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Density of photonic states in cholesteric liquid crystals
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Density of photonic states ρ(ω), group vg , and phase vph velocity of light, and the dispersion relation between
wave vector k, and frequency ω(k) were determined in a cholesteric photonic crystal. A highly sensitive method
(measurement of rotation of the plane of polarization of light) was used to determine ρ(ω) in samples of different
quality. In high-quality samples a drastic increase in ρ(ω) near the boundaries of the stop band and oscillations
related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified.
The maximal value of ρ(ω) is substantially smaller, and density of photonic states increases near the selective
reflection band without oscillations in ρ(ω). Peculiarities of ρ(ω), vg , and ω(k) are discussed. Comparison of the
experimental results with theory was performed.
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I. INTRODUCTION

The remarkable properties of photonic crystals leading to
transformation of spectral and polarization properties of light
attract attention both from the point of view of fundamental
physics as well as practical applications [1–4]. A special
place among photonic crystals is occupied by liquid crystals
forming a variety of photonic structures. The simplest of
them is the one-dimensional cholesteric liquid crystal (CLC).
In cholesteric liquid crystals the preferred direction of long
molecular axes (director of the liquid crystal) rotates forming a
helical structure with period p. As a result of helical periodicity
the solutions of Maxwell wave equations for CLC are Bloch
waves with circular polarizations. Eigenwaves of one of the
circular polarizations weakly interact with the cholesteric
structure, while the interaction with the other polarization
is strong [5,6]. In thick samples this interaction leads to
formation of a forbidden photonic band in the frequency range
ω0/(1 − δ)1/2 > ω > ω0/(1 + δ)1/2, where ω0 = 2πc/ε

1/2
0 p,

δ = (ε|| − ε⊥)/(ε|| + ε⊥) is the relative dielectric anisotropy,
ε0 = (ε|| + ε⊥)/2, and ε|| and ε⊥ are the dielectric constants
parallel and perpendicular to the director. In spite of numerous
studies of liquid-crystalline photonic crystals, a number of
characteristics of photonic structures remain open for investi-
gation.

One of the most important characteristics of photonic
crystals is the density of photonic states (DOS), i.e., the
number of wave vectors k per unit frequency ρ(ω) = dk/dω.
Many optical properties are determined by DOS. In particular,
according to Fermi’s “golden rule” luminescence intensity
is proportional to ρ(ω). For a large value of excitation an
intensive stimulated emission appears in maxima of ρ(ω)
at the boundaries of the band and lasing is observed at
the corresponding frequencies [7–10]. Before the present
work a large number of theoretical and experimental stud-
ies were performed aimed at the determination of spectral
characteristics related to the presence of photonic bands.
In particular, in luminescence spectra of cholesteric liquid
crystals’ spectral peculiarities were observed related to the
photonic band [11,12]. In colloidal crystals by measurement
of delay of light wave and interference the dispersion of light
related to the photonic zone was measured [13–18]. Theory
predicts nontrivial behavior of ρ(ω) near the boundaries of the

photonic band, and a nonmonotonic trend of DOS related to
Pendellösung oscillations [10,19–22]. It is worth mentioning
that Pendellösung oscillations are observed only in perfect
samples. Small nonuniformities of the structure and thickness
lead to disappearance of peculiarities related to Pendellösung
oscillations, modification of the selective reflection bands,
and to the smooth trend of reflection and rotation of the
plane of polarization of light. A sufficient transformation
should therefore also be expected in DOS and different related
characteristics of the photonic crystal.

Much of the current attention in photonic crystals is given
to the elaboration of the methods of calculation of DOS, group
velocity of light vg , dispersion ω(k), and their experimental
determination. In the present work a method is proposed
for determination of the DOS, vg , and ω(k) in cholesteric
photonic crystals from measurements of rotation of the plane
of polarization of light. It was possible due to the unique
structure of the cholesteric photonic crystal in which only
one polarization strongly interacts with the periodic structure.
DOS was determined in CLCs of two types: in perfect
samples and in samples with distortion of chiral ordering.
In perfect samples the photonic density of states increases
essentially near the selective reflection band. Outside the band
oscillations in ρ(ω) are observed, whose magnitude decreases
upon going away from the band. We discuss the influence
of the disorder on the measured characteristics. Spectral
dependence of ρ(ω) transforms essentially in imperfect CLC.
Absence of Pendellösung oscillations in selective reflection
and transmission spectra leads to a smooth increase in ρ(ω) on
approaching the photonic band. A comparison between ρ(ω),
vg , dispersion of ω(k) extracted from experimental data, and
theoretical calculations shows good agreement.

II. DIFFERENT WAYS TO CALCULATE THE DOS

The conventional method of the calculation of ρ(ω) is the
use of the complex transmission coefficient amplitude, t(ω) =
X + iY = |t |eiψ . The modulus of |t(ω)| = (X2 + Y 2)1/2 de-
termines the intensity of light transmitted through the photonic
crystal T = |t |2. The phase of the transmission function
ψ(ω) = arctan [Y (ω)/X(ω)] gives the phase accumulated
when the pulse peak propagates through the photonic crystal.
As ψ equals kL, where L is the thickness of the sample,
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kL = arctan (Y/X). Taking the first derivative with respect
to ω,

d

dω
(kL) = d

dω
arctan(Y/X), (1)

ρ(ω) is written in the form [10,11,19,20,22]

ρ = 1

L

Y ′X − X′Y
X2 + Y 2

. (2)

Equation (2) is valid for any type of photonic crystal
and was used for calculation of ρ(ω) in different materi-
als [10,11,19,20,22]. If the real and imaginary parts of t(ω) are
known, ρ(ω) can be easily calculated. For cholesteric liquid
crystals t(ω) was obtained in an analytical form [6]:

t(ω) = τβ3e
iτL/2

τβ3 cos β3L + i
[
β2

3 + (τ 2/4) − κ2
]

sin β3L
. (3)

In the above equation β3 =
κ

√
1 + (τ/2κ)2 − [(τ/κ)2 + δ2]

1/2
, κ = ωn0/c, n0 = √

ε0,
and τ = 4π/p.

For a perfect sample with an integer number m of periods,
τL/2 = 2πm and eiτL/2 = 1. From (3) two equations for the
real and imaginary parts of t(ω) read

X = τ 2β2
3 cos β3L

τ 2β2
3 + κ4δ2sin2β3L

, (4)

Y = −τβ3
(
β2

3 + τ 2/4 − κ2
)

sin β3L

τ 2β2
3 + κ4δ2sin2β3L

. (5)

In such a way the DOS for CLC was calculated from
Eqs. (2), (4), and (5) [10,11,22]. However, this way is not
suitable for the experimental determination of DOS. The mod-
ulus of the transmission coefficient |t | can be extracted from
measurements of transmitted intensity T = |t |2. However, if
the phase of the transmission function ψ(ω) remains unknown
we cannot obtain information on important quantities such as
ρ(ω), vg , and the dispersion of photonic states.

At present, the widely used measurements for the charac-
terization of quantities related to the imaginary part of t(ω)
are the interference of the light reflected from two surfaces of
the sample and time-resolved interferometry [16–18,23–25].
Here we apply a highly sensitive technique, rotation of the
plane polarization of light, for determination of phase delay
and extraction of the characteristics of the band structure in
cholesteric photonic crystal. Actually, the problem is resolved
as full information about X(ω) and Y (ω) is not necessary to
determine ρ(ω), but only the arctan of their ratio (1). Notice
that X(ω) and Y (ω) have the same denominator [(4) and (5)],
so the ratio Y/X is simplified:

Y/X = −
(
β2

3 + τ 2/4 − κ2
)

τβ3
tan β3L. (6)

Remarkably, precisely the same ratio is contained in the
expression for rotation of the plane of polarization of light [26],

ϕ = 1

2

{
(τ − β1)L − arctan

[(
β2

3 + τ 2/4 − κ2
)

τβ3
tan β3L

]}
,

(7)

where β1 = κ

√
1 + (τ/2κ)2 + [(τ/κ)2 + δ2]

1/2
. The deriva-

tive of the first term in (7) with respect to ω equals with
good accuracy −n0L/2c. So DOS can be determined from
dϕ(ω)/dω:

ρ(ω) = n0

c
+ 2

L

dϕ

dω
. (8)

This result allows to obtain ρ(ω) from the measurement
of rotation of the plane of polarization of light. From ϕ(ω)
the real part of the refractive index related to the existence of
the pseudogap can be extracted. T (ω) and ψ(ω) give the full
information about t(ω) and the complex refraction index [17],

neff = Re(neff) + iIm(neff) = c

ωL

(
ψ − i

1

2
ln T

)
. (9)

Notice that Eq. (8) outside the photonic stop band can be
simply obtained in the assumption that the index of refraction
and the wave vector are real quantities. Refractive index n

for circular polarization strongly interacting with the periodic
structure of CLC can be represented as a part independent
of the photonic structure n0 and additive �n related to the
presence of the periodic structure n = n0 + �n. Change of
the refractive index �n can be expressed via the phase
difference of the light amplitude �ψ connected with the
photonic band [14],

�n = �ψλ

2πL
. (10)

Delay in �ψ leads to rotation of the plane of polarization
of light ϕ which is related with �ψ by a simple equation,
ϕ = �ψ/2. From (10) it follows that

�n = ϕλ

πL
. (11)

The wave vector k = 2πn/λ can be written as

k = ωn0

c
+ 2ϕ

L
. (12)

The dispersion relation is split in two parts. Taking the
derivative we get Eq. (8) for DOS.

III. DETERMINATION OF DOS, GROUP VELOCITY,
DISPERSION IN CLC

Measurements were performed on CLC formed by a
mixture of esters of alkyl derivatives of benzoic acid with
chiral dopant VIH-16 (VIC, Vilnius University, Lithuania).
The mixture has the cholesteric phase with left-hand helix at
room temperature. Measurements of transmission and rotation
spectra were performed on samples of two types. Samples of
the first type were prepared in an optical cell whose surfaces
were coated with a polyamide film. The director of the liquid
crystal orients near the surface along the direction of rubbing
which is parallel on two surfaces of the cell. In samples of
the second type of cell surfaces were not treated by aligning
coating. The preferred orientation of the director parallel to
the plane of the cell was achieved by shearing the glass plates
of the cell with respect to each other. Measurements of spectra
were performed employing a charge-coupled device (CCD)
spectrometer. Rotation of the plane of light polarization was
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FIG. 1. Transmission spectrum in nonpolarized light (dashed
curve) and rotation of the plane of polarization of light (points) for a
perfect sample with aligning coating on the cell surfaces. Oscillations
in transmission and rotation of the plane of polarization of light are
related to Pendellösung beatings and demonstrate high quality of the
sample. T = 23.5 °C, sample thickness L = 5.8 μm.

obtained from spectra recorded with different orientation of
the analyzer. Very close to the stop band the polarization of
transmitted light strongly deviated from linear. This did not
allow to measure rotation of the plane of polarization of light
very close to, and inside, the stop band.

Figure 1 shows the transmission spectrum of CLC (the
dashed curve) and rotation of the plane of polarization of
light (points) for a sample in the cell with aligning coating.
The plateau in the minimum of the transmission spectrum is
close to 0.5 since one circular polarization is nearly totally
reflected, and the other one propagates freely. Apart from the
reflection band, subsidiary maxima and minima (Pendellösung
oscillations) are visible. Pendellösung oscillations manifest
themselves also in the peculiarities of spectral dependence
of rotation of the plane of polarization of light. They
were predicted by theory [6] and observed in high-quality
samples [26]. Further, the CLC whose spectrum is given
in Fig. 1 will be called a perfect sample. Transmission and
rotation spectra for a sample without aligning coating (Fig. 2)
substantially differ from the case of the perfect sample. Band
half width is larger, and the spectrum changes smoothly in
the long-wavelength and short-wavelength regions. The CLC
sample whose spectrum is given in Fig. 2 we shall further call
an imperfect sample. Magnitude of the rotation of the plane
of polarization of light in imperfect samples increases with
approaching the band but peculiarities related to Pendellösung
oscillations are not observed. It is worth noting that the
spectrum of selective reflection of CLC without aligning
coating can differ substantially depending on the method of
preparing the sample. However, its basic properties remain
the same: reflection in a broader spectral range and smooth
trend of rotation of the plane of polarization of light. Such
experimental spectral dependence of rotation of the plane of
polarization of light is usually given in the literature [2,6].

The measurements performed enable us to extract DOS
from the spectra of rotation of the plane of polarization
of light using Eq. (8). The solid curve in Fig. 3(a) shows

FIG. 2. Transmission spectrum in nonpolarized light (dashed
curve) and rotation of the plane of polarization of light (points) for
an imperfect sample without aligning coating on the cell surfaces.
Pendellösung oscillations in the spectra are absent. T = 26 °C,
sample thickness L = 7.75 μm.

FIG. 3. Normalized DOS of perfect (a) and imperfect (b) samples
of cholesteric photonic crystal (solid curves) obtained from rotation
of the plane of polarization of light in Figs. 1 and 2. The dashed line in
(a) is the theoretical spectrum of DOS calculated using Eqs. (2), (4),
and (5) with material parameters (n2

0 = 2.491, p = 362 nm, δ =
0.0638) corresponding to transmission spectra of Fig. 1. Oscillations
in ρ(ω) [Fig. 3(a)] are related to the finite size of the photonic crystal.
Experimentally obtained ρ(ω) is in agreement with calculated DOS.
Two vertical lines show the edges of the forbidden photonic band.
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the dependence ρ(ω) for the perfect sample normalized by
ρ0 = n0/c. DOS is maximal near the boundaries of the band
gap. Outside the stop band DOS is a strongly oscillating
function which is related to interference. The amplitude of
DOS oscillations increases near the stop band. Experimentally
determined DOS can be compared with results of theoretical
calculations. We used the analytical solution [Eqs. (4) and (5)]
following from the Maxwell equations. The dashed curve in
Fig. 3(a) shows ρ(ω) calculated using the material parameters
obtained from comparison of the transmission spectra with
theoretical dependence I/I0 = (T + 1)/2. Here T is the
transmission coefficient for light with diffracting circular
polarization, T (ω) = X2(ω) + Y 2(ω). From Fig. 3(a) it can be
seen that theoretical equations well describe the peculiarities
of the DOS. Maxima in DOS correspond to regions of maximal
transparency of the photonic crystal. For samples of infinite
thickness ρ(ω) = 0 inside the band, and diverges at the
boundaries of the photonic band [11] (Van Hove singularities).
For a finite photonic crystal the maxima are shifted from the
band edges; DOS is nonsymmetrical with respect to the midgap
frequency ω0. The short-wavelength maximum of ρ(ω) is
larger than that at the long-wavelength edge. Theoretical
ρ(ω) also reproduces the above described behavior. In the
photonic band gap the wave vector is a complex value and the
field decays exponentially. Inside the pseudogap the noise in
ϕ(ω) increases and we could not determine DOS. However,
calculations show that even in the center of the band the
normalized DOS ρ(ω)/ρ0 in our sample is rather essential
(∼0.3 of the regular value 1).

Normalized DOS of an imperfect sample was determined
using ϕ(ω) from Fig. 2 and is shown in Fig. 3(b). As can be
seen, ρ(ω) changes dramatically with respect to the perfect
sample. Oscillations in ρ(ω) are absent. The maxima of
ρ(ω) are broadened and the distance between them is larger
than between the main maxima in the perfect sample. DOS
increases smoothly on approaching the pseudogap and then
decreases near it [Fig. 3(b)]. The absolute value of ρ(ω)
in the maxima is significantly smaller than in the perfect
sample.

We will now consider the group vg and phase vph velocity
of light. The group velocity can be determined from a simple
relation vg = dω/dk = 1/ρ. In Fig. 4 the solid curve shows
vg(ω) obtained from the experimental spectral dependence of
DOS in the perfect sample. In an infinite sample the group
velocity decreases near the band gap and becomes zero at the
edge. In a finite sample the main transformation of vg is in
the region close to the pseudogap. The group velocity vg(ω)
reaches minima in a narrow range near the pseudogap and
then increases as the edges are approached (Fig. 4). We should
note here that in a finite sample the group velocity in the
pseudogap can exceed the velocity of light in vacuum, c. For
our sample the calculated group velocity in the middle of the
pseudogap is superluminal (vg ≈ 2.05c). Note that this value
for vg does not violate Einstein causality [27,28]. The energy
velocity and velocity of the forward front of the light pulse
remain subluminal.

In an infinite sample the dispersion curve ω(k) has a
smooth dependence on k and is tangent to the band edge
on the boundary of the Brillouin zone. In the finite sample
dispersion curves ω(k) obtained using Eq. (12) are shown in

FIG. 4. Plot of the dimensionless group velocity of light vg/c

(solid curve) for the perfect sample of finite thickness. The extremes
of the group velocity appear in the finite sample on either sides of the
stop band. Dimensionless phase velocity of light vph/c for the sample
of finite thickness (dashed curve). Two vertical lines show the edges
of the stop band. L = 5.8 μm.

Fig. 5 (points). Contrary to the infinite sample they exhibit
pronounced peculiarities related to the finite layered structure.
Theoretical dependence ω(k) calculated using parameters
(n0,p,δ) obtained from the transition spectrum of Fig. 1
appears as a solid line. The theoretical curve reproduces
the experimental peculiarities in ω(k). Essentially smooth
variation of vph as compared to vg is related to the fact that
vph is determined by the absolute value of the refractive index.
Low precision of the measurements of ϕ(ω) close and within
the pseudogap could not allow us to determine ω(k) in these
regions. Since in the finite sample ω(k) must be a continuous
curve, from the experimental data we can evaluate the lower
limit of vg in the middle of the pseudogap vg > �ω/�k, where
�ω is the difference between frequencies of the measured
points on either side of the pseudogap, that are nearest to

FIG. 5. Experimental dispersion of light ω(k) for the perfect sam-
ple of finite thickness (points). ω = 2πc/λ. Theoretical dispersion
(solid lines). Two horizontal lines show the edges of the forbidden
photonic band. The dashed line shows the dispersion for the medium
without the photonic band. L = 5.8 μm.
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the pseudogap; �k is the difference in wave vectors of these
points. We obtain vg > 1.24c, that is, group velocity vg in the
pseudogap becomes greater than the speed of light in vacuum.

In conclusion, a method based on the measurements of
rotation of the plane of polarization of light is derived for
determination of ρ(ω), vg , and ω(k) in CLCs. The method is
applied for determination of DOS in perfect and imperfect
CLCs. It is shown that DOS depends substantially on the
quality of the sample. In perfect samples the experimentally
determined DOS demonstrates peculiarities predicted by the-
ory: maxima of DOS near the boundaries of the photonic band
and oscillations related to Pendellösung beatings. In imperfect

samples DOS increases monotonically on approaching the
band; the spectral dependence of DOS in these samples
depends on the method of preparation. We present results on
the group vg and phase vph velocity of light and dispersion of
light ω(k) that allow a better understanding of the propagation
of light in cholesteric photonic crystals.
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