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Scaled-particle theory analysis of cylindrical cavities in solution
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The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which
takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work
required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an
end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length
from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed
is applied to extend Reiss’s classic implementation of scaled-particle theory and a previously developed revised
scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular
simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic
scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation
and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted
to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones
solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to
correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand,
provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial
free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical
scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of
neglected higher-order curvature dependences on the solvation free energy.
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I. INTRODUCTION

The solubility and conformation of a solute in solution
is ultimately dictated by the size and shape dependence
of its solvation free energy. One of the earliest molecular-
based approaches used to describe the solvation of solutes
of varying size is scaled-particle theory (SPT) proposed by
Reiss and co-workers [1–3]. The original implementation
of SPT describes the solvation of hard-sphere (HS) solutes
over all size scales by enforcing a smooth juncture between
exact results for the dissolution of microscopic solutes and
a phenomenological thermodynamic curvature expansion for
the free energy of creating a macroscopic volume within the
solvent. Scaled-particle theory was subsequently used to derive
analytical expressions for the equation of state of HS fluids
and the interfacial free energy of realistic and HS solvents.
When applied to realistic solvents with attractive interactions
and molecular topology, however, Reiss’s classic application
of SPT (CSPT) treats the solvent as effectively monatomic
utilizing an empirically determined hard-sphere diameter.

Following the successes of SPT, the theory was applied to
correlate the dissolution of nonpolar gases in aqueous solution,
where water is assumed within CSPT to be a monatomic
solvent with an effective diameter of ∼2.8 Å [4–6]. Stillinger
demonstrated, however, that CSPT applied to hydrophobic
hydration predicts a thermodynamically incorrect, nonmono-
tonic temperature dependence of the surface tension of water
displaying a maximum well above the normal boiling point
[7]. Henderson furthermore showed CSPT applied to liquids
near coexistence incorrectly predicts that the surface tension
is a decreasing function of pressure [8], while molecular
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simulations find that the surface tension displays a maximum
with increasing pressure as a result of the formation of
a vaporlike layer enshrouding the solute in solvents near
coexistence [9–11]. To overcome these shortcomings Stillinger
incorporated the pair-correlation function, equation of state,
and surface tension of water in a reformulated SPT to
ensure that the theory conformed to the experimentally known
microscopic and macroscopic limits. Following Stillinger,
Ashbaugh and Pratt developed a revised SPT (RSPT) in which
multibody solvent correlations determined from simulations
are used to provide an improved description of molecular-scale
solvation. Revised SPT has successfully been applied to
quantitatively evaluate the solvation free energy of spherical
solutes in water [12] and waterlike [13] solvents as well as
Lennard-Jones [11,14] and organic solvents [15,16].

Scaled-particle theory and SPT related theories have been
extended to consider fluids composed of convex bodies
[17–21], random fiber networks [22], and nonmonatomic
molecular solvents [15,23,24]. Application of SPT to the
dissolution of nonspherical solutes, however, has been mini-
mal. Recently, a SPT treatment of spherocylindrical cavitylike
solutes has been put forward [25]; however, the proposed
framework employs an ad hoc formulation of the solute’s
solvent accessible volume and utilizes a polynomial expansion
for the free energy over a range of solute sizes where the
underlying expression diverges [26]. Hadwiger’s theorem
[27], on the other hand, can be used to develop a top-down
morphometric expansion of the solvation free energy of solutes
of varying shape in terms of the solute volume, area, mean,
and Gaussian curvatures [28,29]. This morphometric approach
has been used to examine the interfacial free energies of
growing spherical and infinitely long cylindrical solutes in a
HS fluid [30] and aqueous solutions [31]. Utilizing expansion
coefficients for HS solvents determined analytically from
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fundamental measure theory [32], the morphometric approach
has been successfully used to describe an even broader range
of solute shapes, including cubes, cones, and prisms [33], as
well as the colloidal depletion forces in mixtures of hard
spheres and ellipsoids [34]. The morphometric approach,
however, breaks down when the solute size is comparable to the
solvent correlation length, where solvent packing and specific
interactions impact solvation. This opens up the potential to
build bridges between the microscopic solvation free energies
derived from SPT and macroscopic morphometric approaches
to develop descriptions of solvation applicable over the entire
range of solute size and shape.

As a step toward extending SPT to nonspherical solute sol-
vation, we presently examine the dissolution of spherocylindri-
cal cavities in monatomic solvents. In the following section we
consider the process of growing a spherocylindrical cavity in
solution and use our findings to develop an analytical extension
of CSPT for spherical solutes to elongated spherocylinders.
Furthermore, we extend the RSPT originally developed for
spherical cavities to describe cylinder dissolution in the limit of
an infinitely long cylinder. We subsequently test the application
of the theoretical framework developed here using Monte
Carlo simulations of two different monatomic fluids, the HS
and Lennard-Jones (LJ) solvents. The HS solvent allows us
to examine the impact of packing interactions, while the LJ
solvent allows us to examine the impact of attractive solvent
interactions on dissolution near liquid-vapor coexistence.

II. THEORY

A. Cylinder growth in solution

The chemical potential of a hard cavitylike solute in solution
formally is

μcav(ν) = kT ln
(
ρcav�

3
cav/qrot

) − kT ln p0(ν), (1)

where ν is the solvent-excluding volume of the cavity devoid of
solvent centers, kT is the product of Boltzmann’s constant and
the absolute temperature, ρcav is the solute number density
in solution, �cav is the thermal de Broglie wavelength of
the solute, and qrot is the rotational partition function of the
solute. The quantity p0(ν) represents the probability that a
stencil of the same shape and volume of the solute randomly
placed in solution is spontaneously devoid of solvent centers.
The first term on the right-hand side of Eq. (1) is the ideal
contribution to the chemical potential resulting from molecular
interactions, i.e., μex

cav(ν) = −kT ln p0(ν). While the ideal
contribution is analytically known and independent of the
solvent medium, the excess contribution is generally more
complicated because it depends on multibody correlations.
While p0(ν) is readily evaluated for solutes comparable in
size to the solvent by passive observation during molecular
simulations, accurate determination of the probability for
larger solutes is problematic due to the increasing rarity of
volume-emptying fluctuations.

Rather than passive observation of solvent fluctuations, SPT
takes the alternate view that the chemical potential can be
obtained from the work of growing a hard solute from nothing
to an empty cavity of the size and shape of interest, similar to
inflating a balloon. The process of growing a spherocylinder
into solution can be thought of as occurring in two steps

FIG. 1. Spherocylindrical cavity scaled-particle theory growth
scheme. In the first step, an empty spherical cavity is grown in
solvent from nothing to a final radius R. The variable r measures
the intermediate radius of the growing cavity from 0 to R in Eq. (1).
In the second step, the spherical cavity is elongated along the central
cylindrical axis to a final length of L. The variable λ measures the
intermediate length of the extending spherocylinder from 0 to L in
Eq. (3). The shaded end of the spherocylinder indicates the region
over which the contact correlation function is averaged to determine
the mean end cap contact correlation function Ḡcap(R,λ) used in
Eq. (3).

(Fig. 1). In the first step, a spherical cavity is grown from
nothing to a solvent-excluding radius R. In the second step,
the spherical solute is extended along one axis to a length L

from the edge of one spherical cap to the other.
The excess chemical potential for growing a spherical

cavitylike solute with zero cylindrical length into solution
(Fig. 1, step 1) from SPT is [1]

βμex
cav(R,L = 0) = kTρ

∫ R

0
G(r)4πr2dr. (2)

The function G(r), referred to as the contact correlation
function, reports the contact values of the solute cavity-solvent
radial distribution function for solute cavities with solvent-
excluding radius r , while ρ is the solvent number density. The
grouping of terms kTρG(r) has units of pressure and 4πr2dr

is a differential volume element, so Eq. (2) corresponds to the
pressure-volume work to grow cavities into solution.

Extending the SPT formalism to the second step of the
cylinder growth process where the initially spherical cavity
is elongated along the cylindrical axis (Fig. 1, step 2), the
contact correlation function is replaced by the mean contact
value of the cavity-solvent pair-correlation function averaged
over the surface of either spherical end cap of the growing
cylinder. The free-energy difference between the spherical and
spherocylindrical cavities is then

μex
cav(R,L) − μex

cav(R,0) = kTρ

∫ L

0
Ḡcap(R,λ)πR2dλ, (3)

where Ḡcap(R,λ) is the mean end cap contact correlation
function, which depends on the spherocylinder length λ

but plateaus at a finite value with increasing length. A
formal description of the mean contact correlation function
is discussed in Refs. [35,36]. For a spherical cavity that
has a cylindrical length of zero, the mean end cap contact
correlation function is equal to the spherical contact correlation
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function, i.e., Ḡcap(R,0) = G(R). Summing the free energies
of the first and second steps, the solvation free energy of the
spherocylindrical cavity is

μex
cav(R,L) = kTρ

∫ R

0
Ḡcap(r,0)4πr2dr

+ kTρ

∫ L

0
Ḡcap(R,λ)πR2dλ. (4)

The challenge for determining the excess chemical potential
of spherocylinder then is determining Ḡcap(R,λ).

If we assume that Ḡcap(R,λ) is insensitive to the sphe-
rocylinder length we can equate the mean end cap contact
correlation function with the contact correlation function of
a sphere of the same radius, i.e., Ḡcap(R,λ) = Ḡcap(R,0),
referred to here as the end cap approximation. Following
this approximation, the excess chemical potential of the
spherocylinder is

μex
cav(R,L) ≈ kTρ

∫ R

0
Ḡcap(r,0)4πr2dr

+ kTρḠcap(R,0)πR2L (5)

This expression notably predicts the intuitive expectation
that the free energy scales as the cylinder length for sufficiently
long cavities. For an infinitely long cylinder, the free energy
per unit length predicted by the end cap approximation is

lim
L→∞

βμex
cav(R,L)σ/L = ρḠcap(R,0)πR2σ, (6)

where β = 1/kT and σ is the diameter of a solvent molecule.
Following a macroscopic phenomenological thermodynamic
curvature expansion, the free energy of solvating a cylinder
is determined to leading order as the bulk pressure P times
the volume plus the interfacial free energy of creating a flat
interface γ∞ times the area. The resulting expansion for the
free energy per unit length for an infinitely long cylinder is

lim
L→∞

βμex
cav(R,L)σ/L = βPπR2σ + βγ∞2πRσ + O(R0).

(7)

Comparing Eqs. (6) and (7), we obtain the expansion for
the contact correlation function of a spherical cavity

Ḡcap(R,0) = βP/ρ + 2βγ∞/ρR + O(R−2), (8)

which matches expectations for a macroscopic spherical
cavity, giving confidence that the end cap approximation is
reasonable.

While the free energy for growing a cavity into solution
is independent of the path used, the mean end cap contact
correlation function discussed above is only useful for eval-
uation of the free energy following the steps in Fig. 1 in the
order presented. If the spherocylinder is inflated from a needle
of length L and radius 0 to a final radius R, then the mean
contact correlation averaged over the solute surface, not just
the end caps, as a function of the radius is required. For an
infinitely long cylinder, the free energy per unit length can
be obtained from an integral analogous to that for a spherical
cavity [Eq. (2)]

lim
L→∞

βμex
cav(R,L)σ/L = ρσ

∫ R

0
G∞

c (r)2πr dr, (9)

where the cylinder contact correlation function G∞
c (r) is the

contact value of the pair-correlation function in the radial
direction between an infinitely long cylinder of radius r and
the solvent. The contact function is subsequently determined
by the derivative

G∞
c (R) = lim

L→∞
1

2πρLR

dβμex
cav(R,L)

dR
. (10)

Substituting Eq. (4) into Eq. (10) and taking the appropriate
limit, we obtain

G∞
c (R) = Ḡcap(R,∞) + R

2

dḠcap(R,∞)

dR
, (11)

which arises from the expectation that Ḡcap(R,λ) asymp-
totically plateaus with increasing length. Assuming length
independence, we obtain

G∞
c (R) ≈ Ḡcap(R,0) + R

2

dḠcap(R,0)

dR
(12)

as the end cap approximation result for the contact correlation
normal to the surface of an infinite cylinder. This expression
provides a basis for assessing the accuracy of the end cap ap-
proximation by direct comparison with molecular simulation.

B. Classic scaled-particle theory

By enforcing a smooth juncture between the known analyt-
ical limit for submolecular cavities and a phenomenological
curvature expansion for macroscopic cavities, Reiss and co-
workers derived the following CSPT expression for the solvent
contact correlation function for a spherical cavity [1–3]:

Ḡcap(R,0) =
⎧⎨
⎩

1
1−η(2R/σs )3 , R � σs/2

βP

ρ
+ [ 2+η

(1−η)2 − 2βP

ρ

](
σs

2R

) + [− 1+2η

(1−η)2 + βP

ρ

](
σs

2R

)2
, R > σs/2.

(13)

In this expression σs is the effective solvent diameter and η = πρσ 3
s /6 is the solvent packing fraction. The effective solvent

diameter is equal to the actual diameter σ of a HS solvent but is treated as an adjustable fitting parameter for solvents with more
realistic interactions. This contact correlation function forms the basis of CSPT. Substituting the CSPT expression for Ḡcap(R,0)
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into Eq. (2), the excess chemical potential of a hard-sphere cavity is

βμex
cav(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ln[1 − η(2R/σs)3], R � σs/2[− ln(1 − η) + 9η2

2(1−η)2 − ηβP

ρ

] + [− 3η(1+2η)
(1−η)2 + 3ηβP

ρ

](
2R
σs

)
+ [ 3η(2+η)

2(1−η)2 − 3ηβP

ρ

](
2R
σs

)2 + ηβP

ρ

(
2R
σs

)3
, R > σs/2.

(14)

Classic SPT has been used extensively to model spherical cavity dissolution in a wide range of solvents [2,4,5,15,22–24].
Recognizing for the HS solvent that a cavity of radius σ is identical to a solvent particle, the pressure can be derived by requiring
self-consistency between the virial expression for the pressure, i.e., βP/ρ = 1 + 4ηḠcap(σ,0), and the contact correlation
evaluated from Eq. (13). The HS equation of state derived from CSPT is [1]

βPSPT

ρ
= 1 + η + η2

(1 − η)3 , (15)

which is identical to that evaluated by integrating the HS compressibility determined from Percus-Yevick integral equation
theory [37].

Following the end cap approximation, CSPT predicts that the chemical potential of a spherocylindrical cavity is

βμex
cav(R,L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ln[1 − η(2R/σs)3] + 3η/2
1−η(2R/σs )3

(
2R
σs

)2( L
σs

)
, R � σs/2

[− ln(1 − η) + 9η2

2(1−η)2 − ηβP

ρ

] + [− 3η(1+2η)
(1−η)2 + 3ηβP

ρ

](
2R
σs

) + [ 3η(2+η)
2(1−η)2 − 3ηβP

ρ

](
2R
σs

)2 + ηβP

ρ

(
2R
σs

)3

+ 3η

2

{
βP

ρ

(
2R
σs

)2 + [ 2+η

(1−η)2 − 2βP

ρ

](
2R
σs

) + [− 1+2η

(1−η)2 + βP

ρ

]}(
L
σs

)
, R > σs/2.

(16)

For R > σs/2 this expression conforms to the results of Benzi et al. obtained following an alternate expansion [38]. In the limit
of an infinite cylinder, the chemical potential per unit length is

lim
L→∞

βμex
cav(R,L)σs

L
=

⎧⎨
⎩

3η/2
1−η(2R/σs )3

(
2R
σs

)2
, R � σs/2

3η

2

{
βP

ρ

(
2R
σs

)2 + [ 2+η

(1−η)2 − 2βP

ρ

](
2R
σs

) + [− 1+2η

(1−η)2 + βP

ρ

]}
, R > σs/2.

(17)

The corresponding expression for the cylinder contact correlation function normal to the surface of an infinite cylinder is

G∞
c (R) =

⎧⎨
⎩

1+(η/2)(2R/σs )3

[1−η(2R/σs )3]
2 , R � σs/2

βP

ρ
+ 1

2

[ 2+η

(1−η)2 − 2βP

ρ

](
σs

2R

)
, R > σs/2.

(18)

Equations (16)–(18) can be specialized to the hard-sphere solvent by substituting the hard-sphere equation of state (15) for the
pressure. We note that while G∞

c (R) in Eq. (18) is continuous at R = σs/2, its first derivative is not, which can potentially result
in qualitative errors in the description of cylinder solvation.

In addition to predicting the equation of state of a HS fluid CSPT also predicts an expression for evaluating the interfacial free
energy against a flat hard interface. By comparing Eq. (18) with Eq. (8), the interfacial free energy is

βγ∞σ 2 = 3η

π

[
2 + η

2(1 − η)2 − βP

ρ

]
, (19)

which can be compared to simulation measurements of the interfacial free energy to assess the accuracy of CSPT at describing
the solvation of macroscopic surfaces.

C. Revised scaled-particle theory

When applied to solvents with realistic interactions, many of the assumptions underlying the development of CSPT are more
uncertain and can result in erroneous predictions, like the surface tension of water exhibiting a nonmonotonic dependence on
temperature [7] and qualitatively incorrect shapes of the contact correlation function for organic liquids [15,23,24]. To address
these difficulties, Stillinger took an empirical outlook and built a SPT framework applied to cavities in aqueous solution that
utilized the experimentally determined water oxygen pair correlations to account in part for the solvent structure in conjunction
with the known interfacial free energy, bulk pressure, and density of water [7]. Following Stillinger’s philosophy, we developed
a revised SPT description of cavity solvation that combines results from molecular simulations for small cavity solvation, to
account for multibody solvent correlations, with the phenomenological curvature expansion for large cavities [12]. Revised SPT
has been successfully used to describe cavity solvation in water [12], organic [15], and LJ [11,14] solvents over a range of
temperatures and pressures. A full description of the development of RSPT to describe spherical cavity solvation is provided in
Refs. [11,12,14,15]. Here we describe the application of RSPT to infinitely long cylindrical cavities.
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Revised SPT describes cavity solvation from microscopic to macroscopic radii by smoothly interpolating the excess chemical
potential between values directly determined from particle insertion averages evaluated from simulations for microscopic cavities
and the thermodynamic curvature expansion for macroscopic cavities. For an infinitely long cylindrical cavity, the excess chemical
potential per unit length as described by RSPT is

lim
L→∞

βμex
cav(R,L)σ/L = −f (R) ln p∞

0 (R) + [1 − f (R)]�(R). (20)

In this expression, f (R) is a switching function equal to 1 below Rsim and 0 above Rmacro that smoothly interpolates between
these two bounds. We adopt a cubic form for the function f (R) that smoothly switches the simulation and macroscopic chemical
potentials between Rsim and Rmacro,

f (R) =

⎧⎪⎨
⎪⎩

1, R < Rsim

1 − 3 (R−Rsim)2

(Rmacro−Rsim)2 + 2 (R−Rsim)3

(Rmacro−Rsim)3 , Rsim � R � Rmacro

0, R > Rmacro.

(21)

The probability p∞
0 (R) in Eq. (20), evaluated from

molecular simulations for microscopic cavities, represents
the infinite-cylinder-length limit of the cylinder insertion
probability raised to the power of σ/L, i.e., p∞

0 (R) =
limL→∞p0(R,L)σ/L. While p0(R,L → ∞) is zero for a cylin-
der of any radius greater than zero, since cavity overlap with
one or more solvent molecules is guaranteed in this limit, the
free energy of cavity solvation is expected to be proportional to
the cylinder length with increasing size. Resultantly, p0(R,L)
is expected to exponentially decay to zero with increasing
cylinder length so that p∞

0 (R) is a well-defined function
of radius alone. The remaining function in Eq. (20), �(R),
represents the macroscopic curvature expansion for excess
chemical potential given as

�(R) = βPπσR2 + βγ∞2πσR + βλ2πσ − βω2πσ

R

− βϕπσ

R2
. (22)

We truncate this expression after order R−2 contributions
where molecular packing and specific correlations are assumed
to dominate. As above, P is the bulk solvent pressure, γ∞ is
the interfacial free energy for creating a hard flat surface in
the solvent, and λ, ω, and ϕ are higher-order contributions in
a curvature expansion of the free energy.

For cavities larger than the solvent, the contact correlation
function is readily accessible by direct simulation of an explicit
hard cylinder in solution. In this case, RSPT is more accurately
applied by fitting to simulation contact values rather than the
chemical potential as implied by Eq. (20). By differentiating
Eq. (20) with respect to R, the RSPT expression for the contact
correlation function is

G∞
c (R) =− f (R)

2πρσR

∂lnp∞
0 (R)

∂R
− lnp∞

0 (R)

2πρσR

∂f (R)

∂R

+
(

βP

ρ
+ βγ∞

ρR
+ βω

ρR3
+ βϕ

ρR4

)
[1 − f (R)]

−
(

βPR

2ρ
+ βγ∞

ρ
+ βλ

ρR
− βω

ρR2
− βϕ

2ρR3

)

× ∂f (R)

∂R
. (23)

The range of cavity radii for which G∞
c (R) can be accu-

rately determined from cavity insertion and smoothly knit
together with the phenomenological macroscopic expansion
determines the switching bounds Rsim and Rmacro. While the
solvent density and pressure are taken from the bulk solvent
simulations, the remaining parameters γ∞, λ, ω, and ϕ are
obtained from a least-squares fit to the solvated cylinder
simulation results.

III. SIMULATION DETAILS

To examine the application of SPT to cylindrical cavity
solvation we have performed simulations of the HS and LJ
solvents. In the case of the HS fluid we considered densities
ranging from gas to liquidlike, while for the LJ fluid we
examined a single liquid state point close to vapor-liquid
coexistence. In addition to simulations of cylindrical cavities,
we have also modeled spherical cavities in a HS solvent in
order to test the accuracy of the end cap approximation. In the
case of spherical cavities in the LJ solvent, we use results we
previously reported in the Ref. [14]. Below we describe the
series of simulations conducted for each system.

For the HS fluid, four different sets of grand canonical
Monte Carlo simulations [39] were performed to evaluate
averages required to fit RSPT to contact correlations for
both spherical and cylindrical cavities. Simulations were
performed with the solvent chemical potential adjusted so that
the nominal average bulk density is ρσ 3 = 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, and 0.85. In the first two sets of simulations,
the pure solvent was simulated to evaluate spherical and
cylindrical cavity insertion probabilities p0(R) and p∞

0 (R),
respectively. To evaluate spherical cavity insertion proba-
bilities, a periodic cubic cell 10σ in length on a side was
simulated. Following at least 109 solvent insertion, deletion,
and translational moves within the grand canonical ensemble
for equilibration, a total of 5 × 109 solvent insertion, deletion,
and translational moves were performed for evaluation of
thermodynamic averages. Spherical cavity insertion probabil-
ities were periodically evaluated by attempting 2000 random
insertions following every 25 000 grand canonical moves.

Evaluation of cavity insertion probabilities is more chal-
lenging for an infinitely long cylindrical cavity since an infinite
number of solvent centers can fit within a cylinder of finite
radius, leading to a zero probability of insertion. As noted
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above, however, p∞
0 (R) ≈ p0(R,L)σ/L is expected to be finite

in the infinite-length limit. To evaluate p0(R,L)σ/L we have
performed simulations of cubic cells 6σ and 8σ in length on
a side. Grand canonical simulations were conducted for the
same equilibration and production lengths as for the spherical
cavities. Similarly, 2000 infinite cylindrical cavity insertions
were attempted every 25 000 grand canonical moves. For
each insertion attempt we randomly selected the x, y, or z

axis to align the cylinder and randomly choose a point on
the plane normal to the alignment axis to center the cavity.
Within the simulation errors, we found quantitative agreement
between the probabilities p0(R,L)σ/L obtained for the 6σ and
8σ simulation box sizes, giving confidence that our estimates
of the infinite-cylinder limit, i.e., p∞

0 (R), are accurate. We
subsequently used our results for the 6σ box for RSPT
analysis.

In a second set of simulations, we determined contact cor-
relation functions at discrete cavity radii by direct simulation
of explicit spherical and cylindrical cavities solvated in the
HS solvent. Grand canonical Monte Carlo simulations were
performed at the same densities listed in for the insertion
simulations above. Explicit spherical and cylindrical cavity
solvent-excluding radii of 0.25σ , 0.5σ , 0.75σ , 1σ , 1.5σ ,
2σ , 2.5σ , 3σ , 3.5σ , 4σ , 4.5σ , and 5σ were simulated. The
cylindrical cavities were aligned along the x axis of the
simulation box to model an infinite rod. For the spherical cavity
simulations, the cell side length was set to the cavity diameter
plus 12σ to provide a buffer between the periodic images. For
the cylindrical cavity, the box length in the x direction along
the cylinder length was 10σ , while the box length in the y

and z directions was set to the cylinder diameter plus 16σ .
For both the spherical and cylindrical cavities, the simulations
were equilibrated by performing at least 109 solvent insertion,
deletion, and translational moves. Following equilibration,
1010 solvent insertion, deletion, and translational moves were
performed for evaluation of thermodynamic averages.

To examine the effects of solvent attractions we performed
simulations of cylindrical cavities in a LJ solvent near
coexistence where attractions are expected to play a significant
role. Following the HS simulations, we performed two sets of
simulations with and without the cavity explicitly included to
evaluate the averages required to fit RSPT. We have previously
performed extensive simulations of spherical cavities in the
LJ solvent [14], so here we only performed simulations of
cylindrical cavity solvation. The LJ solvent was modeled using
the cut-shifted interaction

ϕcut(r) =
{
ϕLJ(r) − ϕLJ(rc), r < rc

0, r � rc,
(24)

with no long-range interaction corrections. In this expression
ϕLJ(r) = 4ε(σ 12/r12 − σ 6/r6) is the full interaction, ε and
σ in the context of the LJ solvent are the well depth and
diameter, respectively, and rc = 2.5σ is the LJ interaction
cutoff separation. Our simulations in the LJ fluid were
performed in the grand canonical ensemble at a temperature
of kT /ε = 0.85 with the chemical potential adjusted to
give a liquid density of ρσ 3 = 0.70 and a corresponding
pressure of Pε/σ 3 = 0.023, which we previously found lies
just above the solvent vapor pressure at this temperature

[14]. Additional state points were not considered since these
simulations take considerably longer than the HS solvent
owing to the range of the LJ potential.

To determine the cylindrical cavity insertion probabilities
the same simulation procedures as for the HS solvent described
above were used, with the same box sizes to check the
accuracy of our estimate for the infinite-cylinder-length limit.
For the second set of simulations, an explicit cylindrical cavity
was included in the simulation box to directly determine the
solvent contact densities. For the cylindrical cavity, the box
length in the x direction along the cylinder length was 10σ ,
while the box length in the y and z directions was set to the
cylinder diameter plus 12σ . Explicit cylindrical cavity radii of
0.25σ , 0.5σ , 0.75σ , 1σ , 1.5σ , 2σ , 2.5σ , 3σ , 3.5σ , 4σ , 4.5σ ,
and 5σ were examined. These simulations were equilibrated
by performing at least 109 solvent insertion, deletion, and
translational moves. Following equilibration, 1010 solvent
insertion, deletion, and translational moves were performed
for evaluation of thermodynamic averages.

IV. RESULTS AND DISCUSSION

A. Hard-sphere solvent

The contact correlation’s of a HS solvent at ρσ 3 = 0.8 in
contact with a spherical cavity and an infinitely long cylindrical
cavity as a function of their radii is reported in Fig. 2. The
contact correlation determined by explicit simulation of solute
cavities shows that the contact density monotonically grows
with radius for both the spherical and cylindrical cavities.
The growth of the contact correlations appears to approach an
asymptotic plateau with increasing radius, consistent with the
expected contact density for a flat interface of βP/ρ = 7.75
(Table I) as dictated by the wall theorem [40]. Compared
against the spherical solute, the cylinder’s contact correlation
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FIG. 2. (Color online) Comparison of the contact correlation for
a HS solvent against spherical and infinitely long cylindrical cavities
at a density of ρσ 3 = 0.8. Results are reported for simulations,
CSPT [Eqs. (13) and (18)], the fit of spherical RSPT to the spherical
cavity simulations [11,14], and predictions of the cylindrical contact
correlation using the end cap approximation [Eq. (12)]. The symbols
are identified in the legend. Simulation error bars are smaller than the
symbols. The spherical RSPT fit used cubic switching function (21)
parameters of Rsim = 0.75σ and Rmacro = 1σ .
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TABLE I. Compressibility factor βP/ρ and interfacial free energy βγ∞σ 2 for creating a flat interface against a hard surface for the simulated
systems. The first column reports the simulation densities. The second and third columns report the compressibility factors determined from
simulation and CSPT [Eq. (15)]. The fourth and fifth columns report the interfacial free energies determined from fits of RSPT to cylindrical
and spherical geometries, while the final column reports the interfacial free energy predicted by CSPT [Eq. (19)]. The top rows report results
for the HS solvent and the final row reports results for the LJ solvent. The numbers in parentheses identify the simulation error in the last
reported digit.

βP/ρ βγ∞σ 2

ρσ 3 Simulation CSPT Cylinder Sphere CSPTa

HS solvent
0.100 1.24268(5) 1.23989 −0.0056(2) −0.0055(1) −0.0049
0.200 1.5501(2) 1.5547 −0.0223(5) −0.0220(3) −0.0242
0.300 1.9635(4) 1.9724 −0.0650(4) −0.661(7) −0.0682
0.400 2.5187(1) 2.5341 −0.1550(7) −0.1547(9) −0.1534
0.499 3.2642(3) 3.3011 −0.309(1) −0.312(2) −0.3066
0.599 4.2871(3) 4.3686 −0.572(2) −0.579(1) −0.5729
0.699 5.7140(2) 5.8859 −1.012(2) −1.024(2) −1.0285
0.799 7.7501(4) 8.0926 −1.74(3) −1.767(5) −1.8052
0.848 9.086(1) 9.563 −2.38(8) −2.357(9) −2.3783

LJ solvent (kT /ε = 0.85)
0.700 0.0387(2) 0.441(5) 0.419(7) 1.0169

aσs = 1σ for all calculations presented in this column.

grows more quickly with increasing radius. This difference
can be rationalized in terms of the lower curvature of a
cylinder (1/R) that is closer to a flat surface compared to the
curvature of a sphere (2/R). Classic SPT qualitatively captures
the spherical and cylindrical contact correlations, although
the contact values are generally greater than that observed
from simulation (Fig. 2). This overprediction of the contact
value reflects the overprediction of the pressure by Eq. (15)
(Table I), ultimately giving rise to a larger predicted contact
value of the HS density at a flat wall. Spherical RSPT, on the
other hand, provides an excellent quantitative description of
the contact correlation of the HS solvent solvating a spherical
cavity (Fig. 2), in agreement with previous studies of spherical
cavity solvation in water [12], hexane [15], and the LJ liquid
[11,14]. Utilizing the RSPT fit to the spherical cavity, we can
predict the contact correlation of the cylinder using the end cap
approximation [Eq. (12)]. As can be seen in Fig. 2, the end cap
approximation provides an excellent quantitative prediction of
the radial contact correlation of the cylindrical cavity.

End cap approximation predictions of the cylinder contact
correlation as a function of the HS solvent density utilizing
RSPT fits to spherical cavity contact correlation are excellent
[Fig. 3(a)]. The largest discrepancy between the predicted
contact correlations and those observed by direct simulation is
found for cylindrical cavities of radius 0.25σ . Revised SPT
applied to cylindrical cavities overcomes this discrepancy,
however, by incorporating small-radius insertion results from
simulation into fits of Eq. (23) to the explicit simulation
contact values [Fig. 3(b)]. The differences between simulation,
the RSPT fits, and end cap predictions for small cavities
(R < 0.5σ ) are more clearly observed when G∞

c (R) − 1 is
plotted versus radius on a log-log scale (Fig. 4). While
RSPT accurately describes the contact correlation, the end
cap approximation underpredicts the contact values for radii
less than ∼0.5σ . More importantly, we observe a steeper

slope on the logarithmic scale for the end cap approximation
than observed from the cylindrical RSPT fit, indicating that
this approximation overpredicts the scaling exponent of the
dependence of the contact correlation on radius.

To derive an approximate form for G∞
c (R) in the small-

radius limit we consider a permeable cylindrical observation
volume embedded within the solvent under periodic boundary
conditions, analogous to the simulations used to determine
small-cylinder insertion probabilities for RSPT. As the ob-
servation cylinder’s radius approaches zero, we assume that
the maximum number of solvent centers observed within the
volume is 2, although multiple solvent centers may potentially
fit in principle. The probability pi of observing i = 0, 1, or
2 solvent centers within the observation volume satisfies the
equations [41]

p0 + p1 + p2 = 1, (25a)

p1 + 2p2 = 〈n〉 = ρπR2L, (25b)

p1 + 4p2 = 〈n2〉 = ρπR2L + ρ2
∫∫

V

g(|r − r′|)dr dr′,

(25c)

where n indicates the number of solvent centers within the
observation volume (V = πR2L) at any instant and g(r) is the
solvent radial distribution function. Assuming that the solvent
radial distribution function is described by the low-density HS
radial distribution function (a step function jumping from 0
to 1 at r = σ ) and the integral in Eq. (25c) can be treated as
pseudo-one-dimensional for small-radius cylinders, the mean
square number of solvent centers is approximately

〈n2〉 ≈ ρπR2L + ρ2π2R4L2 − 2ρ2σπ2R4L. (26)
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FIG. 3. (Color online) Contact correlations for a hard-sphere sol-
vent against an infinitely long cylindrical cavity at different densities.
The solvent densities reported are ρσ 3 = 0.1, 0.3, 0.5, 0.7, and 0.85,
with the direction of increasing density indicated by the red arrow. The
closed circles indicate simulation results. Simulation error bars are
smaller than the symbols. The lines indicate (a) predictions of the end
cap approximation [Eq. (12)] using RSPT contact correlations fitted
to spherical cavity simulations and (b) fits of the cylindrical RSPT
[Eq. (23)] to the simulation results. The blue arrow in (a) indicates the
small-radius region where the end cap approximation underpredicts
the contact correlation. The spherical RSPT fits used cubic switching
function (21) parameters of Rsim = 0.75σ and Rmacro = 1σ , while the
cylindrical RSPT fits used Rsim = 0.4σ and Rmacro = 0.65σ .

The probability that the solute observation volume is empty is
subsequently given as

p0(R,L) = 1 − ρπR2L + ρ2π2R4L2

2
− ρ2σπ2R4L. (27)

Substituting Eq. (27) into Eq. (10) and expanding in terms of
the cylinder radius, the leading contribution to order R2 of the
contact correlation is

G∞
c (R → 0) ≈ 1 + 2ρσπR2 + O(R4). (28)

The contact correlation is thereby expected to grow as the
radius squared in the small-radius limit, while the end cap
approximation predicts a cubic dependence, e.g., Eq. (18).
This difference reflects the differing dependence of the
volume of a cylinder and sphere on radius. We note that
while assuming only one solvent particle at most is found
within the observation volume in the small-radius limit, i.e.,
p0(R,L) = 1 − ρπR2L, yields the correct contact value of
one when the radius is zero, the R2 contribution to G∞

c

also includes cylindrical length contributions that diverge in
the infinite-cylinder limit. Incorporation of pair correlations
[Eq. (26)], albeit in an approximate manner, permits evaluation
of the leading-order dependence of the contact correlation on
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FIG. 4. (Color online) Small-radius behavior of the cylindrical
contact correlation of an infinitely long cylinder with a HS solvent.
Results were obtained at densities of (a) ρσ 3 = 0.1 and (b) ρσ 3 =
0.85. Results are reported from simulation of explicit cylinders in
solution, fits of the cylindrical RSPT [Eq. (23)] to the simulation
results, predictions of the end cap approximation [Eq. (12)], and
the low-density probability expansion [Eq. (28)]. The symbols are
identified in the legend.

the cylinder radius, however, the higher-order terms (R4 and
above) diverge. It may be surmised that increasing orders of
multibody correlations must be utilized to evaluate higher-
order radial contributions, attributable to the fact that an infinite
number of solvent molecules can fit within an infinitely long
cylinder with a nonzero radius.

Despite the approximations made, Eq. (28) provides a
significantly improved prediction of the contact correlation in
the small-radius limit compared to the end cap approximation
(Fig. 4). For the lowest density simulated (ρσ 3 = 0.1) Eq. (28)
provides a nearly quantitative prediction of the contact correla-
tion up to R = 0.5σ , reflecting the accuracy of the assumptions
underlying Eqs. (25) and (26) at low density. Even at the
highest density simulated Eq. (28) provides a semiquantitative
description of the small-radius contact correlation. More
importantly, Eq. (28) more accurately captures the contact
correlation small-radius scaling behavior than predicted by
the end cap approximation, providing physical insights into the
shortcomings of the end cap approximation for small-radius
cylinders.

The interfacial tension for creating flat interface in the HS
solvent obtained by fitting RSPT to either the cylindrical or
spherical cavity contact densities are in excellent agreement
with each other over the entire range of densities simulated
(Fig. 5 and Table I). Moreover, our results generally agree
with those obtained from HS simulations following alternate
thermodynamic routes [42–44]. Despite the fact that CSPT
overpredicts the contact correlation for both spherical and
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FIG. 5. (Color online) Surface tension of a hard-sphere solvent as
a function of the fluid density. Results from CSPT [Eq. (19)] and fits
of RSPT to both spherical and cylindrical contact correlations from
simulation are reported. Data are reported in Table I. The symbols
are identified in the legend. The RSPT fit error bars are smaller than
the symbols.

cylindrical cavities, the CSPT interfacial tension prediction
[Eq. (19)] is in excellent agreement with the RSPT fits (Fig. 5
and Table I), differing by less than 1% at the highest densities
simulated. At densities approaching HS freezing (ρσ 3 ≈ 0.94)
Eq. (19) is known to become more inaccurate [44].

The excess solvation free energy per unit length for cylindri-
cal cavities in HS solvents is readily obtained by integrating
the contact correlations described above using Eq. (9). The
free energy for cylinders at a solvent density of ρσ 3 = 0.8
is reported in Fig. 6. The free energies obtained depend
approximately quadratically on the cylinder radius. This
dependence results from the dominance of the macroscopic
pressure contribution to the free energy (βP/ρ = 7.75 at this

0

50

100

150

0 0.5 1 1.5 2 2.5 3

CSPT
"sphere end" approx.
rSPT

μex
βμ

ca
vσ/
L

R/σ

end cap approx.
cylinder RSPT

FIG. 6. (Color online) Solvation free energy per unit length of an
infinitely long cylindrical cavity in a HS solvent at ρσ 3 = 0.8. Results
are reported for CSPT [Eq. (17)], the end cap approximation, and
cylinder RSPT. The end cap and cylinder RSPT results are obtained
by substituting the contact correlations analogous to those reported
in Figs. 3(a) and 3(b), respectively, into Eq. (9). The symbols are
identified in the legend.

state point as noted above, significantly greater than the ideal
gas pressure or a liquid near vapor coexistence), even for
cavities with radii less than 3σ . Given the accuracy of RSPT
at reproducing the cylinder contact correlations [Fig. 3(b)],
RSPT is expected to provide the most accurate quantitative
value of the cylinder solvation free energy. The free energy
obtained from the end cap approximation is in near perfect
agreement with that obtained from RSPT, differing by less
than 0.02% at R = 3σ . Classic SPT, on the other hand,
overpredicts the RSPT free energy by 4.8% at R = 3σ . This
difference reflects CSPT’s overprediction of the HS solvent
pressure (Table I), which could be alleviated by substituting
the simulation pressure or a more accurate HS equation of
state in the expression for the contact correlation. Substitution
of pressures differing from Eq. (15), however, can lead to
discrepancies in the predicted interfacial free energy and
solvation properties of solvent-sized and smaller cavities.

B. Lennard-Jones solvent near coexistence

The RSPT fit to simulation values of the contact correlation
for infinitely long cylinders in a LJ solvent at kT /ε = 0.85 and
Pσ 3/ε = 0.023, close to liquid-vapor coexistence, is reported
in Fig. 7(a). The overall fit is excellent over the range of
cylinder radii simulated, giving further confidence in the utility
of RSPT applied to a range of solvents. In difference to the
HS solvent, the cylinder contact correlation function in the LJ
solvent exhibits a maximum at a radius just slightly greater
than σ/2. Following the maximum, the contact correlation
rapidly falls to values below one at radii comparable to the
solvent diameter, indicative of a vaporlike layer surrounding
the cylinder. With growing radial size, the contact density is
expected to asymptotically approach the bulk compressibility
factor for the saturated liquid (βP/ρ = 0.0387), which is
necessarily less than the bulk liquid density as a result of
condensed phase attractions that nearly perfectly balance the
ideal gas contribution to the pressure along the saturation
curve. The interfacial free energy obtained from fitting RSPT
to cylinder contact densities is in good agreement with that we
obtained previously fitting to spherical cavities (Table I) [14],
differing by only 5%. The surface tension of the LJ solvent
is positive in difference to the hard-sphere solvent, which is
manifested as the decay in the contact correlation function to
the bulk compressibility limit for the LJ solvent [Fig. 7(a)]
rather than the monotonic rise towards the limit observed for
the HS solvent (Fig. 2).

While CSPT provides a reasonable semiquantitative de-
scription of cylinder solvation in the HS solvent, its description
of the cylinder contact correlation function in the LJ solvent
is problematic [Fig. 7(b)]. Classic SPT using an effective
diameter of σs = 1σ significantly overpredicts the contact
densities observed for cylinders of increasing size, resulting
from a significant overprediction by more than a factor of
2 of the interfacial free energy (Table I). Moreover, CSPT
applied to cylinder solvation predicts a sharp cusp at the
maximum in the contact correlation for cavities with a radius
of R = σs/2. While the approximations used to extend CSPT
from spherical to cylindrical cavities maintain continuity of
the contact correlation function at the joining point between
the microscopic and macroscopic descriptions of solvation,
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FIG. 7. (Color online) Comparison of the contact correlation for
a LJ solvent against spherical and infinitely long cylindrical cavities.
The solvent is at a reduced temperature of kT /ε = 0.85 and pressure
of Pσ 3/ε = 0.023 (ρσ 3 = 0.699), which lies on the liquid side of
the liquid-vapor coexistence curve. (a) Results are presented for
the contact correlation from simulations of an explicit cylinder, the
cylinder RSPT fit [Eq. (23)] to the simulation results, previously
reported spherical RSPT in Ref. [14], and predictions of the end
cap approximation using the spherical RSPT contact correlation
[Eq. (12)]. (b) Comparison of the cylinder RSPT fit in (a) against
CSPT predictions [Eq. (18)] obtained for σs = 1σ and 0.792σ .
The symbols are identified in the legend. The cylindrical RSPT
fit used cubic switching function (21) parameters Rsim = 0.4σ and
Rmacro = 0.65σ . While the RSPT fit was carried out to a maximum
simulated cavity radius of 5σ , we only show results up to 3σ here to
more clearly view the results for smaller-radius solutes.

they do not enforce continuity of the first derivative of the
contact correlation required to ensure a smooth function. This
results in the cusp observed for cavity solvation in the LJ
solvent. A discontinuity in the first derivative of the CSPT
prediction for the contact correlation function occurs at the
joining point for the HS solvent as well, but since the contact
correlation in the HS solvent is monotonically increasing over
all cylinder radii the discontinuity is not readily observed by
eye (Fig. 2). If we fit the effective CSPT solvent diameter
to the interfacial tension obtained from RSPT (Table I) we
obtain an unphysically low value of σs = 0.792σ , well inside
the excluded volume of any individual solvent particle. The
cylinder contact correlation function predicted by CSPT using
the fitted solvent diameter accurately tracks the RSPT result for
radii greater than 2σ [Fig. 7(b)], which is not surprising given
that the fitted diameter brings CSPT into conformity with the
expected macroscopic radial dependence. For molecular-scale
cylinders with radii less than 2σ , however, the fitted CSPT
underpredicts G∞

c (R < 2σ ) while retaining the joining cusp.
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FIG. 8. (Color online) Solvation free energy per unit length of an
infinitely long cylindrical cavity in a LJ liquid at kT /ε = 0.85 and
Pσ 3/ε = 0.023. Results are reported from the cylinder RSPT fit to
the simulation results, predicted from the end cap approximation, and
CSPT using σs = 1σ and 0.792σ [Eq. (17)].

The end cap approximation provides an improved pre-
diction of G∞

c (R) utilizing the contact correlation function
previously obtained from RSPT applied to spherical cavities
[Fig. 7(a)] over CSPT [14]. Specifically, the end cap approx-
imation is in near quantitative agreement with the cylindrical
RSPT fit for radii greater than 1σ . For radii near 0.5σ the end
cap approximation overpredicts the contact density by ∼30%.
More importantly, the end cap approximation predicts that
G∞

c (R) is smooth with a maximum near 0.5σ , in qualitative
agreement with the cylindrical RSPT fit. An interesting
consequence of the end cap approximation [Eq. (12)] is that
the predicted G∞

c (R) will intersect Ḡcap(R,0) at the radius for
which Ḡcap(R,0) is a maximum. Comparing the cylindrical and
spherical RSPT contact correlation fits to simulation, however,
we find that this prediction is incorrect [Fig. 7(a)].

The cylinder excess solvation free energies per unit length
in the LJ solvent determined by integrating the cylinder
contact correlation are reported in Fig. 8. Along the saturation
curve, the pressure of the LJ solvent is considerably less than
that in the HS solvent. For the cavity radii reported in this
figure (R < 3σ ) then, interfacial rather than pressure effects
dominate the free energy. As a result, the solvation free energy
is effectively linear with radius for cylinders just larger than
the solvent diameter, with a magnitude significantly less than
that reported for the HS solvent (Fig. 6). Using an effective
solvent diameter of 1σ , CSPT predicts too strong a dependence
of the free energy on radius compared to RSPT. While CSPT
correctly reproduces changes in the free energy with changes
in cylinder radii for sizes greater than ∼1.5σ using the fitted
solvent diameter of 0.792σ , the absolute free energy measured
relative to a cavity radius of zero is underpredicted by a
constant difference of �βμex

cavσ/L = −2.4. These trends
follow from the overpredicted interfacial free energy using
σs = 1σ (Table I) and the underpredicted contact structure for
molecular-sized cavities using σs = 0.792σ [Fig. 7(b)]. The
end cap approximation, on the other hand, provides a signif-
icantly improved prediction of the cylinder free energy over
the entire range of cylinder sizes reported in Fig. 8, differing

042315-10



SCALED-PARTICLE THEORY ANALYSIS OF . . . PHYSICAL REVIEW E 91, 042315 (2015)

only by a smaller constant difference of �βμex
cavσ/L = 0.9

for radii lager than 1σ . The superior prediction of the end cap
approximation over CSPT using the fitted solvent diameter, in
turn, can be traced to the improved description of the cylinder
contact correlation and incorporation of higher-order curvature
contributions [Fig. 7(a)].

V. CONCLUSION

We have presented a detailed analysis of the solvation of
hard spherocylinder solutes over a range of densities in the
case of the HS fluid and at a single liquid state point close
to liquid-vapor coexistence in the case of the LJ fluid. Three
SPT based approaches were developed to describe cylinder
solvation: an analytical approach founded on the CSPT
originally developed by Reiss and co-workers; an extension
of the RSPT we previously developed to correlate radial
solvent contact densities about an infinitely long cylindrical
solute; and a physically grounded approximation, referred
to as the end cap approximation, that extends results for
spherical solutes to spherocylinders of any desired length.
Results from these three approaches were compared against
molecular simulations of infinitely long cylinders. Fitting of
RSPT was shown to quantitatively describe the cylindrical con-
tact correlations observed from simulation, yielding accurate
interfacial free energies consistent with results obtained from
spherical solutes and following an alternate thermodynamic
approaches. As such, free energies obtained from RSPT can be
considered quantitatively accurate. Nevertheless, the cylinder

RSPT expression developed here only applies to infinitely
long cylinders. The CSPT and end cap predictions, on the
other hand, can be applied to spherocylinders of finite length.
Comparing the predictions of CSPT to infinitely long cylinders
against RSPT fits, CSPT was found to overestimate the free
energy of cylinders in HS fluids as a result of the overestimation
of the solvent pressure. In the case of the LJ solvent, CSPT
predicts physically unrealistic cusps in the solvent contact
correlation that cannot be alleviated even when the effective
solvent diameter is considered an adjustable parameter. The
end cap approximation, on the other hand, provides essen-
tially quantitative agreement for the solvation free energy of
cylinders in both solvents. The contact correlations predicted
by the end cap approximation, moreover, were more physically
reasonable than those predicted by CSPT with improved
quantitative agreement over a wider range of cylinder radii.
The end cap approximation subsequently can be thought
of as an accurate predictive bridge between spherical and
spherocylindrical cavity solutes.
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