation is

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 2V 2

0

N2

∫ t

0
dt ′

∫ t ′

0
dt ′′

∑
m,n

∫ ∞

−∞
dKQ(K)e−K2〈[Xm(0)−Xn(t ′′)]2〉/2. (31)

The explicit expression for the ASD is obtained by substituting Eq. (8) for the power-law spectrum in Eq. (31) as

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + W	(α/2)

πN2

∑
m,n

∫ t

0
dt ′

∫ t ′

0
dt ′′〈[Xm(0) − Xn(t ′′)]2〉−α/2, (32)

where W = V 2
0 lαf and has dimensions of (length)2+α/(time)2. For the white-noise spectrum (α = 1) it simplifies as

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + W

N2

∑
m,n

∫ t

0
dt ′

∫ t ′

0
dt ′′{π〈[Xm(0) − Xn(t ′′)]2〉}−1/2. (33)

To find 〈Y 2
c.m.(t)〉 one needs to know 〈[Xm(t ′) − Xn(t ′′)]2〉, where [Xm(t ′) − Xn(t ′′)] denotes the X component of the

displacement of the mth bead at time t ′ with respect to the nth bead at time t ′′,

〈[Xm(t ′) − Xn(t ′′)]2〉 = 〈[Xm(t ′)]2〉 + 〈[Xn(t ′′)]2〉 − 2〈[Xm(t ′)Xn(t ′′)]〉. (34)

In general, the covariance matrix for the X component is given by

〈X(t ′)XT (t ′′)〉 = 1

ζ 2

∫ t ′

−∞
dt1

∫ t ′′

−∞
dt2e

−σ (t ′−t1)A〈f (t1)f T (t2)〉e−σ (t ′′−t1)A

= 2kBT

ζ

∫ t ′′

−∞
dt2e

−σ (t ′+t ′′−2t2)A. (35)

In writing Eq. (35) we have used the fact that f (A)T = f (A). We now diagonalize A in the usual fashion by determining first N

linearly independent normalized eigenvectors Qi of A, so that AQi = λiQi . We set Q ≡ (Q1,Q2, . . . ,QN ) and have AQ = Q
,
where 
 is the diagonal matrix whose elements are λi . Then

A = Q
Q−1 (36)

holds, with Q−1 being the inverse of Q. From Eq. (36) any function of A can be written as

f (A) = Qf (
)Q−1. (37)

In particular one has

exp (At) = Q exp (
t)Q−1. (38)
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Thus, Eq. (35) can be written in terms of these eigenvalues and eigenvectors as

〈X(t ′)XT (t ′′)〉 = 2kBT

ζ

∫ t ′′

−∞
dt2Qe−σ (t ′+t ′′−2t2)
Q−1. (39)

We use the operator um ≡ (0,0, . . . ,1, . . . ,0,0) to project out the mth element in Eq. (39) to write the expression of Eq. (34) as

〈[Xm(t ′) − Xn(t ′′)]2〉 = um〈X(t ′)XT (t ′)〉uT
m + un〈X(t ′′)XT (t ′′)〉uT

n − 2um〈X(t ′)XT (t ′′)〉uT
n

= 2kBT

ζ

∑
i

[∫ t ′

−∞
dt2Qmie

−2σ (t ′−t2)λi Q−1
im +

∫ t ′′

−∞
dt2Qnie

−2σ (t ′′−t2)λi Q−1
in

− 2
∫ t ′′

−∞
dt2Qmie

−σ (t ′+t ′′−2t2)λi Q−1
in

]
. (40)

Isolating the λ1 = 0 term in Eq. (40) and integrating it while taking into account that Qm1 = Q−1
1m = 1/

√
N for all values of m,

we obtain

〈[Xm(t ′) − Xn(t ′′)]2〉 = 2kBT

Nζ
|t ′ − t ′′| + kBT

σζ

∑
i 
=1

[
QmiQ

−1
im /λi + QniQ

−1
in /λi − 2Qmie

−σ |t ′−t ′′|λi Q−1
in /λi

]
. (41)

The time integral in Eq. (32) cannot be solved exactly as the difference correlation function in Eq. (41) has a complicated
form. Hence, one needs to expand the integrand for short- and long-time limits. For the short-time limit, i.e., at times much
shorter than the Rouse relaxation time τR (t ′′ � τR), the expansion will dominantly have information about individual segments
or bead relaxation as it shows ballistic motion of individual beads. Also, the velocity vector stays more or less constant at short
times, so it takes a time much longer than τR to encounter various layers along the X axis. Since, in this short-time regime, the
dynamics does not possess any structural information about the polymer, we focus only on the long-time limit that gives all the
information about the topology of the polymer and its interaction with the random flow. For the long-time limit, i.e., t ′′ > τR , the
final result for 〈Y 2

c.m.〉 for the power-law spectrum (see the Appendix) is given by

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 4W	(α/2)

π (4 − α)(2 − α)

(
ζN

2kBT

)α/2

t2−α/2

{
1 − C1

(
π2τR

2t

)1−α/2

+ C2

(
π2τR

2t

)
− · · ·

}
, (42)

where

C1 = 4 − α

2

(
1

N

)3−α/2 ∑
m,n

⎛
⎝∑

i 
=1

Cmn
i

⎞
⎠

1−α/2

,

C2 = 4 − α

2N3

∑
m,n

⎛
⎝∑

i 
=1

Cmn
i

⎞
⎠ ,

Cmn
i = QmiQ

−1
im

λi

+ QniQ
−1
in

λi

.

The Rouse relaxation time in Eq. (42) is defined as τR =
ζb2N2/3π2kBT . The first term in Eq. (42) signifies the drift
due to the thermal fluctuations, the prefactor of the second
term represents the anomalous drift due to the external random
flow, and the terms in curly brackets indicate the contributions
from the stretch dynamics of the polymer. Since in the long-
time limit the contribution due to the thermal fluctuations is
negligibly small, the first term can be neglected. The special
case for the linear polymer obtained numerically from Eq. (42)
shows the same behavior as that given by the continuum model
of Ref. [17].

Similarly, we can calculate the ASD for the δ-correlated
flow. Also, by substituting α = 1 in Eq. (42), we can directly

obtain the result given as

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 4W

3

(
ζN

2πkBT

)1/2

× t3/2

{
1 − C1

(
π2τR

2t

)1/2

+ C2

(
π2τR

2t

)
− · · ·

}
,

(43)

where

C1 = 3

2

(
1

N

)5/2 ∑
m,n

⎛
⎝∑

i 
=1

Cmn
i

⎞
⎠

1/2

,

C2 = 3

2N3

∑
m,n

⎛
⎝∑

i 
=1

Cmn
i

⎞
⎠ .

Therefore, in the long-time limit, Eqs. (42) and (43) give the
final results for the ASD of the center of mass of the GGS in
the case of flows with long-range correlation and δ-correlated
flow, respectively.

III. DYNAMICS OF STARS AND DENDRIMERS

In this section we study the dynamics of regular star and
regular dendrimer structures by using the expression for the
ASD of the center of mass of the chain obtained in the previous
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FIG. 2. (Color online) Schematic diagram of a star and a den-
drimer. The parameters are n = 3 and f = 3 for the star and G = 3
and f = 3 for the dendrimer.

section [see Eqs. (42) and (43)]. In order to determine the
ASD, both the eigenvalues λi and the eigenvectors Qi of
the adjacency matrix A are required, which we obtained by
numerically diagonalizing the matrix A. We used Mathematica
software for the numerical calculations and for generating
graphs. In the following two sections we will discuss the
dynamics of stars and dendrimers, respectively.

A. Regular stars

Star polymers are structures comprised of polymer chains
linked with one end to a common core. These structures have
attracted much attention both in the field of theory [70,71]
and in experiments [72,73]. Various experimental techniques
are employed to characterize the structural properties of star
polymers such as light scattering [74,75], small-angle neutron
scattering [76,77], and x-ray-scattering techniques [78,79].
The basic feature of the star polymer is that it emerges from
a central core bead, to which f arms are attached, each
consisting of n beads. Hence the star polymer consists of
a total number of beads N = nf + 1 and a total number of
bonds N − 1 (see Fig. 2).

To generate our graphs we have assumed that each bead and
spring is made up of N0 Kuhn segments so that the effective
friction coefficient ζ = N0ζ0 and the effective segment length
(made up of N0 segments) becomes b = √

N0b0, where ζ0 is
the friction coefficient of each Kuhn segment and b0 is the
Kuhn segment length. Taking N0 � 100, the longest resultant
relaxation times is on the order of 10 s, which is a typical exper-
imental time scale for large realistic polymers [18,22,23]. The
other parameters that we used are ζ0 = 0.35 × 10−6 dyn s/cm,
b0 = 6.7 × 10−8 cm, and kBT = 4.11 × 10−14 erg at 298 K.
The ASD in all figures is scaled with respect to the square of
the radius of gyration of the linear chain 〈R2

g〉 = Nb2/6.
In Fig. 3 we display the effect of star topology on its

dynamics under the influence of an external random flow with
α = 1 and W = 5 × 10−13 cm3/s2. Using Eq. (43), the ASD of
the center of mass 〈Y 2

c.m.〉∗ is plotted against the time t∗, where
in both cases the asterisk indicates that the quantities are given
in dimensionless units, so 〈Y 2

c.m.〉∗ = 〈Y 2
c.m.〉/〈R2

g〉 and t∗ = σ t .
Here the scaling of the ASD is done with 〈R2

g〉 for a linear chain
of 201 beads. The length of the arms is kept constant by taking
n = 100 and varying the functionality f with N = 201, 301,
601, and 1201. We distinguish two different time regimes:
intermediate- and long-time regimes. The intermediate-time
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FIG. 3. (Color online) Dynamics of the center of mass of the star
polymer under the influence of external random flow. Plotted on a
logarithmic scale is the dimensionless ASD 〈Y 2

c.m.〉∗ = 〈Y 2
c.m.〉/〈R2

g〉
vs dimensionless time t∗ = σ t for a fixed number of beads per arm
n = 100 and a varying number of branches f = 2, 3, 6, and 12 with
the total number of beads N = 201, 301, 601, and 1201, respectively
(from bottom to top). Black dotted lines represents the drift term
due to random external flow. The flow parameters are α = 1 and
W = 5 × 10−13 cm3/s2.

regime corresponds to the internal motion of the chain
where 〈Y 2

c.m.〉 ∝ tν with ν = 0.46 ± 0.01 < 1, i.e., it shows
subdiffusive behavior. It is observed that the magnitude of the
ASD is greater for the star with greater f , although the length
of the arm is the same. On physical grounds, this is due to the
fact that with increasing f , the total mass of the star grows,
resulting in a greater stretching of the star as now there are more
bonds that undergo stretching, which results in an increase in
the ASD of the center of mass. The maximum stretching of
the star polymer with f = 12 is about three times greater
than that of the linear polymer (f = 2). Due to the external
random flow there is an increase in the time dependence of the
ASD in the long-time regime, where it exhibits superdiffusive
behavior with ν = 1.54 ± 0.01 > 1, contributing to the overall
diffusion of polymer. Again in this time regime, the magnitude
of the ASD is greater for the star with greater f , i.e., the star
with greater total mass moves faster than the star with lesser
total mass, a result that is in agreement with the results of
Refs. [16,17] for the Rouse chain.

In addition, we observe that as the total mass of the polymer
increases, there is a delay in the crossover time t∗c from
intramolecular motion to overall polymer diffusion. This can
be understood as follows: With increasing f , the total mass of
the star polymer increases and therefore the internal dynamics
lasts longer time and hence there is a delayed crossover
to superdiffusive behavior. The logarithmic crossover times
for various star polymers with n = 100 and varying f for
δ-correlated flow are listed in Table I. As τp is the same for
star polymers with varying f (with fixed n), all these flows
will represent the same Wi [see Eq. (13)]. The black dotted
lines in the plot are the pure drift contribution from random
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TABLE I. Logarithmic crossover times for star polymers with
n = 100 and varying f and N for δ-correlated flow.

Functionality Total No. of beads Logarithmic crossover time
f N log10(t∗

c )

2 201 4.02
3 301 4.26
6 601 4.62
12 1201 4.93

flow that matches asymptotically the ASD at longer times to
further emphasize the intermediate stretching regime.

The scaling law obtained using fitting data from Eq. (43)
for the star polymer shows two asymptotic regimes. For the
intermediate-time regime, the scaling law relates the behavior
of the star and linear polymer through〈

Y 2
c.m.

〉
star〈

Y 2
c.m.

〉
linear

=
(

3(f − 2)

f 2

)3

, (44)

while for the long-time regime (drift regime)〈
Y 2

c.m.

〉
star〈

Y 2
c.m.

〉
linear

= 3(f − 2)

f 2

(
f

2

)0.3

. (45)

We can easily determine the crossover time of the star polymer
if we know the same for the linear polymer as

(τc)star

(τc)linear
= f

2
. (46)

To understand the influence of changing flow strength, we
have plotted in Fig. 4 the scaled ASD vs scaled time for
varying flow strength. Under the limit of negligible strength of
external flow (W → 0), the ASD reduces to the conventional
diffusive motion, viz., Brownian diffusion (see the black
line in the figure), i.e., linearly dependent on time. In the
intermediate-time regime, as the flow strength increases, it
results in an increase in the subdiffusive behavior due to the
internal dynamics of the polymer. In the long-time regime, on
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FIG. 4. (Color online) Influence of varying flow strength. Plotted
on a logarithmic scale is 〈Y 2

c.m.〉∗ vs t∗ for the star polymer with n =
100 and f = 3 with varying W , i.e., W = 0, 2 × 10−19, 8 × 10−19,
32 × 10−19, 128 × 10−19 a.u. (from bottom to top).
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FIG. 5. (Color online) Dynamics of the center of mass of the star
polymer under the influence of external random flow. Plotted on a
logarithmic scale is 〈Y 2

c.m.〉∗ vs t∗ for star polymers with N fixed,
i.e., N = 1201 and varying f , i.e., f = 2, 3, 6, and 12 (from top to
bottom). We indicate the cases where α = 1 (δ-correlated flow) by
solid lines, α = 0.7 (moderately correlated) by dashed lines, and α =
0.4 (strongly correlated) by dot-dashed lines for W = 5 × 10−13 a.u.
Black dotted lines represents the drift term due to random external
flow.

increasing flow strength, the superdiffusive behavior increases
due to the overall drift due to random flow of the polymer.
So in the presence of the external flow, the diffusive behavior
changes to subdiffusive in the intermediate-time regime and to
superdiffusive in the long-time regime.

In Fig. 5 we display both the effect of the polymer topology
and of the external random flow on the dynamics of the star
polymer. The ASD is scaled by 〈R2

g〉 for 1201 beads and is

plotted against t∗. Further, 〈Y 2
c.m.〉∗ is calculated according

to Eq. (42) for various values of the flow parameter α. To
understand the effect of the topology of the star polymer on its
dynamics, we vary f while keeping N constant. We take N =
1201 and choose for the number of arms f the values 2, 3, 6,
and 12. Here again two different regimes of motion are shown:
the intermediate- (subdiffusive) and long-time (superdiffusive)
regimes. The influence of the underlying topology on the
dynamics is unraveled mainly in the intermediate-time regime.
We observe that while keeping N fixed, the ASD increases as
we decrease f of the star, while the long-time regime is only
weakly dependent on the structure of the star polymer. Since
N is constant, at very long time all the curves merge together,
showing no influence of topology on the dynamics.

Another aspect that we study here is the effect of the external
random flow on the dynamics. For this we study the same
system, i.e., the star with N = 1201 and varying f = 2, 3, 6,
and 12 for various values of the flow parameter α. We indicate
the cases where α = 1 (δ-correlated flow) by solid lines,
α = 0.7 (moderately correlated) by dashed lines, and α = 0.4
(strongly correlated) by dot-dashed lines for W = 5 × 10−13

a.u. We observe that as we go from δ-correlated or weakly
correlated to strongly correlated flow, there is a decrease in
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the magnitude of the ASD, while the time dependence of
the ASD increases as there is an increase in the slope in
both time regimes, which is also evident from Eq. (42). The
best power fits 〈Y 2

c.m.〉 ∝ tν for α = 1 give ν = 0.46 ± 0.01
in the intermediate-time regime and ν = 1.54 ± 0.01 in the
long-time regime, for α = 0.7 they give ν = 0.60 ± 0.01
in the intermediate-time regime and ν = 1.67 ± .01 in the
long-time regime, and for α = 0.4 they give ν = 0.71 ± 0.01
in the intermediate-time regime and ν = 1.82 ± 0.01 in the
long-time regime. Also we observe that the crossover time
from the subdiffusive to the superdiffusive regime remains
almost constant for polymers with fixed N . For fixed molecular
weight of the star polymers with increasing f , τp will decrease
and hence the Wi of these flows decreases with functionality
[see Eq. (13)]. The black dotted lines in the plot are the
pure drift contributions of random flow that emphasize the
intermediate stretching regime of the polymer.

B. Regular dendrimers

Dendrimers are defined as a class of macromolecules with
highly branched treelike structures [80,81], which have vast
biological applications [82,83]. As the number of generations
of the dendrimer increases, it becomes more and more densely
packed at the periphery and thus forms a closed membranelike
structure. Thus, due to its unique architecture, the dendrimer
has been gaining much attention in the field of energy
transfer and has been used in artificial antenna systems for
light harvesting [84,85]. A great deal of theoretical work
has been done to study the dynamic and conformational
properties of dendrimers [41–43,53–56,86–88]. Topologically
these structures start at a central core from which f arms
emerge. At each new generation g, the ends of the arms get
f − 1 new arms attached to them (see Fig. 2). The structure
ends at the G generation and the central core bead is considered
to be the zeroth generation. For f = 3 the dendrimer consists
of N = 3(2G − 1) + 1 beads and the number of bonds is
N = 3(2G − 1).

We display in Fig. 6 the long-time dependence of the ASD
of the center of mass of dendrimers under external flow.
Here again the scaled ASD (with an 〈R2

g〉 of 22 beads) is
plotted against dimensionless time t∗ on a double-logarithmic
scale for various generations G = 3, 5, and 7 using Eq. (42).
From Fig. 6 we again observe two anomalous power-law
regimes. We observe that the intermediate-time regime follows
a subdiffusive power law, i.e., 〈Y 2

c.m.〉 ∝ tν , where ν < 1,
following which there is a crossover to the long-time regime
showing superdiffusive dynamics with the exponent ν > 1.
Whereas the subdiffusive regime shows the intramolecular
contributions to the ASD, the superdiffusive behavior indicates
the diffusion of the polymer as a whole. Now the general trend
of the ASD that is observed is that, in both the intermediate- and
the long-time regime, as we increase the number of generations
of the dendrimer, there is an increase in the magnitude of the
ASD. This can be explained as follows: As the number of
generations increases, there is an exponential increase in the
total mass of the dendrimer that leads to greater stretching and
also a greater overall diffusion of the polymer that is reflected
in the intermediate- and long-time regimes, respectively. We
observe that the maximum stretching of the dendrimer with
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FIG. 6. (Color online) Dynamics of the regular dendrimer (f =
3) under the influence of external MdM flow. Plotted is 〈Y 2

c.m.〉∗

vs dimensionless time t∗ on a double-logarithmic scale for various
generations G = 3, 5, and 7 (from bottom to top). We indicate the
cases where α = 1 (δ-correlated flow) by solid lines and α = 0.75
(moderately correlated flow) by dashed lines for W = 5 × 10−11 a.u.

G = 7 is approximately four times greater than that of the
linear polymer. Therefore, the higher-generation dendrimer
moves faster than the lower-generation dendrimer due to
random flow. A similar result was observed for the Rouse
chain in Refs. [16,17], where it was shown that the ASD of
the larger chain is greater compared to the ASD of the smaller
chain.

The next important point that we observe in Fig. 6 is the
delay in the crossover time t∗c from subdiffusive to superdiffu-
sive behavior as the generation of the dendrimer increases. The
physical interpretation of this is that in the higher-generation
dendrimer the internal dynamics is prolonged and hence delays
the overall diffusion. This point is illustrated through Table II,
which provides the logarithmic crossover times for various
generations of dendrimers.

In Fig. 6 we also try to understand the effect of external flow
by varying the value of α, where the solid lines indicate the
case of weakly correlated or δ-correlated flow (α = 1) and the
dashed lines indicate moderately correlated flow (α = 0.75).
We observe that as we decrease the value of α, the magnitude
of the ASD decreases. The power-law time dependence of the
ASD increases with a decrease in α, which is reflected in the
local slopes (in both time regimes of the logarithmic plots).
The time dependence of the ASD is independent of the total
mass and the topology of the polymer, while it varies with α

TABLE II. Logarithmic crossover times for various generations
of dendrimers for δ-correlated flow.

Generation Total No. of beads Logarithmic crossover time
G N log10(t∗

c )

3 22 1.80
5 94 2.72
7 382 3.51
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FIG. 7. (Color online) Comparison of the dynamics of the star
and dendrimer with the same total number of beads N = 766
and functionality f = 3. Plot of 〈Y 2

c.m.〉∗ = 〈Y 2
c.m.〉/〈R2

g〉 (Rg of 766
beads) vs t∗ on a double-logarithmic scale with α = 1 and W =
5 × 10−13 cm3/s2. Here red squares and blue triangles represent the
curves for the star and dendrimer, respectively.

[see Eqs. (41) and (42)]. So for a particular exponential value
of the flow, the intermediate- and long-time slopes remain the
same for various generations of dendrimers. The best power
fits 〈Y 2

c.m.〉 ∝ tν for δ-correlated flow (α = 1) give ν = 0.46 ±
0.01 in the intermediate-time regime and ν = 1.54 ± 0.01 in
the long-time regime and for moderately correlated flow (α =
0.75) they give ν = 0.58 ± 0.01 in intermediate-time regime
and ν = 1.64 ± 0.01 in the long-time regime.

Finally, we compare the dynamics of the star and dendrimer
with the same N and f , i.e., N = 766 and f = 3, under the
external MdM flow with α = 1 and W = 5 × 10−13 cm3/s2

(see Fig. 7). Here red squares indicate the curve for the star
while blue triangles are for the dendrimer. In this plot we
observe that the influence of the topology of the polymer is
visible in the intermediate-time regime where the magnitude
of the ASD of the star is greater than the ASD of the dendrimer.
The long-time regime shows a weak dependence on the
underlying topology of the polymer and both curves merge
at a very long time. Also, it is shown that the crossover from
the subdiffusive regime to the superdiffusive regime occurs
faster in the case of the dendrimer than that of the star polymer
due to the smaller overall size of the dendrimer compared to
the star with the same total mass.

C. Contribution of HIs

The previous sections were focused on the understanding
of the polymer dynamics in the absence of HIs. The purpose
of this section is to give a brief idea of what the effect of the
inclusion of HIs is on the dynamics of the branched polymer in
the external random flow. A detailed mathematical formalism
and analysis are beyond the scope of the present paper. As
we know, the role of HIs in understanding the dynamical
properties of polymer solutions has long been acknowledged.
Zimm [89] extended the Rouse theory in order to take into
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FIG. 8. (Color online) Comparison of the dynamics of the star
with (magenta squares) and without (green triangles) HIs with n =
3 and f = 4. Plot of

〈
Y 2

c.m.

〉∗
(scaled 〈Y 2

c.m.〉 with 〈R2
g〉 of the star

polymer) vs t∗ on a double-logarithmic scale with α = 1 and W =
5 × 10−11 cm3/s2.

account the HI effects using the preaveraged approximation.
He obtained the theory of the relaxation behavior of long
polymer chains in the absence of excluded-volume effects.
Later the Zimm theory was extended to study in detail the
intrinsic viscosity and the relaxation modes of branched
polymers such as stars or dendrimers [90].

We use similar methodology to generalize our results with
the inclusion of HIs using a preaverage approximation. We
display in Fig. 8 the effect of inclusion of HIs on the ASD
dynamics of the star polymer on a double logarithmic scale
with n = 3 and f = 4. Here the Zimm (with HIs) and the
Rouse (without HIs) cases are shown in magenta squares and
green triangles, respectively. With the inclusion of HIs, the
results suggest that while no qualitative change is seen, there
is only a quantitative change due to the presence of HIs in
the system. There are two main points of observation. First,
taking HIs into account results in an increase in magnitude of
the ASD, which is as expected as now there is an additional
contribution of HIs that leads to faster displacement of the
polymer. Second, as the longest relaxation times that are
given by the smallest nonvanishing eigenvalues are shorter
in the Zimm case than in the Rouse case, the presence of
the hydrodynamic interactions speeds up the stretch dynamics
and thus the overall drift occurs faster, which is shown by the
crossover time that is shorter for the Zimm case than for the
Rouse case.

IV. CONCLUSION

In this work we have developed a formalism to investigate
the dynamics of arbitrary, flexible branched polymers in
the presence of random flows. The modeling of flexible
branched polymers is done within the framework of the GGS,
while the random flow is accounted for through the MdM
approach. Our approach is more general compared to previous
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works [16,17,91], which are applicable for the Rouse-type lin-
ear chain polymers. Here we obtained a generalized expression
for the ASD of the center of mass of branched polymers with
complex underlying geometries, where the averages are done
over both the thermal noise and the random external flow. We
have analyzed the ASD dynamics of stars and dendrimers with
varying topology under the influence of external flow. Both
star and dendrimer structures show two anomalous power-law
regimes of motion, viz., intermediate- and long-time regimes.
The dynamics in the intermediate-time regime is observed due
to the stretching and drift of the polymer structure that causes
subdiffusive behavior. The dynamics in the long-time regime
follows superdiffusive behavior, which is due to the random
flow induced over all diffusion of the stretched polymer. The
influence of external flow on the ASD is characterized by
the flow exponent α. With a decrease in the value of α,
there is a decrease in the magnitude of the ASD while its
temporal exponent increases in both regimes. In the case of
star polymers (with fixed N ), it was observed that in the
intermediate-time regime, the magnitude of the ASD increases
with a decrease in f , while in the long-time regime there
is a weaker dependence on f . Star polymers with fixed
arm length and varying functionality show enhanced ASD
magnitude with an increase in functionality. Subdiffusive and
superdiffusive behaviors are independent of functionality but
depend on flow behavior. Also, with increasing f , there is a
delay in the crossover time from subdiffusive to superdiffusive

behavior. In the case of dendrimers, with an increase in
generation G, the magnitude of the ASD increases. The nature
of intermediate-time subdiffusive and long-time superdiffusive
behaviors is preserved, while their crossover times increase
with an increase in G. It is known in the case of nonrandom
flows that the smaller polymers move faster compared to the
larger polymers [17,92]. In our analysis, we showed that the
star and dendrimer with a greater total number of beads moves
faster in random layered flow. This conclusion is similar to the
one obtained for a linear Rouse chain in Refs. [16,17].

Finally, the dynamics of the star and dendrimer with N

fixed are compared. The influence of the underlying topology
on the dynamics is observed mainly in the intermediate-time
regime where the ASD of the star is greater than that of the
dendrimer. The long-time regime shows a weaker dependence
on the polymer structure. Also the crossover time between
these regimes for the star is greater than that of the dendrimer,
i.e., the star polymer takes a longer time to diffuse as a whole
due to its greater overall size as compared to the dendrimer of
the same total mass.
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APPENDIX: LONG-TIME APPROXIMATION

For the long-time limit, i.e., |t ′ − t ′′| > τR , Eq. (41) can be simplified by dropping the exponential term and substituting t ′ = 0
as

〈[Xm(0) − Xn(t ′′)]2〉 ≈ 2kBT

Nζ
t ′′ + kBT

σζ

∑
i 
=1

[
QmiQ

−1
im /λi + QniQ

−1
in /λi

]
. (A1)

Solving the double integral in Eq. (32) using Eq. (A1), we obtain

∫ t

0
dt ′

∫ t ′

0
dt ′′〈[Xm(0) − Xn(t ′′)]2〉−α/2 = 1

(4 − α)(2 − α)

(
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2kBT

)2
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⎪⎩4
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Cmn
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Cmn
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Cmn
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⎫⎪⎬
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= 1

(4 − α)(2 − α)

(
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)2
{

4

(
2kBT

Nζ
t

)2−α/2 [
1 + (4 − α)

4

(
Nζ

kBT

)

×
⎛
⎝b2

3

∑
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Cmn
i

⎞
⎠ t

]
− 2(4 − α)

⎛
⎝b2

3

∑
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Cmn
i

⎞
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1−α/2 (
2kBT

Nζ
t

)

− 4

⎛
⎝b2

3

∑
i 
=1

Cmn
i

⎞
⎠

2−α/2
⎫⎪⎬
⎪⎭ , (A2)

where Cmn
i = QmiQ

−1
im /λi + QniQ

−1
in /λi . Finally, we substitute Eq. (A2) in Eq. (32) to get the final ASD expression for the

long-range correlation given by Eq. (42).
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