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Spatially resolved x-ray studies of liquid crystals with strongly developed bond-orientational order
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We present an x-ray study of freely suspended hexatic films of the liquid crystal 3(10)OBC. Our results
reveal spatial inhomogeneities of the bond-orientational (BO) order in the vicinity of the hexatic-smectic phase
transition and the formation of large-scale hexatic domains at lower temperatures. Deep in the hexatic phase
up to 25 successive sixfold BO order parameters have been directly determined by means of angular x-ray
cross-correlation analysis (XCCA). Such strongly developed hexatic order allowed us to determine higher order
correction terms in the scaling relation predicted by the multicritical scaling theory over a full temperature range
of the hexatic phase existence.
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I. INTRODUCTION

The influence of angular correlations on structural and
physical properties of complex fluids, colloidal suspensions,
and liquid crystals (LCs) remains one of fundamental and
unresolved problems in modern condensed matter physics [1].
A prominent example of a system with angular correlations
is the hexatic phase that combines the properties of both
crystals and liquids [2]. The two-dimensional (2D) hexatic
phase shows a sixfold quasi-long-range bond-orientational
(BO) order, while the positional order is short range [3]. The
hexatic phase is a general phenomenon that was observed
in a number of systems of various physical nature, such as
2D colloids [4–6], electrons at the surface of helium [7],
2D superconducting vortices [8,9], and, particularly, in liquid
crystals [10–13].

The hexatic phase was predicted by Halperin and Nelson
[14] as an intermediate state in 2D crystal melting. According
to their theory the hexatic phase arises as a consequence of
the broken translational symmetry of a 2D crystal induced
by dissociation of dislocation pairs. This mechanism does
not work in three-dimensional (3D) crystals; however, the 3D
hexatic phase was observed experimentally in LCs [10]. The
multicritical scaling theory (MCST) developed by Aharony
and coworkers [15] based on renormalization group approach
to critical phenomena enabled quantitative characterization of
the BO order in the hexatic phase. It allowed one to study
a crossover from 2D to 3D behavior [13,16]. In spite of the
extensive experimental and theoretical work the origin of the
hexatic phase in LCs and the features of the hexatic-smectic
phase transition remain puzzling and controversial.

The structure of hexatics is traditionally studied by means
of x-ray or electron diffraction in a single-domain area of a
hexatic film (see for reviews Refs. [17–19]). The quantitative
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characteristics of the BO order, the so-called BO order param-
eters [11], are typically determined by fitting the measured
azimuthal intensity distribution by the Fourier cosine series.
In contrast to this approach in the present work we performed
spatially resolved x-ray diffraction studies of free-standing
LC films. Measured x-ray data were analyzed by means
of direct Fourier transformation and by using angular x-ray
cross-correlation analysis (XCCA) [20–23]. The latter method
enabled a direct determination of sixfold BO order parameters
from the ensemble of diffraction patterns without applying a
fitting procedure [24].

II. EXPERIMENT

The coherent x-ray scattering experiment on smectic LC
membranes was performed at the beamline P10 of the PETRA
III facility at DESY in Hamburg. The incident photon energy
was 13 keV with the flux 3 × 1010 photons/sec. The geometry
of the experiment is schematically shown in Fig. 1. Pilatus
1M detector (981 × 1043 pixels of 172 × 172 μm2 size) was
positioned in transmission geometry at the distance of 263 mm
from the sample. The beam at the sample plane was focused
to 2 × 3 μm2 (vertical vs horizontal) at full width at half
maximum (FWHM) by a set of compound refractive lenses
(CRLs) [25]. A specially designed sample stage FS1 and a
mK1000 temperature controller from INSTEC was used to
prepare LC films in situ and maintain the temperature with an
accuracy of 0.005 ◦C.

In our experiment we have used the LC compound
3(10)OBC (n-propyl-4′-n-decyloxybiphenyl-4-carboxylate)
[12,26]. The hexatic-smectic phase transition was found at
T ≈ 66.3 ± 0.1 ◦C, and the material crystallizes below T ≈
54 ◦C. The films of 3(10)OBC sample were drawn across a
small circular glass aperture of 2 mm in diameter inside the
chamber at 10 ◦C above the temperature of the hexatic-smectic
phase transition. The thickness of the films was determined
to be in the range of 5–7 μm with the AVANTES fiber
optical spectrometer. Films were slowly cooled to observe the
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FIG. 1. (Color online) The scheme of the diffraction experiment
showing the focusing system, glass sample stage with drawn LC
membrane, and 2D detector.

formation and development of the hexatic phase. For spatially
resolved studies at each temperature the sample was scanned
in the plane perpendicular to the incident beam direction in the
region of 100 × 100 μm2 with 11 μm step size. Exposure time
of 0.6 sec was chosen to sustain the nondestructive regime of
measurements.

Typical diffraction patterns in the smectic and hexatic
phases corrected for background scattering and horizontal
synchrotron polarization are shown in Figs. 2(a)–2(c). At high
temperatures in the smectic phase the diffraction pattern has a
form of a broad uniform ring [Fig. 2(a)] due to the absence of
angular correlations and short-range positional order. During

FIG. 2. (Color online) (a–c) Diffraction patterns from a LC film
in the smectic (a) and hexatic phase (b, c). (d) Temperature
dependence of the positional correlation length ξ determined from
the radial profile of the scattering peak marked by an arrow in (b). The
temperature of the hexatic-smectic phase transition is specified by an
arrow. In the inset the temperature dependence of the peak maximum
position q0 is shown.

the hexatic-smectic phase transition this scattering ring splits
into six arcs [Fig. 2(b)], revealing the sixfold rotational
symmetry of the in-plane molecular arrangement. While the
temperature decreases all six arcs become narrower in both
azimuthal and radial directions, indicating the simultaneous
development of the BO and positional order [Fig. 2(c)].

III. RESULTS AND DISCUSSION

The in-plane structure of smectic films is characterized
by the positional correlation length ξ , which is commonly
defined as ξ = 1/�q, where �q is the half width at half
maximum (HWHM) of a radial scan through the center of a
diffraction peak [17]. Typically in the systems with short-range
positional order the shape of the diffraction peak can be
described by Lorentzian function. However, according to
the phenomenological theory of Aeppli and Bruinsma [27]
the radial scan through the scattering peak maximum position
should have a form of a square root Lorentzian (SRL) function
in the vicinity of the hexatic-smectic phase transition. Our
studies revealed that for our system the square root Lorentzian
function described the experimental data better only within
the small temperature region 65.5 ◦C � T � 66.1 ◦C. Out of
this range the experimental data were better fitted with the
Lorentzian function. We would like to point out that the values
of the positional correlation length ξ obtained by the fitting
with these two functions do not differ significantly close to the
phase transition point.

The value of ξ determined by fitting the radial intensity
profiles with the Lorentzian function at each position in the
sample and averaged over a set of N = 100 diffraction patterns
at each temperature is shown in Fig. 2(d). In the smectic
phase the positional correlation length ξ was determined to
be about 1.5 nm. Close to the hexatic phase transition point
at T = 66.3 ◦C the correlation length starts to increase, and
upon further cooling it reaches the value of 24 nm in the
hexatic phase. The simultaneous rise of the peak’s maximum
position q0 and the presence of the inflection point on the q0

temperature dependence [see inset in Fig. 2(d)] indicates the
growing fluctuations of the BO order parameter in the vicinity
of the hexatic-smectic phase transition [27,28].

To determine the details of the BO order formation and
especially its spatial distribution in the vicinity of the hexatic-
smectic phase transition region we performed an expansion of
the scattered intensity measured at each position in the sample
into a Fourier cosine series,

I (q,φ) = I0(q) + 2
n=+∞∑
n=1

|In(q)| cos [nφ + ψn(q)], (1)

where

|In(q)| exp[iψn(q)] = 1

2π

∫ 2π

0
I (q,φ) exp(−inφ) dφ, (2)

In this Fourier decomposition (q,φ) are the polar coordinates
in the detector plane, I0(q) is the scattered intensity averaged
over a scattering ring of a radius q, and |In(q)| and ψn(q) are
the magnitude and phase of the nth Fourier component (FC).

The in-plane orientation of the molecular bonds was
determined at each spatial position using the phase ψ6(q0)
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FIG. 3. (Color online) Spatially resolved 2D maps of the LC film
structure at T = 66.3 ◦C (a) and T = 66.1 ◦C (b). Each vector in the
plot corresponds to a certain position in the sample. Direction of a
vector is associated with the angular position of the center of the
peak marked with an arrow in Fig. 2(b), and the length of a vector is
proportional to the magnitude |I6(q0)|. The length of the vectors in
(a) is magnified five times as compared to the vectors in (b).

and magnitude |I6(q0)| of the FC of the dominant sixth
order, calculated at the scattering peak maximum position
q = q0 (see for details Appendix A). In the smectic phase
|I6(q0)| was found to be below the noise threshold due to the
absence of angular correlations. As soon as the temperature
was decreased to the phase transition region the situation
dramatically changed [see Figs. 3(a) and 3(b)]. Remarkably,
the 2D map shown in Fig. 3(a) reveals inhomogeneity in the
spatial distribution of the hexatic phase at the temperature T =
66.3 ◦C. This is clearly reflected in variation of the magnitude
|I6(q0)| across the sample. Areas with larger magnitudes of
the vectors correspond to the regions with higher degree of
the BO order. While cooling the sample to the temperature
T = 66.1 ◦C a single domain with identical orientation of
molecular bonds over the entire region of scanning was formed
[Fig. 3(b)]. Such uniform BO order with the same orientation
of molecular bonds persists upon cooling into the crystalline
phase.

Next, we applied XCCA [21] to determine variation of the
BO order parameters in the hexatic phase as a function of
temperature. Such approach is not sensitive to small spatial
variations of the molecular bonds’ orientation and gives more
reliable information on BO order parameters than fitting of
azimuthal intensity distribution. The basic element of this
approach is the two-point cross-correlation function (CCF)
[20,21,29]

G(q,�) = 〈I (q,φ)I (q,φ + �)〉φ, (3)

where 〈· · · 〉φ is the angular average over a ring of radius q and
0 � �<2π is the angular coordinate. Since G(q,�) is a real
even function, it can be decomposed into the Fourier cosine
series,

G(q,�) = G0(q,�) + 2
n=+∞∑
n=1

Gn(q) cos(n�), (4)

where Gn(q) are the FCs of the CCF. In the present case
of a single domain the FCs Gn(q) averaged over a set of N

diffraction patterns are related to the FCs of intensity In(q) by
a simple relation 〈Gn(q)〉N = |In(q)|2 [23].

The FCs of intensity |In(q)| = √〈Gn(q)〉N , where N =
100 in our case, as a function of q measured at the temperature
T = 61.0 ◦C are presented in Fig. 4(a). As one can see,
we determined an unprecedented number of harmonics in
the hexatic phase of the 3(10)OBC film. To characterize
the BO order parameters we used the maximum values of
the magnitudes of the FCs |In(q0)| (q0 = 14.16 nm−1) that
are shown in the inset of Fig. 4(a). One can clearly see
that the magnitudes of the FCs systematically decrease as a
function of the harmonic number n (see discussion below),
in agreement with MCST [15] (see red line). In the ideal
hexatic phase only FCs |In(q0)| of the orders n = 6m, where
m = 1,2,3 . . . , contribute to the Fourier decomposition [11].
A finite nonzero contribution of other FCs appear due to
small background contribution and other uncompensated
experimental factors. A threshold was defined as the average
value of these components, and only FCs with the magnitudes
above this threshold were considered in the further analysis.
This averaged background was subtracted from the values of
FCs before further analysis.

In the previous studies of the BO order in the hexatic
phase of LCs the q dependence of the FCs In(q) was not
considered. Presently none of the theories describing the
hexatic ordering give predictions for the general expression
of the harmonics In(q). This question will require further
theoretical consideration. Analysis of our data has shown that
it is not possible to characterize the FCs of intensity as a
function of q presented in Fig. 4(a) by single functional form.
In our experiment the FCs of lower orders (n = 6,12,18) were
better described by the SRL function. For larger values of n

the tails of the curves become steeper and harmonics In(q)
are better fitted by the Lorentzian functions [see Fig. 4(a)].
The temperature dependence of the HWHM γn of the few
first FCs is presented in Fig. 4(b). We can observe a gradual
decrease of these values with the harmonic number n and upon
cooling [24].
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FIG. 4. (Color) (a) Magnitudes of the FCs of intensity |In(q)|
with n = 6,12, . . . ,78 as a function of q at the temperature T =
61.0 ◦C. Solid lines are SRL and Lorentzian fits to the experimental
data (points) (see text for details). (inset) Magnitudes of the FCs
|In(q0)| at q0 = 14.16 nm−1 as a function of the order n. Red line
represents the fitting using the MCST. (b) Temperature dependence
of the HWHM γn of the FCs of intensity.

The evolution of the BO order as a function of temperature
can be described by the set of independent normalized
BO order parameters, C6m = |[I6m(q0)]/[(I0(q0)]| defined in
Ref. [11]. The number of nonzero coefficients C6m and their
magnitude characterize a degree of the BO order development.
The temperature dependence of the BO order parameters C6m

is presented in Fig. 5(a). In the smectic phase all parameters
C6m have values below the threshold level. According to
our results only the FCs of the 6th and 12th order appear
at the phase transition temperature T = 66.3 ◦C, and further
components exceed the threshold level one after another
while cooling below the phase transition temperature [see
Fig. 5(a)]. The possible explanation of this behavior could
be nonlinear interactions between parameters C6m of different
order. Finally, we observed an unusually large number m = 25
of the successive BO order parameters at the temperature
T = 55.0 ◦C. Interestingly, we also observed a subtle non-
monotonic behavior of the FCs of the orders m = 4, . . . ,10
in the temperature range 63 ◦C < T < 66 ◦C [see inset in
Fig. 5(a)]. The temperature dependence of the C6m parameters
confirms a general trend described earlier for 2D [13] and

FIG. 5. (Color) (a) Temperature dependence of the normalized
BO order parameters C6m. In the inset the nonmonotonic behavior
of the BO order parameters of the orders m = 4, . . . ,10 is shown.
(b) Temperature dependence of the total number of FCs M and
positional correlation length ξ [see Fig. 2(d)].

3D [11,15,19] hexatics. However, the maximum number of
the registered BO order parameters in these experiments was
significantly smaller, typically less than 10. The total number
of the determined FCs, M , as a function of temperature is
shown in Fig 5(b). The correlation between this number and
the positional correlation length ξ directly indicates strong
coupling between the BO and positional order in the hexatic
phase of 3(10)OBC film.

A quantitative comparison of the BO parameters of different
orders can be made on the basis of the MCST [15]. This
theory predicts the following scaling relation for the BO order
parameters,

C6m = (C6)σm, (5)

with the exponent σm of the form

σm = m + xm · m · (m − 1), x(1)
m = λ(T ) − μ(T )m. (6)

Here x(1)
m is the expansion of parameter xm up to the first

order correction in number m. The values of the parameters
λ(T ) ∼= 0.3 and μ(T ) ∼= 8 × 10−3 are given by the MCST
for the 3D hexatic phase [18,19]. At each temperature the
experimentally determined BO order parameters C6m were
fitted by the scaling relation (5,6) [an example of such fit
for the temperature T = 61.0 ◦C is shown in the inset in
Fig. 4(a)]. The temperature dependence of the determined
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FIG. 6. (Color online) (a) Temperature dependence of the pa-
rameter λ(T ) (red circles) in the scaling relation (6) from the
MCST. Compare with the temperature dependence of the same
parameter (black squares) when the linear correction term in the
scaling relation (6) is neglected. (b) Temperature-averaged values of
〈σm〉T (red circles) and their fit with the scaling relation (6) with
the first order correction term (black line). Results of fitting without
the correction terms (green dash-dot line) and with the 2nd order
correction term (blue dash line) are also shown.

parameters λ(T ) and μ(T ) is presented in Fig. 6(a) by red
circles (see for details Appendix B). As we can see, the
scaling relation (5) accurately describes our experimental
data in the entire temperature range of the hexatic phase
existence. At low temperatures the parameters of the scaling
law reach practically the constant values, λ(T ) ≈ 0.29 ± 0.01
and μ(T ) ≈ 0.007 ± 0.001, that are in excellent agreement
with the theoretical predictions of the MCST for 3D hexatics
[15]. In the previous experiments [11,15] only the parameter
λ has been determined. Here, due to the presence of the
large number of harmonics, we were able to deduce also
the value of the first order correction term μ. Our results
also show that if the first order correction term in x(1)

m is
neglected [shown by black squares in Fig. 6(a)], then we
get a strong deviation from the theoretically predicted value
λ(T ) = 0.3 at low temperatures, where many FCs are present.
We also found that in the vicinity of the hexatic-smectic phase
transition the parameters λ(T ) and μ(T ) rapidly decrease in a

narrow temperature range of �T ≈ 1◦C [Fig. 6(a)] (a similar
observation was made for the parameter λ(T ) in Ref. [15]).

Since the exponents σm in the scaling relation (5) appear
to be almost independent of temperature, one can consider
the temperature averaged values 〈σm〉T to determine the
parameters λ and μ by applying Eqs. (6) [15]. The exper-
imentally obtained values of 〈σm〉T are shown in Fig. 6(b).
We clearly see that the term x(1)

m with λ = 0.31 ± 0.015 and
μ = 0.009 ± 0.001 determined by fitting 〈σm〉T data points
with Eqs. (6) describes very well all orders m measured
in the experiment [30]. At the same time if the first order
correction term in x(1)

m is neglected, then the scaling relation (6)
correctly describes the behavior of the parameter 〈σm〉T only
up to the 7th order but fails to characterize accurately higher
orders m [see Fig. 6(b)]. We also observed that at high
values of m � 20 there is a small but constant deviation of
the measured and fitted values. Statistical analysis based on
the F-test [31] revealed that the scaling relation term in the
form x(2)

m = λ − μm + νm2 is statistically significant with the
significance level of 0.02. The fitting of the experimentally
determined values of 〈σm〉T with this scaling relation [shown
by dash blue line in Fig. 6(b)] gave for the parameter ν

a small value of ν ≈ 1 × 10−4. Determining this second
order correction value theoretically using renormalization
theory would require one to perform ε expansion of the
order higher than ε2 (ε = 4 − d, where d is the space
dimension) [15].

IV. CONCLUSION

In summary, we investigated the in-plane structure of
free-standing hexatic films of 3(10)OBC LC by means of
x-ray diffraction technique. A micron-sized spatially resolved
measurements allowed us to construct 2D maps of the in-plane
molecular bonds orientations that revealed inhomogeneity of
the BO order at the hexatic-smectic phase transition region. An
exceptional high number (m = 25) of the successive BO order
parameters have been directly determined at low temperatures
in the hexatic phase by means of XCCA. Our results support
the validity of the MCST in the whole temperature range
of existence of the 3D hexatic phase. We have confirmed
experimentally the value of the first order correction term
in the scaling relation of the BO order parameters that was
predicted earlier by the MCST. Moreover, we also revealed a
small second order correction term that was not yet determined
theoretically.

Many questions on the hexatic phase are still to be
answered. Among them are the spatial distribution of the
BO order parameters close to defects and domain boundaries,
which can be studied by an extremely focused x-ray beam;
the high precision measurements of the BO order param-
eters’ temperature dependence in the vicinity of the phase
transition point; the time-resolved measurement of the BO
order fluctuations; and many others. We expect that our work
will stimulate both theoretical studies and development of
experimental techniques for quantitative investigation of the
effects of large-scale angular correlations on the structure
and physical properties of diverse LC phases and complex
fluids.
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APPENDIX A: DETERMINATION OF A HEXATIC
DOMAIN ORIENTATION

The scattered intensity of each diffraction pattern (Fig. 7)
was transformed from Cartesian (x,y) to polar (q,φ) co-
ordinate system using bilinear interpolation. The obtained
intensities I (q,φ) were decomposed into cosine Fourier series
according to Eqs. (1)–(2). To determinate the intermolecular
bond orientations in the hexatic phase we considered the
dominant FC of the order n = 6, calculated at the value
q = q0. Since the term |I6(q)| cos[6φ + ψ6(q)] in Eqs. (1)–(2)
is a periodic function of an angle φ with a period of 2π/6,
the values of the phase ψ6(q0) for each diffraction pattern
can be chosen uniquely to be within the range ψ6(q0) ∈
[ψ̄6(q0) − π/6,ψ̄6(q0) + π/6]. The value ψ̄6(q0) was chosen
in such way, that the angular position ψ6(q0) of the diffraction
peak in the hexatic phase [specified by an arrow in Fig. 2(b) in
the main text] was always within the forgoing range.

APPENDIX B: FITTING WITH THE
MULTISCALING THEORY

In order to compensate the contribution of the noise in I0(q0)
and consequently in C6m = |(I6m(q0))/(I0(q0))| we introduced
the correction coefficient S(T ) into the scaling relation:

S(T )C6m = (S(T )C6)σm . (B1)

FIG. 7. The scattered intensity I (q0,φ) as a function of azimuthal
angle at the temperatures T = 66.5 ◦C, T = 66.1 ◦C, T = 61.0 ◦C,
and T = 55.0 ◦C.

FIG. 8. (Color online) The fitting of C6m with function (B2) at
the temperatures T = 66.1 ◦C, T = 64.0 ◦C, T = 61.0 ◦C, and T =
55.0 ◦C.

At each temperature point the experimentally obtained val-
ues C6m (m = 1,2,3, . . . ) were fitted with the following
function:

C6m = 1

S(T )
[S(T )C6]σm (B2)

with three free parameters S(T ), λ(T ), and μ(T ). The examples
of the fitting for different temperatures are shown in Fig. 8.
The value of S(T ) slightly decreases upon cooling from 1.15
at T = 66.1 ◦C to 1.13 at T = 55.0 ◦C. When the values of
the correction coefficient S(T ) are known at each temperature
point one can directly calculate values of σm(T ). The exponents
σm(T ) are shown in Fig. 9 for all temperatures. One can
clearly see that the values of σm(T ) are practically independent
of temperature for lower harmonics and change within the
error for higher harmonics. This allows us to calculate the
temperature-averaged values 〈σm〉T .

FIG. 9. (Color) Temperature dependence of the exponents σm for
all harmonics.
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