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Undulation amplitude of a fluid membrane surrounded by near-critical binary fluid mixtures
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We consider the thermal undulation, or shape fluctuation, of an almost planar fluid membrane surrounded by
the same near-critical binary fluid mixtures on both sides. A weak preferential attraction is assumed between
the membrane and one component of the mixture. We use the Gaussian free-energy functional to study the
equilibrium average of the undulation amplitude within the linear approximation with respect to the amplitude.
According to our result given by a simple analytic formula, the ambient near-criticality tends to suppress the
undulation of a membrane, and this suppression effect can overwhelm that of the bending rigidity for small wave
numbers. Thus, the ambient near-criticality is suggested to prevent a large membrane from becoming floppy even
if the lateral tension vanishes at the equilibrium.
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I. INTRODUCTION

Amphiphilic molecules can accumulate to form a mono-
layer at the interface between two phases, working as surfac-
tants, and can also form a bilayer in a one-phase solvent. In
either case, a resultant fluid membrane has the restoring force
against bending [1], and its shape fluctuates at the equilibrium.
Fluid membranes are often stacked regularly to form a lamellar
phase because of the balance of their interactions, one of which
is due to steric hindrance of undulating membranes [2–4]. The
lamellar structure can work as a photonic device [5].

The thermal undulation, or shape fluctuation, of the lipid-
bilayer membrane [6] can explain the flicker phenomenon of
red blood cells [7]. When the cell is not swollen, the surface
tension, or the lateral tension, of the membrane vanishes at
the equilibrium because the membrane area is determined so
that the free energy is minimized [8–10]. Then, the undulation
amplitude is determined by the bending energy and becomes
scale invariant. This causes a decrease in the effective bending
rigidity as the membrane area is larger; a sufficiently large
membrane loses its orientation to become floppy [2,3,11]. The
oil-water interface can have the same property when saturated
by surfactants [12,13].

It is well known that a fluid mixture shows marked
concentration fluctuation with longer correlation length as it
approaches the demixing critical point. If a colloidal particle
is immersed in a binary fluid mixture, its surface usually
interacts unequally with the components. In a near-critical
binary mixture, one component is preferentially attracted by
the surface to form the adsorption layer whose thickness is
comparable to the bulk correlation length [14–17]. Dynamics
of a colloidal particle immersed in such a mixture has
been recently studied in theoretical aspects [18–21]. The
concentration gradient due to the adsorption layer generates
additional stress including the osmotic pressure, and affects the
flow around the particle. Accordingly, for example, the drag
coefficient deviates from the Stokes law even if the viscosity is
homogeneous in the mixture. Being a two-dimensional droplet,
a raftlike region embedded in a binary fluid membrane can also
exhibit this kind of deviation [22]. In fact, the biomembrane
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has several components; the critical concentration fluctuation
of the membrane is measured experimentally, with its possible
biological implication suggested [23], and is studied theoreti-
cally [24].

In this paper, we consider a fluid membrane which is not
near critical but is surrounded by near-critical binary fluid
mixtures. The ambient near-criticality should influence the
average of its undulation amplitude when one component of
the mixture is preferentially attracted by the membrane. We
simplify the problem as follows to study the influence. The
temperature is assumed to be homogeneous. The membrane,
made up of a single component, is regarded as a thin film
fluctuating around a plane; we neglect the structure of the
membrane itself by assuming the typical radius of curvature of
the undulation to be much larger than the membrane thickness.
The semi-infinite regions on both sides of the membrane
are assumed to be occupied by incompressible binary fluid
mixtures sharing the same properties. Far from the membrane,
they are static and in the homogeneous phase near the demixing
critical point. Assuming them not to be very close to the
critical point, we use the Gaussian free-energy functional.
Our calculation is performed within the linear approximation;
sufficiently small undulation amplitude and sufficiently weak
preferential attraction are assumed.

Our formulation is stated in the next section; some parts
are the same as used in Ref. [18]. The amplitude average
considered here is an equal-time correlation at the equilibrium
and does not involve the dissipation. Perturbative calculations
in Sec. III yield a set of simultaneous equations, Eqs. (41)–(43),
which we solve in Sec. IV by assuming the Gaussian model
and the weak preferential attraction. The results are shown in
Sec. V and is discussed in Sec. VI. Our study is summarized
in the last section together with some outlook.

II. FORMULATION

Suppose that the binary fluid mixture consisting of two
components A and B. We write ρA and ρB for their mass den-
sities, and μA and μB for the conjugate chemical potentials. In
general, introducing the sum ρ ≡ ρA + ρB and the difference
ϕ ≡ ρA − ρB, we have

μAδρA + μBδρB = (μA + μB)δρ

2
+ (μA − μB)δϕ

2
, (1)
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where δ implies the infinitesimal change. Considering that the
left-hand side above gives a part of the infinitesimal change
in the free energy, the intensive variable conjugate to ϕ is
(μA − μB)/2, which is denoted by μ.

The concentration difference ϕ depends on the position r
in the binary mixture. The ϕ-dependent part of the free-energy
density of the mixture bulk is assumed to be the sum of
the term independent of its gradient, denoted by f , and
the term proportional to its square gradient. This kind of
free-energy density is usual in the effective coarse-grained
formulation [25,26]. The contribution from the interfaces
between the membrane and the mixtures on both sides of
the membrane is simply assumed to be given by the surface
integral of the potential fs determined by the value of ϕ

immediately near the membrane [27]. This potential represents
the preferential attraction. These assumptions enable us to
write the ϕ-dependent part of the free-energy functional of the
mixtures as∫

Ce
d r

{
f (ϕ(r)) + 1

2
M |∇ϕ(r)|2

}
+

∫
∂C

dS fs(ϕ(r)) .

(2)

The first integral is the volume integral over the semi-infinite
regions (Ce) on both sides of the membrane, while the second
integral is the surface integral over the interfaces (∂C) on
both sides. The coefficient M is a positive constant shared by
the mixtures on both sides. Later we will assume f to be a
quadratic function and fs to be a linear function. The free-
energy functional of the mixture in general has a ρ-dependent
part other than the part given by Eq. (2), while that of the
membrane involves the bending rigidity and the isothermal
compressibility.

The undulation deforms the profile of ϕ, and changes the
value of Eq. (2), which plays a role of a part of the potential
energy for the membrane oscillation. This resembles the
situation that the membrane is surrounded by elastic medium
[28]. Here, to calculate the force due to Eq. (2), we need to
know how the undulation deforms the profile reversibly. To
do so, we consider the reversible, or nondissipative, dynamics
of the fluids. The time dependencies of ϕ and local intensive
variables are thus considered below. The Cartesian coordinate
system (x,y,z) is set so that the membrane fluctuates around
the xy plane (Fig. 1). The unit vectors along the coordinate axes
are denoted by ex, ey , and ez, respectively. The z coordinate of
the membrane is referred to as ζ , which is a function of (x,y)
and the time t .

The pressure tensor of a fluid is separated in general into
the reversible part and the irreversible, or dissipative, part,

z

x

ymembrane

(x,y,t)

xy-plane

FIG. 1. The fluid membrane having a single component fluctuates
around the xy plane. The semi-infinite regions on the positive and
negative z sides of the membrane are occupied by binary fluid
mixtures sharing the same properties.

which involves the viscosity. For the mixture, we can obtain the
former part � and half the local chemical potential difference μ

by studying how Eq. (2) is changed by an infinitesimal virtual
deformation of the fluids. This need not follow the perfect
fluid dynamics. In the bulk, the results are the same as those
in the model H , which is a standard model for the dynamics
of a near-critical fluid [26,29], because the same free-energy
density is used [18]. Below, the prime indicates the derivative
with respect to the variable. Introducing

posm ≡ ϕf ′(ϕ) − f (ϕ), (3)

which is called the osmotic pressure, and

�grad ≡ −M
(

1
2 |∇ϕ|2 + ϕ�ϕ

)
1 + M∇ϕ∇ϕ, (4)

where 1 denotes the isotropic tensor, we find

� = p1 + posm1 + �grad. (5)

The scalar p originally comes from the dependence of the
free-energy density on ρ. We write V for the velocity field in
the mixture. Assuming ρ to be a constant as in the previous
works [7,30–32], we have

∇ · V = 0. (6)

We thus neglect the change in the ρ-dependent part of the
free-energy density and regard p as dependent on r and t

irrespective of the local state. We also find

μ(r,t) = f ′(ϕ(r,t)) − M�ϕ(r,t), (7)

which satisfies

ϕ∇μ = ∇posm + ∇ · �grad. (8)

We need not assume viscosity to calculate the equal-time
correlation. The dynamics of the mixture follows

ρ
∂V
∂t

= −∇p − ϕ∇μ, (9)

where the convective term is neglected in anticipation of the
later linear approximation. The incompressibility condition
Eq. (6) should affect the trajectory of ϕ.

Far from the membrane, the mixtures are assumed to be
static and in the homogeneous phase, i.e., V vanishes and ϕ is
constant. There, each of μ, p, and posm is constant, considering
Eqs. (3), (7), and (9). We assume the symmetric surroundings;
the constant values of ϕ, μ, and p are respectively denoted by
ϕ∞, μ(0), and p(0), which are shared by the mixtures on both
sides of the membrane. The stress exerted on the membrane
by the surrounding mixture on the positive-z (negative-z) side
depends on (x,y,t) and is denoted by F(+) (F(−)). We write
n for the unit vector which is normal to the membrane and
is directed towards the positive-z side, and define the mean
curvature of the membrane H so that its sign is positive when
the center of curvature lies on the side towards which n is
directed.

In Eq. (2), fs simply represents that part of the free-energy
density in the bulk which occurs only near the membrane.
Thus, as f generates the osmotic pressure Eq. (3), fs generates
two-dimensional pressure working at the interfaces. See
Appendix A of Ref. [21] for the detail. We have

F(±) = lim
z→ζ±

{∓� · n + ∇‖fs + 2Hfsn}, (10)
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where ∇‖ implies the projection of ∇ on the tangent plane and
z → ζ + (−) means that z approaches ζ (x,y,t) with z − ζ >

0 (< 0) maintained. The last two terms above come from the
stress due to the two-dimensional pressure −fs. The boundary
condition

±Mn · ∇ϕ = f ′
s (ϕ) as z → ζ± (11)

should hold in the local equilibrium as well as in the global
equilibrium [18]. The tangential components of F(±) vanishes;
the contribution from M∇ϕ∇ϕ of Eq. (4) cancels with the
tangential stress due to fs, as described in Appendix D of
Ref. [21]. In the range of ϕ considered, approximating fs(ϕ) to
be a linear function, we put the right-hand side (rhs) of Eq. (11)
equal to −h, where h is a constant. We can rewrite Eq. (10) as

F(±) = ∓h2

M
n + lim

z→ζ±

{
∓p ± f (ϕ) ± M

2
|∇ϕ|2

∓μϕ + 2Hfs

}
n. (12)

In the previous works [18–22], the diffusive flux between
the two components is considered. Because it is proportional
to the gradient of μ, the mass conservation of each component
leads to

∂ϕ

∂t
= −V · ∇ϕ + L�μ, (13)

where the Onsager coefficient L is assumed to be a positive
constant. Assuming that the diffusion flux cannot pass across
the membrane leads to

n · L∇μ = 0 as z → ζ ± . (14)

The diffusion should not be involved in the equal-time
correlation considered here; we will take the limit of L → 0+
later. Still, we use these two equations at this stage because, as
shown later, this limit gives rise to the boundary layer problem,
which is unfamiliar in comparison with the problem occurring
in the limit of zero viscosity.

Our calculation is performed within the linear approxima-
tion with respect to the undulation amplitude. Introducing a
dimensionless parameter ε, we define nonzero ζ (1) so that we
have

ζ (x,t) = εζ (1)(x,t). (15)

Hereafter, x represents a position on the membrane and has
coordinates (x,y), in contrast with r representing a position in
the mixture. Up to the order of ε, the components of the metric
tensor of the membrane with respect to x and y are the same
as those of the xy plane, the unit normal vector is

n = ez − ∂ζ

∂x
ex − ∂ζ

∂y
ey, (16)

and the mean curvature is given by

H = 1

2

(
∂2ζ

∂x2
+ ∂2ζ

∂y2

)
. (17)

We write v(x,t) for the velocity field of the membrane. Assum-
ing it to be compressible, we write ρm(x,t) for the membrane
mass per unit area, and pm(x,t) for its in-plane pressure field.
This field not only comes from the interaction between lipids

[2,36] but can contain the interfacial tension between the
membrane and the surrounding fluid. The interfacial tension
should be distinguished from the stress due to fs. The former
involves the density profile of the lipids across the interface,
while the latter does not. We assume that the components
of the mixture do not work as surfactants, and thus pm does
not depend explicitly on the value of ϕ immediately near the
membrane.

The equations of motion for a viscous compressible
membrane can be found in the previous works [30–33].
Neglecting the membrane viscosity and using the approximate
geometrical quantities above, we can write the momentum
conservation in the tangential directions as

ρm
∂vx

∂t
= Fx − ∂pm

∂x
and ρm

∂vy

∂t
= Fy − ∂pm

∂y
(18)

up to the order of ε. Here, F ≡ F(+) + F(−) denotes the total
stress exerted by the mixtures. Assuming the spontaneous
curvature to vanish, we write cbH

2 for the bending energy
per unit area of the membrane, where cb is the bending rigidity
[1]. The restoring force is normal to the membrane, and its
component along n is given by [34]

Fr = −cb

(
∂2

∂x2
+ ∂2

∂y2

)
H. (19)

Up to the order of ε, the momentum conservation in the normal
direction is represented by

ρm
∂vz

∂t
= Fz + Fr − 2Hpm, (20)

while the mass conservation is represented by

∂ρm

∂t
= −∂ρmvx

∂x
− ∂ρmvy

∂y
. (21)

The limit of zero viscosity in the mixture causes the
well-known boundary layer problem of the velocity field,
which we deal with by imposing the slip boundary condition
between the membrane and the inviscid fluid. We proceed
with the calculation after taking this limit, and evaluate F(±)

immediately outside these boundary layers on both sides of the
membrane. The tangential components of the velocity need
not be continuous across the membrane, while the normal
component is continuous. In the limit of L → 0+, as is shown
later, ϕ and μ have boundary layers. However, at this stage, we
do not take this limit and their spacial profiles have no rapid
changes near the membrane.

III. PERTURBATION

In the unperturbed state (ε = 0), where the membrane is
fixed on the xy plane, μ is homogeneous over a mixture region
and so is p because of Eq. (9) [18]. They are respectively given
by the constants μ(0) and p(0). Up to the order of ε, we expand
the fields as

ϕ(r,t) = ϕ(0)(z) + εϕ(1)(r,t),

μ(r,t) = μ(0) + εμ(1)(r,t),

p(r,t) = p(0) + εp(1)(r,t),

and V (r,t) = εV (1)(r,t). (22)
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On the rhs of each of these equations, the field with the
superscript (0) is defined so that it is independent of ε, while
the field with the superscript (1) is defined so that it becomes
proportional to ε after being multiplied by ε. As shown later,
ϕ(0) depends only on z. For the membranous fields, we use
similar expansions,

ρm(x,t) = ρ(0)
m + ερ(1)

m (x,t),

pm(x,t) = p(0)
m + εp(1)

m (x,t),

v(x,t) = εv(1)(x,t),

and F(x,t) = ε F(1)(x,t), (23)

where ρ(0)
m and p(0)

m are constants.

A. Unperturbed state

We here consider the equilibrium profile of ϕ with the
membrane fixed on the xy plane; this situation is essentially
the same as argued in Ref. [27]. From Eq. (7), we have

f ′(ϕ(0)) − M�ϕ(0) = μ(0) for z 	= 0. (24)

The correlation length far from the membrane,

ξc ≡
√

M

f ′′(ϕ∞)
, (25)

is assumed to be much larger than the microscopic length,
considering that the free-energy functional Eq. (2) is a result
of coarse-graining. Here, f ′′(ϕ∞) is positive because of the
thermodynamic stability. Equation (11) leads to

M
∂

∂z
ϕ(0) = ∓h as z → 0 ± . (26)

Linearizing Eq. (24) by approximating f ′(ϕ) as μ(0) +
f ′′(ϕ∞)(ϕ − ϕ∞), we obtain the equilibrium profile,

ϕ(0)(z) = ϕ∞ + hξc

M
e−|z|/ξc , (27)

for z 	= 0. The preferential attraction, represented by h, causes
the concentration difference to deviate from its value far from
the membrane; the characteristic length is given by the bulk
correlation length ξc. The approximation is valid when

|hf ′′′(ϕ∞)|ξc 
 Mf ′′(ϕ∞), (28)

as discussed in Ref. [18]. We later use the Gaussian model,
where Eq. (27) becomes exact.

B. Terms at the order of ε

From Eqs. (11) and (26), we have

lim
z→0±

∂ϕ(1)

∂z
= −ζ (1) lim

z→0
ϕ(0)′′(z). (29)

Considering Eq. (14), we have

L
∂μ(1)

∂z
→ 0 as z → 0 ± . (30)

Up to the order of ε, we have

f (ϕ(ζ+)) = f (ϕ(0)(ζ+)) + εϕ(1)(0+)f ′(ϕ(0)(0+)), (31)

where ϕ and ϕ(1) depend on (r,t), ζ depends on (x,t), and
ϕ(ζ+) means limz→ζ+ ϕ(x,y,z,t), while the first term on the
rhs above equals

f (ϕ(0)(0+)) + εζ (1)ϕ(0)′(0+)f ′(ϕ(0)(0+)). (32)

Calculating similarly the other terms in Eq. (12), we use
Eqs. (24), (27), and (29) to obtain F (1)

x = F (1)
y = 0 and

F (1)
z =

[
−p(1) − μ(1)ϕ(0) + hϕ(1)

ξc

]
−

−2h2ζ (1)

Mξc
+ 4H (1)fs(ϕ(0)(0+)), (33)

where [. . . ]− is defined as (limz→0+ . . . ) − (limz→0− . . . ), and
H (1) is defined as Eq. (17) with ζ replaced by ζ (1). As is
mentioned at the end of Sec. II, z → 0± above means that the
stress is evaluated immediately outside the boundary layers
occurring in the limit of zero viscosity.

In the directions of x and y, we impose the periodic
boundary condition, and add an overhat to the Fourier
transform, e.g.,

p̂(1)(k,z,t) ≡ 1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy p(1)(x,z,t)e−ik·x, (34)

where k represents (kx,ky) with lkx/(2π ) and lky/(2π ) being
integers and the period l is assumed to be sufficiently large.
We have

lim
z→0±

V̂ (1)
z = v̂(1)

z = ∂ζ̂ (1)

∂t
. (35)

We add an overtilde to the further Fourier transform with
respect to t , e.g.,

p̃(1)(k,z,ω) = 1

2π

∫ ∞

−∞
dt p̂(1)(k,z,t)eiωt . (36)

Using k ≡
√

k2
x + k2

y , we define

Ṽ‖ ≡ (kxṼx + kyṼy)/k, (37)

and define ṽ‖ similarly. From Eq. (9), we obtain

−iωρṼ
(1)
‖ = −ikp̃(1) − ikϕ(0)μ̃(1) (38)

and − iωρṼ (1)
z = −∂p̃(1)

∂z
− ϕ(0) ∂μ̃(1)

∂z
. (39)

The other component kxṼ
(1)
y − kyṼ

(1)
x is time-invariant irre-

spective of the dynamics above in the inviscid mixture, and
is assumed to vanish in the calculation for the equal-time
correlation. Equation (6) leads to

ikṼ
(1)
‖ + ∂Ṽ (1)

z

∂z
= 0. (40)

Deleting ∂p̃(1)/∂z from Eq. (39) and the z derivative of
Eq. (38), we use Eq. (40) to derive(

∂2

∂z2
− k2

)
Ṽ (1)

z = − ik2

ρω
ϕ(0)′μ̃(1). (41)
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A boundary condition is given by the Fourier transform of
Eq. (35) with respect to t . The fields with the superscript (1) in
Eq. (22) vanish far from the membrane. From Eq. (7), we have

{M� − f ′′(ϕ(0))}ϕ(1) = −μ(1). (42)

Substituting Eq. (22) into Eq. (13), we pick up an equation at
the order of ε. The first term on the rhs of Eq. (13) generates
−εV (1)

z ϕ(0)′ in the resultant equation, the Fourier transform of
which gives

−iωϕ̃(1) = −Ṽ (1)
z ϕ(0)′ + L

(
∂2

∂z2
− k2

)
μ̃(1). (43)

Let us introduce a dimensionless parameter,

λ ≡ hξ
3/2
c√

cbM
. (44)

In the next section, we solve the simultaneous equations,
Eqs. (41)–(43), to calculate Eq. (33) by introducing the
Gaussian model and assuming sufficiently weak preferential
attraction to have λ 
 1.

The conditions and equations for μ(1) and ϕ(1), given in the
preceding paragraph and by Eqs. (29) and (30), are satisfied by
μ(1) = ϕ(1) = 0 when h vanishes, considering Eq. (27). Thus,
using Z ≡ z/ξc, we can introduce dimensionless fields,

Q (k,Z,ω) ≡ ξ 2
c μ̃(1) (k,z,ω)

hζ̃ (1) (k,ω)
,

G (k,Z,ω) ≡ Mϕ̃(1) (k,z,ω)

hζ̃ (1) (k,ω)
,

and U (k,Z,ω) ≡ iṼ (1)
z (k,z,ω)

ωζ̃ (1) (k,ω)
, (45)

which vanish far from the membrane. Below, for conciseness,
we refer to these fields as Q(Z), G(Z), and U (Z), respectively,
and write ∂Z and ∂2

Z for ∂/(∂Z) and ∂2/(∂Z2), respectively.
We can rewrite Eq. (41) as(

∂2
Z − K2

)
U (Z) = ∓λ2AQ(Z)e∓Z (46)

for ±Z > 0, where K ≡ kξc and A ≡ cbk
2/(ρω2ξ 3

c ). With
the viscosity considered, Eq. (46) would have some terms
multiplied by the viscosity coefficient which include a higher
derivative of U with respect to Z. As mentioned at the
end of Sec. II, we consider the solution in the limit of
zero viscosity, i.e., we consider only the regions outside the
resultant boundary layers. Thus, no more boundary layer of U

remains in Eq. (46).
Because of Eq. (35), we have

U (k,Z,ω) → 1 as Z → 0 ± . (47)

Thus, applying the method of variation of parameters to
Eq. (46), we obtain for Z > 0

U (Z) =
{

1 − λ2A

2K

∫ ∞

0
dZ1 Q(Z1)e−(K+1)Z1

}
e−KZ

−λ2A

∫ ∞

0
dZ1 �K (Z,Z1)Q(Z1)e−Z1 , (48)

where the kernel is defined as

�K (Z,Z1) = − 1

2K
e−K|Z−Z1| (49)

for Z > 0 and Z1 > 0. For Z < 0, we likewise find

U (Z) =
{

1 + λ2A

2K

∫ 0

−∞
dZ1 Q(Z1)e(K+1)Z1

}
eKZ

+ λ2A

∫ 0

−∞
dZ1 �K (Z,Z1)Q(Z1)eZ1 , (50)

where the kernel is also given by Eq. (49) for Z < 0 and
Z1 < 0. Thus, we have

U (Z) = e−K|Z| + O(λ2), (51)

where O(λ2) represents the term whose quotient divided by λ2

does not diverge in the limit of λ → 0+. Later we use the term
independent of λ, e−K|Z|, to calculate Q and G. The former
result, in particular, is then substituted into Eq. (50) to yield U

up to the order of λ3.

IV. SOLUTION AT L → 0+
The free-energy functional Eq. (2) is considered as obtained

after renormalized up to the correlation length [17]. Assuming
the correlation length to be so short that the higher-order terms
are negligible in f , we use the Gaussian model,

f (ϕ) = a

2
(ϕ − ϕ∞)2 + μ(0) (ϕ − ϕ∞) , (52)

where a is a positive constant. This constant, being the
reciprocal susceptibility, can be assumed to be proportional
to the temperature measured from the critical point. Using
Eq. (52) in Eq. (2) amounts to assuming that the mixture is
near, but not very close to, the demixing critical point [26].
Equations (29) and (42) respectively become

lim
Z→0±

∂ZG(Z) = −1 (53)

and (
∂2
Z − K2

1

)
G(Z) = −Q(Z), (54)

where K1 ≡ √
K2 + 1. Thus, we find

G(Z) =
{

1 + 1

2

∫ ∞

0
dZ1 e−K1Z1Q(Z1)

}
e−K1Z

K1

−
∫ ∞

0
dZ1 �K1 (Z,Z1)Q(Z1) (55)

for Z > 0, and

G(Z) =
{
−1 + 1

2

∫ 0

−∞
dZ1 eK1Z1Q(Z1)

}
eK1Z

K1

−
∫ 0

−∞
dZ1 �K1 (Z,Z1)Q(Z1) (56)

for Z < 0. Using L ≡ iLM/(ωξ 4
c ), we rewrite Eq. (30) as

L∂ZQ(Z) → 0 as Z → 0 ± . (57)

From Eq. (43), we obtain for ±Z > 0

L
(
∂2
Z − K2

)
Q(Z) = ∓U (Z)e−|Z| + G(Z). (58)
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Substituting Eq. (54) into Eq. (58), we obtain

−Q(Z) = L
(
∂2
Z − K2

1

)(
∂2
Z − K2

)
Q(Z)

±2Ke−(K+1)|Z| + O(λ2) (59)

with the aid of Eq. (51). We are interested in the limit of L →
0+, i.e., −iL → 0+, in Eq. (59), which gives the singular
perturbation problem [35]. For 0 < |Z| 
 1, we introduce u ≡
L−1/4Z and q(u) ≡ Q(L1/4u) to rewrite Eq. (59) as

− q(u) =
(

∂2

∂u2
−

√
LK2

1

) (
∂2

∂u2
−

√
LK2

)
q(u)

±2K exp {−(K + 1)L1/4|u|} + O(λ2), (60)

which has regular solutions of q even in the limit of −iL →
0+. The highest derivative is free from L in the above, unlike
in Eq. (59). Thus, on each side near Z = 0, there is a boundary
layer, whose thickness tends to zero as L → 0+. In this limit,
considering Eq. (59), Q(Z) is asymptotically equal to

∓2Ke−(K+1)|Z| + O(λ2) (61)

for ±Z > 0 outside the thin layers. This outer solution satisfies
the boundary condition for |Z| → ∞, mentioned just below
Eq. (45), while it does not satisfy Eq. (57). An alternative
way to Eq. (61) is as follows. The boundary layer of Q(Z)
yields that of G(Z) because of Eq. (54). The outer solution of
G(Z) is ±U (Z)e−|Z| considering Eq. (58). Substituting this
into Eq. (54) gives the outer solution of Q(Z), i.e., Eq. (61),
with the aid of Eq. (51). Thus, once the boundary layers are
recognized, Eqs. (59) and (60) are dispensable in deriving
Eq. (61).

We define Qin(Z) so that Q(Z) equals the sum of Qin(Z)
and Eq. (61); Qin(Z) rapidly becomes zero as |Z| increases
beyond the thickness of the boundary layer. In the limit of
L → 0+, substituting the sum into Eq. (55) gives

G(Z) = e−(K+1)Z − e−K1Z

K1

{
K −

∫ ∞

0
dZ1 Qin(Z1)

}

+O(λ2) (62)

for Z > 0 outside the boundary layer. There, we should have
G(Z) = U (Z)e−Z from Eq. (58). Thus, we use Eqs. (51) to
find

lim
L→0+

∫ ∞

0
dZ1 Qin(Z1) = K + O(λ2), (63)

and thus Eq. (55) in the limit of Z → 0+ gives

lim
L→0+

G(0+) = 1 + O(λ2). (64)

This happens to be equal to the same limit of the outer
solution of G(Z). If L were assumed to vanish from the
beginning, Eq. (57) would be trivial and Eq. (58) would
give G(Z) = ±U (Z)e−|Z| for ±Z > 0. This overall solution
contradicts with Eq. (53). This means that we cannot assume L

to vanish from the beginning. We use Eq. (29) to derive Eq. (33)
because of the statements in the last paragraph of Sec. II. Thus,
we cannot take the limit of L → 0+ before taking the limit of
Z → 0± in evaluating F(±) in the reversible dynamics.

Using Eqs. (48), (61), and (63), we obtain

lim
L→0+

lim
Z→0+

∂ZU (Z)

= −K − λ2AK

K + 1
+ λ2A

∫ ∞

0
dZ1 Qin(Z1) + O(λ4)

= −K + λ2AK2

K + 1
+ O(λ4). (65)

For Z < 0, using the procedure leading to Eq. (63), we obtain

lim
L→0+

∫ 0

−∞
dZ1 Qin(Z1) = −K + O(λ2). (66)

Thus, considering Eqs. (48), (50), (61), and (66), we find U (Z)
to be even with respect to Z up to the order of λ3. With the
aid of Eq. (40), V‖(z) is found to be odd with respect to z up
to this order, in spite of which v‖ does not vanish because of
the slip boundary condition. From Eqs. (55), (56), (61), (63),
and (66), G(Z) turns out to be odd with respect to Z up to the
order of λ. There are three terms on the rhs of Eq. (33). The
Fourier transform of its first term is thus found, with the aid of
Eqs. (38) and (40), to be given by

2 lim
z→0+

{(−iωρ

k2

)
∂Ṽ (1)

z

∂z
+ hϕ̃(1)

ξc

}

= 2cbζ̃
(1)

ξ 4
c

lim
Z→0+

{
−∂ZU (Z)

A
+ λ2G(Z)

}
(67)

up to the order of λ3. Substituting Eqs. (64) and (65) into
Eq. (67), we find the Fourier transform of the sum of the first
and second terms on the rhs of Eq. (33) in the limit of L → 0+
to be

2ρω2ζ̃ (1)

k
− 2cbζ̃

(1)

ξ 4
c

λ2d(K) (68)

up to the order of λ3, where

d(K) ≡ K2

K + 1
. (69)

Equation (68) originates from Eq. (5); the term M∇ϕ∇ϕ in
Eq. (4) does not contribute to this result, as mentioned below
Eq. (11). Neither does the term M|∇ϕ|2/2 in Eq. (12); the
second term on the rhs of Eq. (33) can be traced to this term
but cancels with the term involving G in Eq. (67) because of
Eq. (64). Which component is preferred by the membrane is
not involved in deriving Eq. (68), which does not contain a
term with odd powers of h. Using Eqs. (68) and (69), we can
evaluate F in the limit of L → 0+.

Introducing the isothermal compressibility of the mem-
brane κ , we assume κp(1)

m = ρ(1)
m /ρ(0)

m . Noting the statement
above Eq. (33), we use Eqs. (18) and (21) to obtain

∂

∂t
ρ̂(1)

m = −ikρ(0)
m v̂

(1)
‖ and

∂

∂t
v̂

(1)
‖ = − ik

ρ
(0)
m κ

ρ̂(1)
m , (70)

which describe the nondissipative oscillation in the tangen-
tial direction. That in the normal direction, independent of
Eq. (70), leads to the equilibrium average of the undulation
amplitude, as shown in the next section.
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V. RESULTS

The stress −p(0)
m gives the lateral tension or surface tension

referred to in Refs. [2,3,7,30,36], where the preferential attrac-
tion is not considered. This equilibrium stress vanishes when
the membrane is not forced to be stretched or compressed, as
is mentioned in the second paragraph of Sec. I. Then, if the
preferential attraction occurs in the ambient near-criticality,
the stress defined as

σl ≡ −p(0)
m + 2fs(ϕ(0)(0+)) (71)

vanishes, considering the statements above and below Eq. (10).
The factor 2 above comes from the two interfaces on both sides
of the membrane. Thus, in more general, σl is regarded as the
lateral tension at the equilibrium.

The Fourier transform of Eq. (19) is given by −cbk
4ζ̃ /2

because of Eq. (17). Equation (20) yields

−iωρ(0)
m ṽz = F̃ (1)

z −
(

cbk
4

2
− p(0)

m k2

)
ζ̃ (1), (72)

which is combined with Eqs. (33) and (68) to yield

ρ
(eff)
k

∂v̂(1)
z

∂t
= −

{
cb

ξ 4
c

(
K4

2
+ 2λ2d(K)

)
+ σlk

2

}
ζ̂ (1) (73)

up to the order of λ3. Here, we use ρ
(eff)
k ≡ ρ(0)

m + 2ρ/k,
the second term of which represents the induced mass [37].
Equations (35) and (73) describe the nondissipative oscillation
in the normal direction. We thus find

l2ε2

2

∑
k

{
ρ

(eff)
k

∣∣v̂(1)
z (k,t)

∣∣2

+
(

cbk
4

2
+ σlk

2 + 2h2

Mξc
d(kξc)

)
|ζ̂ (1)(k,t)|2

}
(74)

to be time independent. As shown in the next paragraph, the
above represents the total energy of the oscillation in the
normal direction. Let 〈. . . 〉 indicate the equilibrium average
at the temperature T , and kB denote the Boltzmann constant.
Using the equipartition theorem, we find

〈ζ̂ (k,t)ζ̂ (k′,t)〉

= δk,−k′
kBT

l2

{
cbk

4

2
+ σlk

2 + 2h2

Mξc
d(kξc)

}−1

(75)

up to the order of h3, where d is defined by Eq. (69). This is our
main result; the sum in the brackets on the rhs of Eq. (75) is the
same as that of Eq. (73). The average of the squared undulation
amplitude can be calculated from Eq. (75) by means of

〈ζ (x,t)ζ (x,t)〉 =
∑

k

〈ζ̂ (k,t)ζ̂ (−k,t)〉. (76)

Only in this paragraph, we suppose an external stress field
exerted on the membrane. We write ηz(x,t) for its z component,
which is added to the rhs of Eq. (20). Its Fourier transform
η̂z(k,t) should appear on the rhs of Eq. (73) multiplied by
ε. Let us multiply this modified equation with l2v̂z(−k,t) =
l2εv̂(1)

z (−k,t) and sum the resultant product over k. Then, with
the aid of Eq. (35), we find the time derivative of Eq. (74) to

K
  /

2 
or

 2
λ 

d(
K

)
4

2

K

FIG. 2. Logarithmic plots of the terms in the parentheses of
Eq. (73). The solid line represents the first term K4/2, while the
other curves represent 2λ2d(K). We use λ = 0.1 and 0.01 for the
dashed curve and for the dash-dotted curve, respectively.

be given by

l2
∑

k

η̂z(k,t)v̂z(−k,t)

=
∫ l/2

−l/2
dx

∫ l/2

−l/2
dy ηz(x,t)vz(x,t), (77)

which is the work done to the membrane per unit time by
the external stress field. This means that Eq. (74) is the total
energy, or the effective Hamiltonian, of the oscillation in the
normal direction.

The terms in the parentheses of Eq. (73) are plotted in
Fig. 2. Judging from Eq. (69), d(K) is positive and increases
with K = kξc. We have d(K) ≈ K2 as K is small enough
and d(K) ≈ K as K is large enough, which can also be read
from the curves in Fig. 2. We use the hydrodynamics based on
Eqs. (2) and (52). Considering the statement above Eq. (52),
our result ceases to be valid for the length scale much smaller
than the correlation length, i.e., for K � 1. Because d(K) is
positive, the term involving d in Eq. (75) tends to suppress
each wave-number component of the undulation amplitude.
This term increases to cause more suppression as k is larger,
as h is larger, and as ξc is larger. The increase due to larger ξc

is more distinct when K is small enough to give our reliable
result d(K) ≈ K2 than otherwise. When |h| and ξc are larger,
the adsorption layer is also remarkable in its thickness and
amplitude, considering Eq. (27).

VI. DISCUSSION

The average of the undulation amplitude is not determined
only by the equilibrium lateral tension and bending rigidity in
particular when the undulation causes a significant change in
ϕ. This surely occurs when near-critical binary fluid mixtures
surround the membrane with the preferential attraction to
make the adsorption layer remarkable. To find the change,
we use the reversible dynamics coming from Eq. (2) and the
membrane energy. We assume the fluids to be inviscid from the
beginning and then take the limit of L → 0+. Discontinuous
motion is inevitable immediately near the membrane in these
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limits for the reversibility. The incompressibility is assumed
for the surrounding fluids. Using all these conditions, we
can determine the reversible oscillation of the profile of ϕ

associated with that of the membrane shape ζ .
The equal-time correlation can be calculated generally in

terms of the statics. As shown in the Appendix, one may use
Eq. (2) and the homogeneous chemical potential to calculate
the probability distribution of the deviations of ϕ and ζ up
to their second order, and then integrate the distribution with
respect to ϕ to obtain the effective Hamiltonian for ζ without
using the dynamics. However, the result is not consistent with
Eq. (75). The integration with respect to ϕ mentioned above
amounts to specifying the profile of ϕ for a given ζ , considering
that the involved probability distribution is Gaussian. In the
oscillation of ζ , the trajectory of ϕ thus determined is not
necessarily the same as the trajectory determined by the
reversible dynamics, on which the discontinuous motion and
the incompressibility impose constraints as shown in the
present study. See the Appendix for the detail. When the
membrane is surrounded by incompressible one-component
fluids without ϕ, we need not care about their motion in
calculating the undulation amplitude because the motion
contributes only to the kinetic energy. However, it is not the
case in our problem, where changes of ϕ and μ are correlated
with the membrane motion. Furthermore, ϕ influences the
stress exerted on the membrane and the potential-energy part,
dependent on the shape ζ , in the effective Hamiltonian. In
the present study, we calculate the dependence of ϕ on ζ by
using the reversible dynamics, instead of starting with the
free-energy functional containing all the required information
for the statics.

As mentioned in the last paragraph of the preceding section,
the ambient near-criticality tends to suppress the undulation
amplitude more remarkably as the the adsorption layer is more
remarkable. As far as our result remains valid, the suppression
is also more remarkable as the wave number of the undulation
is larger. Then, like the membrane, the adsorption layer would
wrinkle more severely. If there is no preferential attraction,
Eq. (75) is reduced to the previous result [2,3,7]. Then, Eq. (76)
can be calculated as

kBT

(2π )2

∫ 2π/s

2π/l

dk 2πk

(
cbk

4

2
− p(0)

m k2

)−1

, (78)

where s is the lower cutoff length. For the membrane
suspended freely in a fluid, we neglect p(0)

m to obtain

〈ζ (x,t)ζ (x,t)〉 = kBT

2πcb

(
l

2π

)2

, (79)

which implies that the averaged undulation amplitude is
scale invariant [2]. This is derived by the k−3 dependence
of the integrand of Eq. (78), which dependence comes
from the bending energy. If the preferential attraction occurs to
give h 	= 0 and if the equilibrium lateral tension vanishes to
give σl = 0, the last term ∝ d(K) ∝ k2 can overwhelm the
term cbk

4/2 in the brackets of Eq. (75) for small values of
k, or equivalently the second term can overwhelm the first
term in the parentheses of Eq. (73) for small values of K . In
Fig. 2, each of the curves is above the line for small values
of K . When K is smaller than the value at the intersection,

the term due to the ambient near-criticality combined with the
preferential attraction overwhelms the term due to the bending
rigidity. The intersection occurs at a smaller value of K as λ

is smaller, and in particular occurs at sufficiently small K for
λ 
 1.

Around the room temperature, for example, aqueous solu-
tions of 2-methyl propanoic acid and 1-propoxy 2-propanol
respectively have the upper and lower consolute points [38].
It is probable, however, that the structure of the lipid-bilayer
membrane is disordered when it is immersed in either of these
solutions, considering that it has the affinity to alcohol [39].
Thus, these solutions would not be available for experimental
check of our result. In the coacervation of aqueous solutions
of elastin-related polypeptides, the lower consolute points
are around the room temperature [40]. The vesicle made of
the lipid-bilayer membrane can contain polyethylene glycol
and dextran aqueous solution [41], which has the demixing
critical point around room temperature [42]. Our result may
be observed in either of these polymer solutions if not blurred
by the polymer dynamics. Sodium dodecyl-sulphate (SDS),
water, and pentanol form a lamellar phase with dodecane being
the solvent [43]. Adding some fluorocarbon to the solvent,
we may check our result experimentally, considering that
perfluoroheptane and isooctane have the upper consolute point
around room temperature [44].

For the membrane of SDS, pentanol, and water, we have
cb/2 = 2.1kBT ≈ 10−20 J according to previous experimental
studies [45]. The coefficient of the square gradient term,
sometimes called the influence parameter, is related to the
direct correlation function [46], and is linked with the
interfacial tension in the two-phase region [47]. The parameter
can be defined in general for each pair of the components,
A-A, B-B, and A-B. The parameter of the last pair can be
regarded roughly as the geometric mean of the parameters
of the first two pairs [48]. We can write Eq. (2) in terms
of ϕ by assuming negligibly small compressibility of the
binary mixture. We cannot find out the data for the influence
parameters of perfluoroheptane and isooctane (or dodecane),
but can obtain an estimate for M of their mixture or a similar
mixture from the data for the pure fluid of alkane. Its influence
parameter is larger with the number of carbons per alkane
molecule [49], and is 10−16 m7/(s2 kg) for decane [50]. Using
the Gaussian model in our formulation, we can neglect the
weak power dependence of M on the correlation length [26].

The interval between SDS molecules in the membrane of
SDS, pentanol, and water is approximately 1 nm [45]. The
second integral of Eq. (2) may be attributed to the hydrogen
bonding if it is involved [15]. Its energy is typically around
kBT . The mass density of a mixture of perfluoroheptane and
isooctane (or dodecane) is roughly 1g/cm3. Using these values,
for this mixture or a similar mixture we have an estimate h ≈
10−6 m3/s2, which may be overestimated because the mixture
and membrane would not involve the hydrogen bonding.
Writing Tc for the critical temperature, we have ξc ≈ 3 nm at
T − Tc = 6 K for the critical mixture of trimethylpentane and
perfluoroheptane [51]. Substituting these values into Eq. (44),
we estimate λ to be 10−1 or smaller for the membrane of
SDS, pentanol, and water in a mixture of perfluoroheptane and
isooctane (or dodecane). Let us next estimate λ similarly by
supposing the lipid-bilayer membrane in an aqueous solution.
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An estimate of M can be obtained from the data of the influence
parameter for water [50] and is about 102 times larger than the
estimate for decane in units of m7/(s2 kg) because of the
smaller molecular weight. For the lipid-bilayer membrane,
the bending rigidity is 10−19 J [52], and the interval of lipid
molecules is a little smaller than that of the SDS molecules
mentioned above [53]. These estimates lead to λ = 10−2 for
ξc = 3 nm.

As mentioned in the fourth paragraph of Sec. I, for our
formulation to be valid, k−1 should be much larger than the
membrane thickness, which is 4–5 nm for the membranes
considered above [45,53]. Judging from the values of K at
the intersections in Fig. 2, the term due to the ambient near-
criticality becomes larger than the term due to the bending
rigidity in Eqs. (73) and (75) when k−1 is larger than about
1.5 × 10 nm (1.5 × 102 nm) for λ = 10−1 (10−2). It remains
to be studied, however, whether the assumption of the weak
preferential attraction is valid for these values of k and λ.

VII. SUMMARY AND OUTLOOK

In this paper, we consider the undulation amplitude of
a fluid membrane immersed in a near-critical binary fluid
mixture. The preferential attraction, represented by the second
integral of Eq. (2), causes the adsorption layer, which is
remarkable because of the near-criticality. The additional
force is generated by the resultant gradient of the order
parameter, ∇ϕ. The ambient mixture is not a simple bath
having a homogeneous chemical potential independent of the
membrane motion. Our problem is simplified as mentioned in
the fourth paragraph of Sec. I. Within the linear approximation
with respect to the undulation amplitude, we arrive at a set of
simultaneous equations given by Eqs. (41)–(43). We solve
them by assuming the Gaussian model and |λ| 
 1 in Sec. IV.
See Eq. (44) for the definition of λ. These assumptions break
down and numerical procedure would be required to solve the
equations if we consider longer correlation length, stronger
preferential attraction, and smaller influence parameter.

After calculations in Sec. IV, we find that the restoring force
is given by the sum in the brackets of Eq. (73) [54]. This leads
to Eq. (75), which gives the mean squared amplitude for each
wave number. See the last paragraph of Sec. V for detailed
discussion. We thus find that the ambient near-criticality
combined with the preferential attraction tends to suppress
the undulation. A large membrane may be prevented from
becoming floppy even if the lateral tension vanishes at the
equilibrium. Possible experimental setup to check our results
is discussed in the fourth paragraph of the preceding section.
The profile of ϕ near a surface is measured by means of the
reflectivity and the ellipsometry [15]. The profile contains a
factor hξc/M in Eq. (27) [55]. The term due to the ambient
near-criticality in Eq. (75) has another factor 2h2/(Mξc). Thus,
we may obtain values of M and h by measuring the profile of
ϕ near a membrane fixed on some substrate and the thermal
undulation of the membrane suspended in a near-critical binary
fluid mixture.

Our theory presupposes that the semi-infinite regions on
both sides of the membrane are occupied by fluids sharing
the same properties. This presupposition of symmetric sur-
roundings should be given up in considering the surfactant

monolayer at the oil-water interface. The near-criticality on
one side can also be expected to suppress the undulation
amplitude, which remains to be studied. It is interesting to
calculate how the interval between stacked membranes is
changed by the near-criticality of the intercalated fluids. To do
this, we should study the finite-size effect of the surrounding
fluids by also considering the interaction between membranes
due to the critical adsorption [17]. This line of study may
suggest realization of a photonic device responding to small
temperature change.
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APPENDIX: A SPURIOUS WAY OF CALCULATING WITH
THE μ-ζ CORRELATION NEGLECTED

Applying the equilibrium statistical physics to our system
naively, one may expect the following procedure to be another
way to Eq. (75). However, as mentioned in the second
paragraph of Sec. VI, it cannot be an alternative when the
fluctuations of the chemical potential and membrane shape are
correlated through the preferential attraction. To clarify this
claim, we below show the naive procedure explicitly.

Equation (2) is a functional dependent on ϕ and ζ ; we
add the subscript ζ to Ce and ∂C to specify the regions for a
given membrane shape ζ . Apart from the membrane energy
independent of ϕ, if the equilibrium property were determined
only by Eq. (2), the probability distribution of ϕ and ζ would
be proportional to the exponential function of the quotient of∫

Ce
ζ

d r f̌ (ϕ,∇ϕ) +
∫

∂Cζ

dS fs(ϕ) (A1)

divided by −kBT , where f̌ is defined as the difference of μ(0)ϕ

subtracted from the integrand of the first integral in Eq. (2).
We use Eq. (52) and regard fs as the linear function mentioned
above Eq. (12). The deviation of ζ from zero and that of ϕ

from ϕ(0), denoted by ϕ1, cause the deviation of Eq. (A1). We
obtain this deviation, denoted by δ�, by subtracting∫

Ce
0

d r f̌ (ϕ(0),∇ϕ(0)) +
∫

∂C0

dS fs(ϕ
(0)) (A2)

from Eq. (A1). If necessary to clarify the description, the
superscript ↑ (↓) is added to a quantity and the region of the
surrounding fluid on the positive-z (negative-z) side.

We rewrite the first term of Eq. (A2) as the sum of∫
C

e↑
ζ

d r f̌ (ϕ(0)↑,∇ϕ(0)↑) +
∫

C
e↓
ζ

d r f̌ (ϕ(0)↓,∇ϕ(0)↓) (A3)

and the integral of

∫ ζ (x,y)

0
dz {f̌ (ϕ(0)↑,∇ϕ(0)↑) − f̌ (ϕ(0)↓,∇ϕ(0)↓)} (A4)
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with respect to x and y over the region considered in Eq. (34).
Thus, subtracting Eq. (A2) from Eq. (A1), we encounter a term∫

C
e↑
ζ

d r {f̌ (ϕ↑,∇ϕ↑) − f̌ (ϕ(0)↑,∇ϕ(0)↑)}, (A5)

the integrand of which is rewritten as

1
2

(
aϕ

↑2
1 + M|∇ϕ

↑
1 |2) + M∇ · (ϕ↑

1 ∇ϕ(0)↑) (A6)

with the aid of Eq. (24). Up to the order of ζ 2, Eq. (A4)
equals −2h2ζ 2/(Mξc) because of Eq. (27). The second term
of Eq. (A1) is rewritten as the integral of√

1 +
(

∂ζ

∂x

)2

+
(

∂ζ

∂y

)2

{fs(ϕ↑(ζ )) + fs(ϕ↓(ζ ))} (A7)

with respect to x and y over the region considered in Eq. (34).
In the above, we have

fs(ϕ↑(ζ )) = fs(ϕ(0)↑(0+)) − hϕ
↑
1 (ζ )

−h

{
ζϕ(0)↑′

(0+) + ζ 2

2
ϕ(0)↑′′

(0+)

}
(A8)

with the higher-order terms neglected. Hence, we use Eqs. (24)
and (26) to obtain

δ�[ϕ1,ζ ]

=
∫

Ce
ζ

d r
1

2

(
aϕ2

1 + M|∇ϕ1|2
)

+
∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[
hζ 2

Mξc
− hζ

ξc
{ϕ↑

1 (ζ ) − ϕ
↓
1 (ζ )}

+
{(

∂ζ

∂x

)2

+
(

∂ζ

∂y

)2
}

fs(ϕ(0)(0+))

]
(A9)

up to the second order with respect to ϕ1 and ζ .

Let us minimize Eq. (A9) with ζ fixed. The stationary
condition gives

(a − M�) ϕ1 = 0 for z 	= ζ and

Mn · ∇ϕ1 = −hζ

ξc
at z = ζ. (A10)

Let φ denote ϕ1 satisfying the above and ϕ1 → 0 as |z| → ∞.
We can obtain φ by using Eqs. (53)–(56) with Q put equal
to zero, i.e., with the chemical potential being homogeneous.
The Fourier transform of φ↑ with respect to x and y is given
by

φ̃↑(k,z) = hζ̃ (k)

MK1
e−K1z/ξc (A11)

up to the order of ζ . The corresponding result for φ̃↓(k,z)
coincides with −φ̃↑(k, − z). Thus, φ is different from εϕ(1)

in the text. We integrate the probability distribution of ζ

and ϕ1 with respect to ϕ1 to obtain that of ζ . The result is
proportional to the minimum of the former distribution with
ζ being fixed because the distribution is Gaussian. Thus, if
the equilibrium property were determined only by Eq. (2), the
probability distribution functional of ζ would be proportional
to e−δ�[φ,ζ ]/(kBT ), where δ�[φ,ζ ] is found to be

l2
∑

k

ζ̃ (k)ζ̃ (−k)

{
h2

Mξc
ď(K) + fs(ϕ(0)(0+))k2

}
, (A12)

where we use ď(K) ≡ 1 − K−1
1 . We can compare the potential-

energy part in Eq. (74) with Eq. (A12) after the terms from the
bending energy and the membrane pressure are supplemented.
Thus, d(K) in the procedure of the text is replaced by
ď(K) according to the procedure of this Appendix, which is
inappropriate for the reason stated in the second paragraph of
Sec. VI. We have ď(K) ≈ K2/2 for K 
 1, and thus even the
approximate expressions for small K are different between
d(K) and ď(K). Hence, under a given ζ , the profiles of ϕ in
the two procedures should be totally different.
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