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Electric-field-induced flow-aligning state in a nematic liquid crystal
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The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under
shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric
field is changed at a constant shear rate: the flow aligning and non–flow aligning states. The director lies in the
shear plane in the flow aligning state and out of the plane in the non–flow aligning state. Through application
of dc electric field, the non–flow aligning state can be changed to the flow aligning state. In the transition from
the flow aligning state to the non–flow aligning state, it is found that the response increases and the relaxation
time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the
Ericksen-Leslie theory.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) exhibit many interesting
phenomena related to the coupling between the orientations
of the elongated molecules and flow. For example, a simple
shear flow can align the average orientation, called the director
n. In this case, the director is confined in the shear plane
and the angle between the director and the flow direction is
given by θf = cos−1(−γ1/γ2)/2 [1], where γ1 is the rotational
viscosity and γ2 is the irrotational viscosity. It is readily seen
from this equation that the flow aligning angle θf cannot
exist for |γ1/γ2| > 1. In this case, the director will tumble
or find another stable orientation with the director field being
spatially deformed, possibly in accordance with the viscous
and elastic coefficients and the boundary condition. Thus,
under a simple shear flow, NLCs take either one of two
types of states depending on the ratio of γ1 to γ2: the flow
aligning state (FAS) and non–flow aligning state (NFAS). Most
low-molecular-mass NLCs under shear flow adopt the FAS
except for a small number of NLCs such as 7CB and 8CB
(4-n-octyl-cyanobiphenyl), though the NFAS is common in
liquid crystal polymers [1]. NFAS can be easily transformed
to FAS by applying electric fields along the velocity gradient
direction in NLCs with positive dielectric anisotropy. The
transformation from NFAS to FAS at a critical electric field
may be regarded as an electric-field-induced phase transition
under shear flow, which is of interest from the viewpoint of
nonequilibrium physics.

Basically, the transition is due to competition between
the shear flow effect and the electric-field effect, where the
latter compensates for the imbalance of the torque produced
by the former and finally stabilizes the director orientation
back to the shear plane in a strong enough electric field.
This transition has been experimentally probed using various
methods such as direct observation of flow patterns and
disclination density [2–4], rheological measurements [5], and
synchrotron x-ray studies [6]. However, it is not easy to clearly
distinguish between the FAS and NFAS states by means of the
usual rheological measurements. Although the electric-field
dependence of shear stress in 8CB at a constant shear rate,
in which an NFAS appears without electric field, was also
reported by Negita [7] and Patricio et al. [8]; the change in
the shear stress was too small for the transition to be clearly

detected. In this study, we measured the shear stress response
to an ac electric field as a probe under both shear flow and
dc electric fields [9]. These measurements are more sensitive
to the change in director orientation and demonstrate that
different frequency dispersion curves in the stress response
can be clearly observed and the transition from NFAS to
FAS can be detected by changing the dc electric field at a
constant shear rate. Furthermore, anomalous behaviors near
the transition point are reported.

II. EXPERIMENT

The nematic liquid crystal 8CB was purchased from
Wako Pure Chemical Industries and used without any further
purification. Measurements were carried out by using a parallel
plate rotational rheometer (Physica MCR300, Anton Paar).
The diameter of the rotating plate and the gap between two
parallel plates were 35 and 0.2 mm, respectively. No surface
treatment was made. However, we believe that NLC can align
due to the shear flow and electric fields except near the surfaces
in FAS. Note that in the parallel plate geometry, the shear
rate depends on position, and so the shear rate is defined
at the edge of the upper plate and the shear stress at the
corresponding shear rate is calculated from the mechanical
torque by assuming that the sample is Newtonian. All the
measurements were made at 37°C in the nematic phase. The
experimental setup and the geometry are shown in Figs. 1(a)
and 1(b), respectively. Electric fields were applied to the
sample by using a synthesizer (Model 1940, NF Electric
Instruments) and a high-voltage amplifier (4005, NF). In
our measurements, dc electric fields were applied to induce
the FAS, and a weak ac electric field was also applied to
probe the stress response. The total field applied was thus
E0 + �E cos ωt . However, migration of ions in the NLC
sometimes becomes a problem and reduces the electric field
inside the cell. To avoid this, we used a high-frequency ac
electric field modulated by the sum of the dc and ac electric
fields:

E(t) =
√

2(E0 + �E cos ωt) cos ωct, (1)

where ωc is the angular frequency of the carrier signal.
As will be shown in the next section, the induced shear
stress is proportional to the square of the applied electric
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FIG. 1. (a) Experimental setup. The sample is sheared by using a parallel-plate rheometer under dc and ac electric fields. (b) The flow is
applied in the x direction, the velocity gradient is in the z direction, and the electric field is applied in the z direction.

field so that the square of E(t) can be approximated by
(E0 + �E cos ωt)2 for ωc � ω. In our measurements, ωc is
chosen to be 6280 rad s−1, which is much higher than the
maximum frequency of ω = 200 rad s−1 in our measurements.

Since (E0 + �E cos ωt)2 can be expanded to give E2
0 +

2E0�E cos ωt + �E2/2 + �E2/2 cos 2ωt , the correspond-
ing shear stress may be written as

σ (t) = σ0 + Re[�σ1,1(ω)eiωt ] + �σ2,0(ω)

+ Re[�σ2,2(ω)ei2ωt ], (2)

where σ0 is the shear stress in the absence of the perturbation
�E, and �σi,j is the stress response of the ith order with
respect to �E and the j th harmonic of ω. Therefore, �σ1,1(ω)
is proportional to �E, and both �σ2,0(ω) and �σ2,2(ω) are
proportional to the square of �E for small values of �E. The
ω and 2ω components of the shear stress were obtained by
using a vector signal analyzer (HP89410A, Hewlett-Packard).

III. THEORETICAL RESULTS IN FAS

In the FAS, the director can be assumed to lie in the
shear plane and to be independent of position except near the
boundary plates. In this simple case, the shear stress response
has been calculated on the basis of the Ericksen-Leslie theory
[9]. We briefly summarize the results and note some additional
considerations regarding the electric-field-induced FAS in the
following. The stress response has not yet been calculated in
the NFAS because the director field is complicated.

Under a simple shear flow with an electric field applied in
the velocity gradient direction, the angle θ between the director
and the flow direction [see Fig. 1(b)] obeys the following
equation [9]:

γ1
∂θ

∂t
= −1

2
γ̇ (γ1 + γ2 cos 2θ ) + 1

2
ε0�εE(t)2 sin 2θ, (3)

where γ̇ is the shear rate, ε0 the dielectric constant of vacuum
and �ε the dielectric anisotropy. From this equation, it is
readily seen that the change of θ , which brings about the
change of the shear stress, depends on the square of the applied
electric field E(t), as described above. The shear stress is

calculated from

σ
(visc)
αβ = α4Aαβ + α1nαnβnμnρAμρ + α5nαnμAμβ

+α6nβnμAμα + α2nαNβ + α3nβNα, (4)

where Aαβ = 1/2(∇βvα + ∇αvβ) and Wαβ = 1/2(∇βvα −
∇αvβ) are the symmetric and antisymmetric parts of the
velocity gradient respectively, Nα ≡ dnα/dt − Wαβnβ is the
rate of change of the director with respect to the background
fluid, and αi (i = 1, . . . ,6) are the Leslie viscosity coefficients.
In the present case, n = (cos θ,0, sin θ ) and v = (γ̇ z,0,0),
where the x and z axes are taken along the flow and velocity
gradient directions, respectively. Note that the shear stress
considered here corresponds to σ (visc)

zx in Eq. (4), which is
the same as σ (t) in Eq. (2).

When E(t) = E0, Eq. (3) gives [7]

θ0 = tan−1

{
ε0�εE0

2 +
√(

ε0�εE0
2
)2 + γ̇ 2

(
γ2

2 − γ1
2
)

γ̇ (γ1 − γ2)

}
.

(5)

FIG. 2. (Color online) The dc electric-field dependence of the
flow alignment angle θ0 in the FAS at shear rates of 10 and 40 s−1

numerically obtained for 8CB from Eq. (5).
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The calculated dc electric-field dependence of θ0 is shown
in Fig. 2. The Leslie coefficients for 8CB are taken from
Ref. [10] —α1 = 0.0382 Pa s, α2 = −0.0587 Pa s, α3 =
0.0031 Pa s, α4 = 0.0520 Pa s, α5 = 0.0472 Pa s, and α6 =
−0.008 40 Pa s (calculated from the Parodi relation α6 =
α5 + α2 + α3)—and �ε = 6.5 is used [11]. In the special case
where E0 = 0, θ0 is reduced to the flow aligning angle θf =
cos−1(−γ1/γ2)/2. For 8CB the viscous coefficients are given
by γ1 = α3 − α2 = 0.0618 and γ2 = α6 − α5 = −0.0556, and
therefore we have no θf . However, Eq. (5) has a solution above

a critical electric field given by

Ec
2 =

γ̇

√(
γ1

2 − γ2
2
)

ε0�ε
. (6)

As shown in Fig. 2, θ0 increases with E0, and Ec increases
with γ̇ .

Equation (3) with an ac electric field can be approximately
solved by using the perturbation method. Expressing θ (t) as

θ (t) = θ0 + Re[�θ1,1e
iωt ] + �θ2,0 + Re[�θ2,2e

i2ωt ], (7)

we have

�θ1,1(ω) = −ε0�εE0�E sin 2θ0

iωτ + 1

τ

γ1
, (8a)

�θ2,2(ω) = (1/2)|�θ1,1(ω)|2(γ̇ γ2 cos 2θ0 − ε0�εE0 sin 2θ0) + �θ1,1ε0�εE0�E cos 2θ0 + ε0�ε�E2 sin 2θ0

2iωτ + 1

τ

γ1
, (8b)

and

�θ2,0 = �θ2,2(0), (8c)

where the relaxation frequency 1/τ is defined by

1

τ
= − 1

γ1

(
γ̇ γ2 sin 2θ0 + ε0�εE0

2 cos 2θ0
)
. (9)

Near the critical electric field, the relaxation frequency is
proportional to

√
E0 − Ec, which is obtained from Eqs. (5),

(6), and (9). It should be emphasized that the relaxation
frequency becomes zero at the transition point, but the behavior
is singular as a function of E0. By using the above equations
together with Eq. (4), each shear stress in Eq. (2) is written as
follows:

σ0 = γ̇
[
α1sin2θ0cos2θ0 + 1

2 {α4 + (α5 − α2)sin2θ0

+ (α3 + α6)cos2θ0}
]

sin 2θ0, (10a)

�σ1,1(ω) = γ̇
[
α1 cos 2θ0 − 1

2 (α2 + α3)

+ iω(α3cos2θ0 − α2sin2θ0)
]
�θ1,1(ω), (10b)

�σ2,2(ω) = γ̇

2
[α1 sin 4θ0 − 2(α2 + α3) sin 2θ0 + 2iω(α3cos2θ0

−α2sin2θ0)]�θ2,2(ω) + γ̇

2
[α1 cos 4θ0 − (α2 + α3)

× cos 2θ0 − iω(α2 + α3) sin 2θ0]|�θ1,1(ω)|2,
(10c)

�σ2,0 = �σ2,2(0). (10d)

To compare the above theoretical results with experimental
ones, we need to consider the parallel-plate geometry of the
rheometer used in our experiment. For this geometry, the
apparent shear stress is given by [12]

�σ
(R)
i,j (ω) = 4

γ̇ 3
R

∫ γ̇R

0
�σi,j (ω,γ̇ )γ̇ 2dγ̇ , (11)

where γ̇R is the shear rate at the edge of the rotating disk.
The numerically calculated results are presented in the next
section, where the superscript “(R)” on the left-hand side of
Eq. (11) will be omitted for simplicity.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Let us first check the linear relationships between �E and
�σ1,1, and between �E2 and �σ2,2. Figures 3(a) and 3(b)
show �E vs |�σ1,1| and �E2 vs |�σ2,2|, respectively, at

FIG. 3. (a) Dependence of |�σ1,1| on �E at E0 = 100 V mm−1

and (b) |�σ2,2| on �E2 at E0 = 0 V mm−1 at a shear rate of 10 s−1 at
a frequency of ω = 0.63 rad s−1. Linear relationships are obtained at
low electric fields.
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FIG. 4. (Color online) Frequency dispersions of the first-order harmonic response �σ1,1(ω) at a shear rate of 10 s−1 for several dc electric
fields. The dispersions are clearly distinguishable between NFAS (a,b) and FAS (c–f). Solid lines for the FAS are calculated on the basis of the
Ericksen-Leslie theory.

γ̇ = 10 s−1, E0 = 100 V mm−1, and ω = 0.63 rad s−1. The
linearities are good and the amplitude of the ac electric field for
all the measurements is determined to be �E = 14.1 V mm−1.
The dc electric-field dependence of the frequency dispersion
of �σ1,1(ω) at the shear rate of 10 s−1 is shown in Fig. 4. The
critical electric field is Ec = 68 V mm−1 as calculated from
Eq. (6). It can be seen that the frequency dispersions below

and above the critical electric field are quite different. In the
NFAS below this field [Figs. 4(a) and 4(b)], an anomalous
change is observed at around 5 rad s−1 in both the real and
imaginary parts. However, in the FAS above the critical field
[Figs. 5(c)–5(f)], the change is smooth. The behavior of
frequency dispersion in the FAS is almost the same as that
measured in 5CB (4-n-pentyl-cyanobiphenyl), which adopts
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FIG. 5. (Color online) E0 dependence of the peak or dip fre-
quency of the imaginary part, ωpeak, where dots are experimental
results, a solid line is obtained from calculated frequency dispersion
curves using Eq. (11), and a dashed line is 1/τ calculated from Eq. (9).

the FAS even in the absence of a dc electric field [9]. In
5CB we have already observed a characteristic behavior under
shear flow and dc electric fields: The real part of the frequency
dispersion has a plateau at high frequencies. The appearance of
the plateau is understood from Eqs. (8a) and (10b) as follows.
�θ1,1(ω) given by Eq. (8a) is the Debye type which goes to
zero at high frequencies, but �σ1,1(ω) differs from it because
in Eq. (10b) there is an iω term multiplied by �θ1,1(ω), which
gives a nonzero constant at the limit of ω → ∞. The origin of
the iω term is the time derivative terms in α2nzNx + α3nxNz =
α2nz(dnx/dt − nz/2) + α3nx(dnz/dt − nx/2) of Eq. (4) with
α = z and β = x in our case. This equation also tells us why
the plateau is not observed in the NFAS. In the NFAS the
director is thought to be out of the shear plane to some degree,
indicating that nx and/or nz should be small. The theoretical
curves for the FAS calculated from Eqs. (8a), (10b), and (11)
are shown, and are in good agreement with the experimental
results.

Figure 5 shows the E0 dependence of the peak or dip
frequency of the imaginary part, ωpeak, where dots represent
the experimental results, the solid line is obtained from the
above calculated frequency dispersion curves using Eq. (11),
and the dashed line is 1/τ calculated from Eq. (9). A slowing
down of the relaxation time is observed in the FAS, as is
expected from Eqs. (5) and (9). At around 100 V mm−1 the
solid line disappears because the peak changes to the dip in
the imaginary part there, and so it is difficult to obtain the peak
or dip position. At the critical point, the value of the dashed line
becomes zero with the singularity of

√
E0 − Ec, but that of the

solid line is finite because it is averaged out by the integration
of Eq. (11). On the other hand, in the experimental results the
transition point (82 V mm−1) between NFAS and FAS seems
to be located above the calculated critical point (68 V mm−1).
The reasons for this may be as follows: The FAS changes to
the NFAS before reaching the calculated critical point due
to the boundary condition, and/or the parameters used for
the numerical calculations are not suitable for our sample.
Except for the details, good agreement is obtained between

FIG. 6. (Color online) E0 dependencies of the first-order re-
sponse at very low frequency (0.63 rad s−1 for the experiment and
exactly zero for the theory), Re[�σ1,1(ω → 0)], for shear rates of 10
and 40 s−1.

experiment and theory in the FAS, while in the NFAS, the
relaxation frequency is relatively low and almost constant.

Next, let us examine in detail the E0 dependence of
the real part of �σ1,1(ω) in the low-frequency region. The
experimentally obtained real part at 0.63 rad s−1 and the
theoretically calculated one at zero frequency are shown in
Fig. 6 for the shear rates of 10 and 40 s−1. In the FAS the
response at low frequencies increases as the transition point is
approached and peaks around the transition point for both of
the two shear rates. The increase near the transition point in
the FAS is reproduced by the theory. On the other hand, the
increase in the NFAS may also be due to a pretransitional
effect, which is beyond the present theory. The transition
electric field at the shear rate of 40 s−1 is higher than that
at 10 s−1, as is expected from Eq. (6).

Figure 7 shows the frequency dispersion of the second-order
response �σ2,2(ω). In the NFAS [Figs. 7(a) and 7(b)] an
anomalous change is seen around 3 rad s−1 as well as in
the first-order response. In the FAS [Figs. 7(c)–7(f))], the
experimental behavior is almost reproduced by the theory. In
the second-order response, however, the frequency dispersion
becomes more complicated at high frequencies where the
real and imaginary parts take a maximum [see Fig. 7(c)],
as Eq. (10c) contains |�θ1,1(ω)|2. There is a plateau in the
second-order response as well as in the first-order response. It
should be noted that the plateau is due to the term iω multiplied
by �σ2,2(ω) in Eq. (10c), but not to the one multiplied by
|�θ1,1(ω)|2 because |�θ1,1(ω)|2 ∝ ω−2 at high frequencies.
In Fig. 8, the E0 dependence of the real part of �σ2,2(ω) in
the low-frequency region is shown, where the experimental
data are obtained at 0.3 rad s−1 and the theoretical curves are
calculated at zero frequency for the shear rates of 10 and 40 s−1.
In the FAS, the second-order response is negative, unlike the
first-order response, for both the shear rates of 10 and 40 s−1,
but the details are different: At 10 s−1 the absolute value of
the response increases near the transition point, which may be
related to the slowing down, whereas at 40 s−1 it is almost con-
stant as the measurement is taken only near the transition point.
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FIG. 7. (Color online) Frequency dispersions of the second-order harmonic response �σ2,2(ω) at a shear rate of 10 s−1 for several dc electric
fields. The dispersions are clearly distinguishable between the NFAS (a,b) and the FAS (c–f). Solid lines in the FAS are calculated on the basis
of the Ericksen-Leslie theory.

Finally, we show the shear stress without ac electric fields
σ0 in Eq. (2) as a function of E0 in Fig. 9, from which it is
difficult to distinguish between FAS and NFAS. This clearly
shows that the stress response is sensitive to the change in the
director field. It is worthwhile to point out that Fig. 9 is closely
related to Figs. 6 and 8. At the limit of ω → 0, Eq. (2) becomes

σ (E0 + �E) = σ (E0) + �σ1,1 (0) + 2�σ2,2(0), (12)

where we have used Eq. (10d) and note that σ0 = σ (E0).
Taking into account that �σ1,1 ∝ �E and �σ2,2 ∝ �E2, we
have �σ1,1(0) = σ ′(E0)�E and �σ2,2(0) = σ ′′(E0)�E2/4.
From the latter equation it is easily understood that �σ2,2(0)

should be negative because σ0 = σ (E0) is a convex function
in the FAS, as is seen from Fig. 9.

V. CONCLUSIONS

We have investigated the field-induced transition from the
NFAS to FAS by measuring the shear stress response to an
ac electric field. Totally different frequency dispersions in
the two states were observed for both the first- and second-
order responses. The slowing down of relaxation time and
the increased zero-frequency response were found near the
transition point as well as in equilibrium phase transitions.
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FIG. 8. (Color online) E0 dependencies of the second-order re-
sponse at a very low frequency (0.3 rad s−1 for the experiment and
exactly zero for the theory), Re[�σ2,2(ω → 0)], for shear rates of 10
and 40 s−1.

The experimental results in the FAS were in good agreement
with the calculated results based on the Ericksen-Leslie theory,
including the plateau observed at high frequencies. As for
NFAS, it is necessary to elucidate the director field to calculate
the stress response. Our measurement method is expected to
be useful for studying nonequilibrium phase transitions under
shear flow.

FIG. 9. (Color online) E0 dependencies of σ0 at shear rates of
10 and 40 s−1. It is difficult to distinguish the FAS and NFAS
based on σ0.
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