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Principal-component analysis of particle motion
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We demonstrate the application of principal-component analysis (PCA) to the analysis of particle motion data
in the form of a time series of images. PCA has the ability to resolve and isolate spatiotemporal patterns in the data.
Using simulated data, we show that this translates into the ability to separate individual frequency components
of the particle motion. We also show that PCA can be used to extract the fluid viscosity from images of particles
undergoing Brownian motion. PCA thus provides an efficient alternative to more traditional particle-tracking
methods for the analysis of microrheological data.
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I. INTRODUCTION

Principal-component analysis (PCA) [1,2], also known as
Karhunen-Loève transformation, is a statistical method for
extracting patterns from complex data sets and reducing the
dimension of complex signals. PCA involves transforming
a set of data into a linear superposition of orthogonal
components, arranged such that the first principal component
has the largest possible variance; i.e., it accounts for the largest
contribution to the variation in the data. Successive principal
components similarly have the maximum possible variance
subject to the orthogonality condition. By construction, the
first few principal components typically contain most of the
information embedded in the data, making PCA the basis of
very efficient data compression and spatiotemporal signal-
processing methods [3]. PCA has important applications in
fields such as biomedical science [4,5], neuroscience [6,7],
environmental science [8–10], image compression [11,12],
and image analysis [13].

In this paper, we demonstrate the application of PCA to
the analysis of particle motion, primarily in the context of
microrheological measurements. Microrheology involves the
analysis of thermally driven or externally forced motion of
micron-scale tracer particles suspended in a complex fluid
to determine the local viscoelastic properties of the fluid or to
study its microstructure [14–16]. In an active microrheological
experiment, an external force is applied to tracer particles
using, for example, optical tweezers, and the resulting response
of the particles is analyzed to give the information about the
viscoelastic properties of the fluid [14,16–21]. In a passive
multiple-particle-tracking experiment, the positions of many
tracer particles are recorded over time and the resulting time
series of images is analyzed to determine the mean squared
displacement of the particles as a function of lag time τ

[14–16,22,23]. The local frequency-dependent viscous and
elastic moduli can be determined from the mean squared
displacement using a generalized Stokes-Einstein rela-
tion [15,24]. Both types of experiment produce a set of
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spatiotemporal data in the form of a time series of images
which is well suited for analysis using PCA.

PCA differs from most commonly used particle-tracking
analysis methods in that the entire spatiotemporal data set
is analyzed as a whole, as opposed to identifying individual
particles in each image and reconstructing their trajecto-
ries [25,26]. Using simulated data, we demonstrate in Sec. II A
that PCA can resolve periodic particle motion with a range
of frequencies, and in Secs. II B and II C we show that
PCA provides an alternative to conventional particle-tracking
algorithms for determining the viscosity of Newtonian fluids
from microrheological data and for studying non-Newtonian
behavior, respectively. Our results demonstrate that PCA is a
promising tool for particle motion analysis.

Detailed introductions to PCA can be found in several
excellent references [1,3,27,28]. The decomposition of a data
set into its principal components is illustrated schematically
in Fig. 1. We consider spatiotemporal data in the form of a
time series of images. Each image consists of m pixels, and
images are recorded at discrete times t = 1,2, . . . ,T . While
in this paper we focus on the analysis of two-dimensional
particle motion, there is no restriction on the spatial dimension
of the data, and it is straightforward to apply our analysis
to three- or higher-dimensional images. The entire data set
can be represented as an m × T matrix X, each column of
which is a vector xi containing the image data recorded at
a particular time. Let W be a matrix whose rows are the
n principal-component vectors wi , normalized so that the
modulus squared |wi |2 = 1. A matrix Y can be calculated
via the transformation

Y =

⎡
⎢⎣

y1

y2
...

⎤
⎥⎦ = WX =

⎡
⎢⎣

w1

w2
...

⎤
⎥⎦ [x1 x2 . . .], (1)

and yi , the ith row of Y, is the time-dependent amplitude of
the principal component wi , as illustrated in Fig. 1.

The principal components wi are the eigenvectors of C =
XXT, which is proportional to the covariance matrix of X. The
matrix D, given by

D = YYT = WXXT WT = WC WT , (2)
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FIG. 1. (Color online) A schematic illustration of the decompo-
sition of an m × T data matrix X into its principal components wi .
The vectors yi are the time courses of the corresponding principal
components.

is diagonal, and the diagonal elements of D are its eigenvalues.
The ith diagonal element of D, which we label as D(i), is the
variance associated with wi . The principal components are
sorted according to magnitude of D(i), with D(1) = max{D(i)}
[1]. For low-noise signals, the amount of information embed-
ded in each principal component is related to the corresponding
variance: components with a larger variance carry a larger
portion of the information from the original signal. Most of
the information in the signal is therefore preserved by keeping
only the first few principal components. X is conventionally
centered on zero by subtracting its mean before applying PCA,
but this process inevitably results in the loss of the physical
information embedded in the average signal. To avoid this,
we did not center X in the present work. In this case, the
first principal component is just the average signal. The PCA
calculations in this paper were performed using software [29]
written in Matlab [30].

For concreteness in the following discussion, we assume
that each image in the data set has a fixed number of particles
n in the field of view, and that each particle occupies k pixels.
Assuming that the particle concentration is small enough that
particles do not overlap (as would normally be the case in
a microrheological experiment [23]), p = kn pixels will be
occupied. Occupied pixels have a value I , and vacant pixels
are 0, as illustrated in Fig. 1. The pixel values change with
time as the tracer particles move. As noted above, each two-
dimensional image is reshaped to form one column of the data
matrix X, so that each row of X corresponds to a given spatial
location (pixel) and each column to a particular time.

II. RESULTS

A. Periodic motion

In a typical active microrheology experiment, tracer parti-
cles would be driven, and would all respond, at a single known
frequency. In other applications, however, nonlinear coupling
between individual oscillators can lead them to respond at
different frequencies. One example comes from neuroscience,
in which coupled oscillations in cortical circuits have been
studied using the Kuramoto model [31]. We demonstrate here
that such systems can be studied by taking advantage of the
frequency-resolving ability of PCA, which we illustrate by
analyzing images of particles undergoing periodic motion.
We created a simulated data set comprising 300 images of

600 × 800 pixels, with a simulated frame rate of 10 s−1.
Five groups of 10 particles were placed randomly in the
first image. The particles moved in simple harmonic motion
with random orientation and an amplitude of 50 pixels, with
each group oscillating at a different frequency. The data were
decomposed using PCA [29] into principal components wi and
their respective time courses yi . The results are summarized
in Fig. 2.

w1, the principal component with the largest variance, is
shown in the left-hand panel of Fig. 2(a). Its time course y1

is shown in the inset in the right panel of Fig. 2(a), and the

FIG. 2. (Color online) The results of PCA of simulated data for
particles undergoing simple harmonic motion. The left-hand panels
of (a)–(e) show the first, second, fourth, fifth, and ninth principal
components, respectively. The inset on the corresponding right-hand
panel shows the time course of the principal component, and the
power spectrum is plotted in the main graph of the right-hand panel,
with all y-axis units arbitrary. (a) The first principal component is
the time average of the data. Its time course is roughly constant, and
there is no strong peak (other than that at zero frequency) in the
power spectrum. The other principal components shown in (b)–(e)
selectively pick out oscillations at frequencies 0.5 Hz, 0.167 Hz, 0.2
Hz, and 0.1 Hz respectively. Oscillations at 0.056 Hz were not isolated
by any principal component.
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Fourier power spectrum of y1 in the main plot on the right
of Fig. 2(a). This principal component represents the average
state of the system and, as discussed above, could be eliminated
by subtracting the time average of X from X. The probability
distribution function of the position z of a particle undergoing
harmonic oscillation about the origin with an amplitude A

is [32] f (z) = π−1(A2 − z2)−1/2, and the image of w1 reflects
this distribution for each particle in the data set. Since it
includes information from all particles, its time course y1 is
roughly constant; its power spectrum is peaked at 0 frequency
and shows no other significant features.

The other leading principal components tend to pick
out oscillations of a certain frequency. As illustrated in
Fig. 2(b)–2(e), w2, w4, w5, and w9 are dominated by motion
at frequencies 0.5, 0.167, 0.2, and 0.1 Hz, respectively, these
being the oscillation frequencies of four of the five groups
of particles in the data. The most prominent features in the
images of these principal components are the end points of the
trajectories of particles oscillating at the selected frequency,
and the power spectra of the corresponding time courses y2, y4,
y5, and y9 have single strong peaks at the selected frequency.
For our simulated data, PCA is able to cleanly separate motion
at frequencies that differ by only 20%, and its frequency
selectivity would presumably be higher for a longer data set.
The fifth set of particles in the data oscillated at 0.056 Hz. This
low frequency was not detected by our analysis, presumably
because the length of the data set, which corresponded to
1.68 oscillation periods at this frequency, was too short. Other
low-index principal components not shown in Fig. 2 contain
either harmonics or combinations of the fundamental particle
frequencies. As seen in the results shown in Fig. 2, PCA tends
to rank the principal components from high to low frequency,
indicating that higher-frequency oscillations contribute more
variance to the data. Similar results were obtained from data
in which small stochastic perturbations were added to the
oscillatory motion, indicating that the analysis is robust with
respect to small amounts of noise.

B. Viscosity determination

PCA can be used to determine the viscosity of a Newtonian
fluid from a series of images of tracer particles diffusing in
the fluid. These tracers undergo Brownian motion, and their
mean squared displacement 〈�r2〉 grows linearly with time t :
〈�r2(t)〉 = 2dDt , where d is the dimensionality and D is the
diffusion coefficient. For Brownian motion, the distribution of
particle displacements �r over a time interval period �t is
Gaussian with a standard deviation

σ =
√

2dD�t. (3)

For a single particle, the viscosity η is related to D by the
Stokes-Einstein relation,

η = kBT /2πadD, (4)

with kB the Boltzmann constant, T the absolute temperature,
and a the radius of the particle [33]. Although hydrodynamic
interactions between particles cause η to increase with particle
volume fraction [34], we neglect any such effects in this work.

From Eq. (3), a particular particle j whose original position
is μj will appear at position ξi in a subsequent frame with a

probability given by the distribution

f (ξi,μj ) = 1

σ
√

2π
exp

[
− (ξi − μj )2

2σ 2

]
, (5)

where σ is a function of �t as in Eq. (3). To maximize the
variance D(1), the elements of the first principal component w1

should have values determined by Eq. (5), summed over the p

occupied pixels. If the position ξi corresponds to the ith row
of the data matrix X, then the ith component of w1 will be

w1i =
p∑

j=1

α exp

[
− (ξi − μj )2

2σ 2

]
, (6)

where α is a normalization factor to be determined. From
Eq. (2), the variance associated with the first principal
component is then

D(1) = w1XXTwT
1 = I 2

T∑
t=1

( ∑
i=occ

w1i

)2

, (7)

where the second sum is over the p occupied pixels in the
image.

For simplicity we now consider the motion of a single
particle occupying a single pixel, in which case p = 1 and
we can drop the j subscript. The variance in the first principal
component is then

D(1) = I 2
T∑

t=1

{
α exp

[
− (ξ − μ)2

2σ 2

]}2

(8)

≈ I 2T

∫ {
α exp

[
− (ξ − μ)2

2σ 2

]}2

f (ξ,μ) dξ (9)

= I 2T
α2

σ
√

2π

∫ ∞

−∞

{
exp

[
− (ξ − μ)2

2σ 2

]}3

dξ (10)

= I 2T α2

√
3

. (11)

The normalization condition is

|w1|2 =
m∑

i=1

{
α exp

[
− (ξi − μ)2

2σ 2

]}2

(12)

≈ α2
∫ ∞

−∞

{
exp

[
− (ξ − μ)2

2σ 2

]}2

dξ (13)

≈ α2σ
√

π = 1, (14)

from which α ≈ [1/(σπ1/2)]1/2. This finally gives

D(1) ≈ I 2T

σ
√

3π
. (15)

More generally, when p > 1

D(1) ≈
(

1√
3

+ p − 1

2

)
I 2T

σ
√

π
. (16)

The total variance of all m principal components is

Dtot =
m∑

i=1

D(i) = tr{C} =
m∑

i=1

T∑
t=1

x2
it = I 2Tp, (17)
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where xit is the (i,t) element of X. Dtot is constant for a given
data set, regardless of the details of the motion of the particles.
Using this, the fraction of the total variance accounted for by
the first principal component is

δ(1) = D(1)

Dtot
≈

(
1√
3

+ p − 1

2

)
1

pσ
√

π
. (18)

In a typical multiple-particle-tracking experiment [23], p � 1,
implying that

δ(1) ≈ 1/(2σ
√

π ). (19)

This behavior is illustrated in Fig. 3(a), which shows δ(1)

calculated from simulated data for 25 particles undergoing
random walks. Here σ is an input to the simulations and
determines the magnitude of the particle displacements at each
time step, and the results were calculated for a time interval
between images of �t = 1 time step (i.e., all images were used
in the analysis). Equivalently, for a fixed particle step size
(or in a real experiment), σ would be proportional to �t1/2

according to Eq. (3). The data in Fig. 3 show the predicted
1/σ dependence for σ � 0.3. δ(1) approaches 1 for small σ ,

FIG. 3. (Color online) (a) δ(1), the fraction of the total variance in
the data accounted for by the first principal component as a function
of σ for a simulation of 25 particles undergoing Brownian motion.
The inset shows the same data with linear axes. In both cases the
line is the prediction of Eq. (18). Panel (b) shows the fraction of the
total variance in the first s principal components for σ = 0.01 (solid
diamonds), 0.5 (open diamonds), 1 (solid squares), 2 (open squares),
4 (solid circles), and 20 (open circles) pixels.

indicating that the first principal component accounts for most
of the variance in the data set in this regime. As σ increases,
the other components become progressively more significant.

The low-σ plateau is not captured by the approximate
expression Eq. (18) (or Eq. (19)). This is due to the approxi-
mations made in Eqs. (8) and (12), and due to the assumption
that the particles are pointlike. In fact, each particle in our
simulations (and in real experiments) occupies a number of
pixels, and when σ is much smaller than the radius of the
particles, most of the occupied pixels do not change with time.
This implies that δ(1) does not depend strongly on σ , leading
to the low-σ plateau observed in Fig. 3(a). As σ is increased
and the particles move more, δ(1) decreases as 1/σ , in accord
with the prediction of Eq. (18).

Figure 3(b) shows the fraction of the total variance
accounted for by the first s principal components,

δs =
∑s

i=1 D(i)

Dtot
, (20)

for several values of σ for the same simulations. For small
σ , essentially all of the variance is in the first principal
component. As σ increases, the variances of the higher
principal components become comparable to D(1). In the
extreme case that σ → ∞, the data set is completely random
and all principal components have the same variance. In this
limit, δs grows linearly with s.

Equation (18) and the results plotted in Fig. 3 provide a
means of determining the diffusion constant D, and hence the
viscosity η, from a sequence of images of particles diffusing
in a liquid using PCA rather than the usual particle-tracking
methods. As an example, we constructed a simulated video
comprising 200 images of 25 particles undergoing Brownian
motion and analyzed it using PCA. The first two principal
components calculated from these data are shown in Fig. 4(a).

FIG. 4. (Color online) (a) The first two principal components and
(b) their time courses, calculated from simulated data on particles
undergoing Brownian motion. The insets at the bottom right of the
images in (a) are magnified views of the small regions outlined by
rectangles.
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As above, w1 is the time average of the complete data set. The
positive regions of w1 correspond to regions occupied more
frequently by particles, and their size is an indication of how
far the particles diffuse over the duration of the run. The time
course y1 of the first principal component, shown in Fig. 4(b),
is roughly constant. The image of w2 (and higher components
not shown) contains localized positive and negative regions
representing the end points of the particles’ trajectories, and
y2 varies quasisinusoidally as the particle diffuses from its
initial to its final location. By calculating δ(1), the fraction
of the total variance contained in w1, σ could be calculated
using Eq. (18) [or Eq. (19)], or from Fig. 3(a) as appropriate,
and η could then be determined using Eqs. (3) and (4). Note
that in order to obtain an accurate value for σ , one should
work in the regime where δ(1) shows a significant dependence
on σ , that is, away from the plateau around δ(1) = 1. In
this analysis, we have considered only the first principal
component; a more detailed analysis involving higher-order
components would be expected to give a more accurate
result.

C. More complex fluids

In complex fluids, the motion of suspended tracer particles
is affected by viscoelasticity and/or the microstructure of the
material [15,23,35–37]. In a material undergoing gelation,
for example, changes in material microstructure can lead to
temporally and spatially heterogeneous behavior which has
been studied using particle tracking techniques [36–39]. PCA
is also sensitive to these effects. Trapping or other factors
that restrict particle motion locally will result in variance-rich
regions in the data images, which appear as regions of high
intensity in the low-order principal components. This allows
trap locations and trapping times to be identified from analysis
of the principal components and their time courses. As an
example, Fig. 5 illustrates the results of PCA of a simulation
in which the step size of the diffusing particles decreases
linearly with time. This can be viewed as a crude model
for the progressive localization of the tracer particles due to
the evolution of material microstructure, for example, due to

FIG. 5. (Color online) PCA of simulations in which diffusing
particles become progressively more confined over time. (a) The first
principal component w1. The inset at the bottom left is a magnified
view of the small region outlined by the rectangle. (b) Its time
course y1 (solid line) and the rms displacement σ of the particles
in a single time step over the course of the simulations (dashed
line). y1 increases over time as the particles become less mobile,
while the image of w1 shows the areas to which the particles become
confined.

gelation. Figure 5(a) shows the first principal component w1

obtained from the simulated data; its time course is plotted as
a solid line in Fig. 5(b). The dashed line in Fig. 5(b) shows
the rms displacement of the particles in the simulation as a
function of time. In contrast to the case of simple Brownian
motion shown in Fig. 4, y1 is clearly not constant in the
present case, but rather increases with time as the particles
become more confined. The image of the principal component
provides information about local structure in the fluid by
indicating areas where the particle motion is more restricted,
while its time course gives information about the change in
variance over time. Together, they can be used to determine
the changes with time in the behavior of the tracer particles
and the properties of the fluid.

III. DISCUSSION AND CONCLUSION

PCA is well suited to the extraction of information from
spatiotemporal data sets. In this paper we have demonstrated
the potential of PCA as a tool for the analysis of sequences of
images of tracer particles suspended in fluids, such as would
be generated in microrheological studies.

Analysis of simulated data for harmonically oscillating
particles showed that the first principal component provides
information about the probability distribution of the particles’
position. The orthogonality of the principal components
gives PCA the ability to decompose the particle motion
into its individual component frequencies. In this case PCA
behaves similarly to Fourier analysis, although, apart from the
orthogonality condition, the two methods are mathematically
quite distinct. In the case of Fourier analysis, the basis vectors
are imposed a priori, while in PCA, the optimal eigenvectors
are determined as part of the calculation. It can be shown
that the Fourier transform is in fact the optimal decomposition
for a periodic time series [40,41]: the orthogonal principal
components wi obtained by singular value decomposition of
the covariance matrix(XXT) turn out to be the eigenstates of the
Fourier matrix. Projection of wi onto X then gives a sinusoidal
time course yi , as in Fourier transformation.

We showed that PCA can be used as an alternative to particle
tracking methods to determine fluid viscosity from images
of particles undergoing Brownian motion through Eq. (18)
[or Eq. (19)]. Our analysis of diffusion in Sec. II B was ap-
proximate, being based only on the first principal component.
Accuracy would likely be improved if the contributions of
higher components were explicitly accounted for. We also
demonstrated the ability of PCA to capture time-varying
fluid properties through simulation of progressive localization
behavior of tracer particle.

PCA has certain advantages over standard particle-tracking
algorithms. It treats the entire data set globally, rather than
identifying particles in each image and reconstructing trajecto-
ries from frame to frame. Because of this, PCA is not subject to
the the ambiguities that can arise in particle-tracking methods
when particles move a distance comparable to their separation
between images, or when trajectories cross. On the other hand,
fluctuations in particle number and changes in intensity that
are unavoidable in experimental data may influence the PCA
results. The application of the methods described in this paper
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to experimental particle-tracking data will be the subject of
future work. Our preliminary attempts in this direction have
been encouraging but are not yet quantitatively accurate, due
largely to experimental noise and the above issues. In general,
the interpretation of PCA results is less straightforward than
for particle tracking, and more detailed theoretical analysis
is required to guide the application of PCA to data from
real microrheological experiments. In particular, it should

be straightforward to extend our methods to viscoelastic
fluids.
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