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Active one-particle microrheology of an unentangled polymer melt studied
by molecular dynamics simulation
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We present molecular dynamics simulations for active one-particle microrheology of an unentangled polymer
melt. The tracer particle is forced to oscillate by an oscillating harmonic potential, which models an experiment
using optical tweezers. The amplitude and phase shift of this oscillation are related to the complex shear modulus
of the polymer melt. In the linear response regime at low frequencies, the active microrheology gives the same
result as the passive microrheology, where the thermal motion of a tracer particle is related to the complex
modulus. We expand the analysis to include full hydrodynamic effects instead of stationary Stokes friction only,
and show that different approaches suggested in the literature lead to completely different results, and that none
of them improves on the description using the stationary Stokes friction.
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I. INTRODUCTION

Microrheology is a method to study viscoelastic properties
of materials by observing the motion of micron-sized tracer
particles that are dispersed in the material. This method is
therefore only applicable for soft matter but is becoming the
method of choice for studying small probes, e.g., biological
cells or small amounts of synthesized materials. The corner-
stone for the development of microrheology was set by Mason
and Weitz almost two decades ago [1]. They showed that the
thermal motion of suspended particles can be related to the
linear viscoelastic properties of the host material by assuming
a generalized Stokes-Einstein relation (GSER). From then on,
theory and experiments were extended [2–13]; one extension
is active microrheology, where the forced motion of a tracer
particle is studied instead of its thermal motion [14–21]. The
force is applied in a pulsed, constant, or oscillating way,
depending on the aim of the study, and the results of these
procedures can be different.

With oscillatory active microrheology (OcAM) one can
study the frequency dependence of the viscoelastic properties
of the material and it is possible to either stay in the linear
regime or to reach the nonlinear regime of the response.
The corresponding experiments often use oscillating optical
tweezers, which are mathematically described by harmonic
potentials [14,18,21,22]. The tracer particles are trapped
by the optical tweezers and follow their motion with a
frequency-dependent amplitude and phase shift that depend
on the surrounding material’s properties. The relation to the
complex shear modulus is derived by finding the connection
between friction coefficient, ζ , and viscosity, η. In the steady
limit, this is the Stokes equation ζ = νπηR, with ν either
4 or 6, for slip or stick boundary conditions, respectively.
Beyond this limit, one has to include other hydrodynamic
effects, like shear waves and medium inertia. For a simple
fluid and stick boundary conditions, those were already
calculated by Stokes himself [23]: ζ = 6πηR(1 + α̃ + α̃2/9),
with α̃ = R

√
iωρ/η [24], and include the medium density ρ

explicitly. This result is for purely viscous materials, and the
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generalization to viscoelastic materials can be done in two
ways [25–27].

In Sec. II, we describe the model that is used to simulate the
polymer melt and the tracer particle and explain how we model
an oscillating optical tweezer. Then we show the derivation of
the equations, which relate the amplitude and phase shift of
the tracer to the storage and loss modulus of the surrounding
medium in Sec. III. After this, we present our results in Sec. IV
and compare them to our passive microrheological results.
In Sec. V we discuss the inclusion of further hydrodynamic
effects and compare results of two approaches. Finally, we
conclude our findings in Sec. VI.

II. MODEL AND SIMULATION

Our polymer model is similar to the well-known bead-
spring model of Kremer and Grest [28]: All pairs of monomers
interact via a cut and shifted Lennard-Jones potential, where
the shift function U sh(r) makes sure that potential, force, and
first derivative of force are equal to zero at the cutoff distance
rc [29,30]:

ULJ
mm(r)

=
{

4εmm

[(
σmm

r

)12 − (
σmm

r

)6] + U sh
mm(r), r � rc

0, r > rc

. (1)

This potential gives the energy, length, and time units of
the system, εmm = 1, σmm = 1, and τ = σmm√

εmm/m
= 1, respec-

tively, in which all values are measured. In addition, bonded
monomers feel a finite-extensible-nonlinear-elastic (FENE)
potential:

UF (r) = −k

2
R2

F ln

[
1 −

(
r

RF

)2
]

, (2)

with the force constant k = 30 and the maximum elongation
RF = 1.5.

The single tracer particle in the system also interacts via a
Lennard-Jones potential with the monomers, but in addition
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has a hard core of radius R0:

ULJ
pm(r)

=
{

4εpm

[( σpm

r−R0

)12 − ( σpm

r−R0

)6] + U sh
pm(r), r � rc

0, r > rc

.

(3)

The length and energy scales of this potential are also set
to unity, σpm = 1 and εpm = 1. The cutoff distance for both
Lennard-Jones interactions is set to rc = R0 + 2 · 21/6, to
include the repulsive and the attractive part of the interactions.
For the hard-sphere radius we choose R0 = 2 and set the tracer
particle mass to M = 25.

The cubic simulation box with periodic boundary condi-
tions in all dimensions contains 1572 polymer chains with
10 beads each. The average radius of gyration of those
chains is Rg = 1.5. We apply a Nosé-Hoover thermostat on
the polymer chains, not on the tracer, to simulate NV T

ensembles. With this one avoids temperature drift, but still
has local heating, as one has in experiments. The coupling
time constant is tNH = 0.7 and the simulation time step
is δt = 0.0035. Well-equilibrated configurations are taken
from former simulations [32]. We will show results for two
temperatures T = 0.5 and T = 1.06. The box length for the
lower temperature is 24.85, giving a monomer number density
of ρ = 1.03. For the higher temperature it is 26.17, giving
a monomer number density of ρ = 0.88. In all cases the box
dimension is much larger than the tracer particle and the motion
of the tracer has a small amplitude (cf. below), so that the
influence of finite size effects is kept small.

An optical tweezer applies a force on dielectric particles,
that can be modeled as harmonic in a region around its
focus [25,26]. This makes the analysis of the results, but also
the implementation in computer simulations, relatively easy:
The oscillating optical tweezer is modeled as an oscillating
external harmonic potential on the tracer particle:

Uot(r) = kot

2
(r − rot)

2 (4)

rot(t) = [A cos (ωott),0,0]T , (5)

with the coupling constant kot, the oscillation amplitude A, and
the frequency of the oscillation ωot. We choose the oscillations
to be in the x direction and only consider the motion of the
tracer in this direction for the microrheological analysis.

III. OSCILLATORY ACTIVE MICRORHEOLOGY

To derive the relation between the complex modulus of
the material and the amplitude and phase shift of the tracer
oscillation, one starts with a generalized Langevin equation in
the direction of the oscillating trap:

Mẍ(t) = FR(t) −
∫ t

0
ζ (t − t ′)ẋ(t ′)dt ′

− kot[x(t) − A cos(ωott)], (6)

which includes the particle inertia, a thermal, random force
FR , a friction force with memory kernel, and the oscillating
harmonic trapping force as described above. Fourier transfor-

mation of both sides leads to

− Mω2x̃(ω) = F̃R(ω) − iωζ̃ (ω)x̃(ω)

− kot

{
x̃(ω) − A

2
[δ(ω − ωot)

+ δ(ω + ωot)]

}
, (7)

with the δ distribution δ(ω). The Gaussian distributed thermal
force can be averaged out by ensemble averaging, and the
friction coefficient is then

iωζ̃ (ω) = kotA[δ(ω − ωot) + δ(ω + ωot)]

2〈x̃(ω)〉 + Mω2 − kot. (8)

Assuming a generalized Stokes relation between friction and
viscosity [ζ̃ (ω) = νπη̃(ω)R], one gets the following results
for the complex shear modulus of the material:

G∗(ω) = iωη̃(ω) = iωζ̃ (ω)

νπR

= 1

νπR

{
kotA[δ(ω − ωot) + δ(ω + ωot)]

2〈x̃(ω)〉
}

+ 1

νπR
(Mω2 − kot), (9)

where ν is a parameter that determines the boundary conditions
at the tracer particle surface, as discussed above. The effective
hydrodynamic radius R is slightly larger than the hardcore
radius of the tracer, because it is the radius, where the
hydrodynamic boundary conditions have to be applied, and this
is at the first maximum of the pair correlation function between
tracer particle and monomers, which is at R = R0 + 1.

The ensemble averaged motion of the tracer particle is
expected to be oscillatory with the frequency of the external
harmonic trap, the amplitude D, and the phase shift ϕ, which
both depend on frequency:

〈x(t)〉 = D(ωot) cos[ωott − ϕ(ωot)]. (10)

In Fourier space this is

〈x̃(ω)〉 = D(ωot)

2
{cos[ϕ(ωot)] − i sin[ϕ(ωot)]}

× [(δ(ω − ωot) + δ(ω + ωot)]. (11)

The storage and loss moduli are therefore calculated as
[Eq. (11) in Eq. (9)]

G′(ωot) = 1

νπR

{
kotA

D(ωot)
cos[ϕ(ωot)] + Mω2

ot − kot

}
, (12)

G′′(ωot) = 1

νπR

kotA

D(ωot)
sin[ϕ(ωot)]. (13)

IV. RESULTS

The amplitude of the external harmonic potential oscillation
is set to A = 0.1. This seems to be rather small compared to
the tracer particle radius of R0 = 2 but is large enough to
give reasonable results, as will be shown later. Furthermore,
this amplitude cannot be much larger, because a combination
of high frequency and large amplitude leads to numerical
instabilities in the simulation due to excluded volume effects.
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FIG. 1. (Color online) Amplitude (top) and phase shift (bottom)
of the forced oscillation of a tracer particle with size R0 = 2 at
two different coupling constants and two different temperatures as
indicated. The amplitude of the external potential oscillations is
A = 0.1. Error bars show maximal and minimal values from subsets
of oscillations.

We will discuss results for coupling constants between
the external harmonic potential and the tracer particle of
kot = 5000 and kot = 1000 and temperatures T = 1.06 and
T = 0.5; the glass transition temperature of the model polymer
melt is at Tg = 0.41 [31]. The amplitude and the phase shift
of the forced oscillation of the tracer are shown in Fig. 1. At
small frequencies, the amplitude is the same as the excitation
amplitude and the phase shift tends to zero, because the tracer
can follow the motion of the harmonic trap easily. At large
frequencies, the amplitude tends to zero and the phase shift is
π , because the harmonic trap moves too fast to be followed
by the tracer. In between one finds characteristic resonance
phenomena: (strong) increase of the amplitude and phase shift
of π/2, which is either smoothly reached (strong damping)
or via a jump (weak damping). Structure and mobility of
the environment influence the resonance frequency and the
damping of the oscillator. For the higher coupling strength, at
both temperatures the environment effect is weak compared to
the oscillator force and a sharp transition with a large resonance
amplitude occurs. Upon reducing the coupling strength (or
decreasing the temperature), the damping by the environment
gets stronger and the motion can become overdamped. This is
the case for kot = 1000 and T = 0.5.

The storage and loss moduli are calculated from the
amplitude and phase shift via Eqs. (12) and (13). The result
is shown in Fig. 2. The lines are the moduli from passive
microrheology, which we also studied for this system [32].
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FIG. 2. (Color online) Storage (top) and loss modulus (bottom)
derived with oscillatory active one-particle microrheology based on
the amplitude and phase shift of the forced oscillation of a tracer
particle with size R0 = 2 at two different coupling constants and two
different temperatures as indicated. The amplitude of the external
potential oscillations is A = 0.1. The lines show the results from
passive microrheology for the two temperatures T = 1.06 (solid) and
T = 0.50 (dashed). Error bars show maximal and minimal values
from subsets of oscillations.

For frequencies ω < 10, we find a good agreement between
the active and the passive microrheology for both temperatures
and both coupling constants. This means that we are in
the linear response regime for ω < 10, which is the only
regime measurable with passive microrheology. At higher
frequencies, the passive microrheology results are not reliable
anymore, especially at low temperatures [32]. Here, the active
microrheology reveals an increasing storage modulus coming
from the inertia of the tracer Mω2, but an unsystematic
result for the loss modulus with large error bars, because
both sin[ϕ(ω)] and D(ω) are getting small. The resonance
is translated to a minimum in both storage and loss modulus
but is hard to see for the low coupling case.

V. INCLUSION OF HYDRODYNAMIC EFFECTS BEYOND
THE STATIONARY APPROXIMATION

In recent years, the importance of including hydrodynamic
effects beyond the simple Stokes friction was stressed in the
literature [33–37]. We did not find an improvement of our
results in the passive microrheology of the studied system
upon including these effects [32], but their influence on active
microrheology has not yet been discussed in detail.

There are two approaches suggested in the literature to
include complete hydrodynamic effects into the calculations.
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They lead to different results, as will be shown in this
paragraph. Both start with the solution of the Navier-Stokes
equation for the nonstationary motion of a spherical particle
moving in an incompressible Newtonian fluid (i.e., η = const.)
with nonslip boundary conditions at its surface. The full
friction coefficient reads [23,37]

ζ (ω) = 6πηR[1 + α̃(ω) + α̃(ω)2/9], (14)

α̃ = R
√

iωρ/η [24], (15)

where ρ is the fluid density. The complex shear modulus of a
viscoelastic fluid is defined as G∗(ω) = iωη̃(ω), where η̃(ω)
is a frequency-dependent complex viscosity. The question
now is, how the η in the Navier-Stokes solution, Eq. (14),
relates to this complex viscosity. At this point, two different
approaches are followed. In the first one, η is taken as the
real part of η̃(ω) = ηm(ω) − ikm(ω)/(ωνπR), where km then
describes the elastic part of the response. In the second one, η is
directly taken as the complex viscosity η̃(ω). Common to both
approaches is the assumption that for a frequency-dependent
viscosity the above relation between friction on the solute and
fluid properties remains valid and one just has to make the
viscosity in this equation frequency dependent. Of course, this
is no longer the solution of a suitably modified Navier-Stokes
equation, which would need to incorporate memory effects.
This is a generally followed approach; however, it is far away
from being accurate as we will see.

When η in the friction coefficient, Eq. (14), is a real valued
viscosity ηm one can decompose ζ in a real and an imaginary
part, and by rearranging these terms in Eq. (7) one finds

− M∗ω2x̃(ω) = F̃R(ω) − iω6πη∗
m(ω)Rx̃(ω)

− kot

{
x̃(ω) − A

2
[δ(ω − ωot)

+ δ(ω + ωot)]

}
, (16)

with [25,26]

M∗(ω) = M + 2

3
πR3ρ + 3πR2

√
2ηm(ω)ρ

ω
(17)

η∗
m(ω) = ηm(ω)

⎡
⎣1 +

√
R2ρω

2ηm(ω)

⎤
⎦ . (18)

However, this result is for purely viscous fluids only and one
has to add the elastic part explicitly:

− M∗ω2x̃(ω) = F̃R(ω) − iω6πη∗
m(ω)Rx̃(ω) − km(ω)x̃(ω)

− kot

{
x̃(ω) − A

2
[δ(ω − ωot)

+ δ(ω + ωot)]

}
. (19)

Considering the case of stationary Stokes friction first by
setting M∗ = M and η∗

m = ηm and inserting the solution,

Eq. (11), one finds the amplitude and phase shift of the tracer
particle to be

D(ω) = kotA√
[kot + km(ω) − Mω2]2 + [νπηm(ω)Rω]2

, (20)

ϕ(ω) = arctan
νπηm(ω)Rω

kot + km(ω) − Mω2
, (21)

and the spring constant and viscosity of the medium are

km(ω) = kotA

D(ω)
cos[ϕ(ω)] + Mω2 − kot, (22)

ηm(ω) = kotA

νπRωD(ω)
sin[ϕ(ω)], (23)

where we have omitted the index ot from the frequency.
With G∗(ω) = iωη̃(ω) = iω[ηm(ω) − ikm(ω)/(ωνπR)] one
rederives Eqs. (12) and (13).

For the complete Stokes friction one has to replace ηm and
M in Eqs. (22) and (23) by η∗

m and M∗, respectively:

km(ω) = kotA

D(ω)
cos[ϕ(ω)] + M∗ω2 − kot, (24)

η∗
m(ω) = kotA

νπRωD(ω)
sin[ϕ(ω)]. (25)

From Eqs. (25) and (18) one gets ηm and with that the loss
modulus and from Eqs. (24) and (17) together with ηm one
gets the storage modulus. With this, the storage and loss moduli
with full hydrodynamic friction (index H ) can be calculated
from the storage and loss moduli with simple friction as

G′
H,r (ω) = G′(ω) +

[
−5

6
Rρ ± 3

√
1

4
R2ρ2 + 2ρG′′(ω)

ω2

]

× ω2R

6
, (26)

G′′
H,r (ω) = G′′(ω) +

[
1

2
Rρ ∓

√
1

4
R2ρ2 + 2ρG′′(ω)

ω2

]
ω2R

2
.

(27)

The two signs occur because one has to solve quadratic
equations to get to the above results. The second index r stands
for an ansatz with real viscosity, in contrast to the following.

The second way looks similar to the first one, but instead of
the real viscosity ηm, the full hydrodynamic friction is written
in dependence of a complex viscosity η̃:

ζ̃ (ω) = 6πη̃(ω)R(1 + α̃ + α̃2/9), (28)

α̃ = R
√

iωρ/η̃(ω) [24]. (29)

The definitions of the complex moduli G∗
H,c(ω) = iωη̃(ω) and

G∗(ω) = iωζ̃ (ω)/(6πR) then lead to [27]

G∗
H,c(ω) = G∗(ω) − 7

18
R2ρω2

∓ R2ω2

2

√
5

9
ρ2 − 4ρ

R2ω2
G∗(ω) , (30)
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FIG. 3. (Color online) Storage (top) and loss modulus (bottom)
derived with oscillatory active one-particle microrheology based on
the amplitude and phase shift of the forced oscillation of a tracer
particle with size R0 = 2 at kot = 5000 and T = 0.50. The amplitude
of the external potential oscillations is A = 0.1. Crosses: Evaluation
using only the stationary Stokes friction [Eqs. (12) and (13)]. Filled
symbols: Evaluation using full hydrodynamic friction with real
viscosity [Eqs. (26) and (27)]. Open symbols: Evaluation using full
hydrodynamic friction with complex viscosity [Eq. (30)]. Circles and
squares are for upper and lower sign in the corresponding equations.
Some results are negative and cannot be seen in this log-log plot.

which is obviously not the same as Eqs. (26) and (27). The
second index c stands for an ansatz with complex viscosity.

The results for both versions and both signs are shown in
Fig. 3, for one example (kot = 5000, T = 0.50). We do not
show error bars anymore to keep the graphs clear, but keep in
mind that they are large for the high-frequency loss modulus.
For the storage modulus, one gets only one relevant result:
the real ansatz and upper sign version. All other versions lead
to negative values, except the two points from the complex
ansatz and lower sign version included in the figure. For the
loss modulus, one gets three relevant results: both real ansatz
versions and the complex ansatz and upper sign version; all of
them show different behaviors. The only version that gives
qualitatively reasonable values for both moduli is the real
ansatz with the upper sign. With this ansatz, the predicted
storage modulus is higher than that resulting from stationary
friction analysis, and the loss modulus is lower than the
one obtained from it. In both cases, the agreement with the
independently measured melt moduli [32] gets worse than for
the simple analysis.

So far we used the results for nonslip boundary conditions
because the solutions for the full friction coefficient are easy to

handle. But actually our tracer model does not support nonslip
conditions, since it has only one interaction site and therefore
no tangential velocity. The full friction coefficient for slip
boundary conditions is also known [37]:

ζ (ω) = 4πηR

[
1 + 2α̃(ω)

3 + α̃
+ α̃(ω)2/6

]
, (31)

α̃ = R
√

iωρ/η [24]. (32)

With this one can use the same approaches as described above.
For the real ansatz one finds

M∗(ω) = M + 2

3
πR3ρ

+ 24πR2√ρηm(ω)/2ω

9 + ρωR2/ηm(ω) + 6R
√

ρω/2ηm(ω)
, (33)

η∗
m(ω) = ηm(ω)

×
[

1 + 6R
√

ρω/2ηm(ω) + 2R2ρω/ηm(ω)

9 + ρωR2/ηm(ω) + 6R
√

ρω/2ηm(ω)

]
.

(34)
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FIG. 4. (Color online) Storage (top) and loss modulus (bottom)
derived with oscillatory active one-particle microrheology based on
the amplitude and phase shift of the forced oscillation of a tracer
particle with size R0 = 2 at kot = 5000 and T = 0.50. The amplitude
of the external potential oscillations is A = 0.1. Crosses: Evaluation
using only the stationary Stokes friction [Eqs. (12) and (13)]. Filled
symbols: Evaluation using full hydrodynamic friction with real
viscosity. Open symbols: Evaluation using full hydrodynamic friction
with complex viscosity. Circles, squares, and triangles are different
solutions of the corresponding equations. Some results are negative
and cannot be seen in this log-log plot.
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Again, from Eqs. (25) and (34) one gets ηm and with that the
loss modulus, and from Eqs. (24) and (33) together with ηm

one gets the storage modulus.
For the complex ansatz one has to solve Eq. (31) with

η → η̃(ω) for the latter. This gives three solutions in contrast
to the two solutions for nonslip conditions.

The results for the different approaches for slip boundary
conditions are shown in Fig. 4. Again we find totally different
results for the two approaches. All results for real-valued
viscosities and also most of the results for complex-valued
viscosities “correct” the moduli to higher values. Some
versions are similar to the corresponding nonslip version
(Fig. 3), but most of them are rather different. At the end
we cannot state which approach, which solution, and which
boundary condition is the correct one. The physics tells us
only that the moduli have to be positive, that the storage
modulus goes with ω2 for high frequencies because of the
tracer’s inertia, and that the loss modulus must approach zero
for high frequencies; which excludes only some of the possible
solutions.

VI. CONCLUSION

In this publication, we discussed a simulation of oscillatory
active microrheology of an unentangled polymer melt, by
studying forced oscillations of a tracer particle for two

coupling strengths and two temperatures. Employing a gen-
eralized Stokes-Einstein relation based on stationary Stokes
friction and focusing on low frequencies, we found a very
good agreement of these results with results from passive
one-particle microrheology, showing the equivalence of both
methods in the linear response regime. At high frequencies,
the storage modulus is mainly governed by the inertia of the
tracer particle and the particle motion decouples from the melt
moduli.

Following recent discussions in the literature about in-
cluding effects beyond the stationary Stokes friction, we
showed two approaches to implement these; one using a real
valued viscosity and one using a complex valued viscosity. In
addition we evaluated the results for nonslip and slip boundary
conditions. All lead to drastically different predictions for
the frequency-dependent moduli, but none of these give a
coherently reasonable representation of the actual moduli of
the polymer melt, let alone an improvement compared to the
approach based on the stationary Stokes friction. In view of the
low number of publications using those approaches, it becomes
clear that this topic has to be investigated further.
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