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Three-body critical Casimir forces
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Within mean-field theory we calculate universal scaling functions associated with critical Casimir forces for a
system consisting of three parallel cylindrical colloids immersed in a near-critical binary liquid mixture. For sev-
eral geometrical arrangements and boundary conditions at the surfaces of the colloids we study the force between
two colloidal particles in the direction normal to their axes, analyzing the influence of the presence of a third
particle on that force. Upon changing temperature or the relative positions of the particles we observe interesting
features such as a change of sign of this force caused by the presence of the third particle. We determine the three-
body component of the forces acting on one of the colloids by subtracting the pairwise forces from the total force.
The three-body contribution to the total critical Casimir force turns out to be more pronounced for small surface-
to-surface distances between the colloids as well as for temperatures close to criticality. Moreover, we compare
our results with similar ones for other physical systems such as three atoms interacting via van der Waals forces.
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I. INTRODUCTION

The study of many-body systems typically starts from
describing their interactions in terms of the sum of pair poten-
tials. Often it is advantageous and transparent to analyze such
systems via effective interactions which emerge via integrating
out certain degrees of freedom. This procedure, however, often
generates many-body forces, beyond the linear superposition
of basic pairwise forces. This kind of nonadditivity is present in
various systems such as colloidal suspensions [1–8], systems
governed by quantum-electrodynamic Casimir forces [9–14],
polymers [15–19], granular systems [20–22], nematic colloids
[23], and noble gases or nanoparticles with van der Waals
forces acting among them [24–31].

Here we study quantitatively the importance of such many-
body effects for critical Casimir forces (CCFs) [32–34]. These
long-ranged effective forces arise upon approaching the critical
point of the solvent due to the confinement of corresponding
order parameter fluctuations [35] and have been analyzed by
studying both theoretically and experimentally the effective
interaction between a single spherical colloid and a planar wall
[36–50], between two isolated spherical colloids [36–40], as
well as between two spherical colloids facing a homogeneous
planar wall [51].

Recently Dang and coauthors [7] have used effective pair
potentials between colloids, as inferred from experiments,
in order to perform Monte Carlo simulations of the phase
behavior of colloidal suspensions with near-critical solvents.
They have observed that many-body effects become rather
significant as the solvent is brought thermodynamically close
to a critical point. They have also found that many-body effects
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tend to decrease the net attraction between colloids, which
contrasts with previous results from mean-field calculations
for a system of two spherical colloids facing a planar
homogeneous substrate [51]. In the latter case it was shown
that many-body effects due to the presence of a substrate
do not exhibit a uniform trend but can either increase or
decrease the net attraction between colloids. In order to deepen
the understanding of many-body effects concerning critical
Casimir interactions we consider a system of three colloidal
particles under the influence of CCFs.

These forces are characterized by universal scaling func-
tions, which depend on the geometry of the configuration,
the thermodynamic state of the system, and the boundary
condition for the order parameter at the surface of the colloids.
In order to determine such universal scaling functions and
in face of the complexity of the geometry we resort to
mean-field theory (MFT), which captures these functions as
the leading contribution to their systematic expansion in terms
of ε = 4 − d, where d is the spatial dimension. To that end we
consider the standard Landau-Ginzburg-Wilson Hamiltonian
for critical phenomena, which is given by

H [φ] =
∫

V

ddr
{

1

2
(∇φ)2 + τ

2
φ2 + u

4!
φ4

}
, (1)

with appropriate boundary conditions (BCs). For the particular
case of a binary liquid mixture near its demixing point,
the order parameter φ(r,t) is proportional to the difference
between the local concentration of one of the two components
and its critical value. V is the volume completely filled by
the fluid, τ is proportional to the reduced temperature t =
(T − Tc)/Tc, and the coupling constant u > 0 stabilizes H
for t < 0. The bulk correlation length diverges upon approach-
ing the bulk critical point as ξ±(t → 0±) = ξ±

0 |t |−ν , where
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ν � 0.63 in d = 3 and ν = 1/2 in d = 4, i.e., within MFT
[52]. The two nonuniversal amplitudes ξ±

0 are of molecular
size and they form the universal ratio ξ+

0 /ξ−
0 ≈ 1.9 for d = 3

and ξ+
0 /ξ−

0 = √
2 for d = 4 [53]. The BCs account for

the adsorption preference of the confining surfaces (in the
present case, the surfaces of the three colloids) for one of the
two species of the mixture. From an experimental point of
view it is difficult to quantify the strength of the adsorption
preference. However, for the case of colloidal polystyrene
particles immersed in binary liquid mixtures of water and
lutidine there is a rather pronounced adsorption preference
[42–48]. Therefore we consider the critical adsorption fixed
point [54] with the BC φ|surface = ±∞ at a particle surface,
which we refer to as (±). Renormalization group theory tells
that for t → 0 the surface critical behavior of such systems
is the one corresponding to this fixed point, irrespective of
the actual strength of the adsorption preference for specific
systems [54].

The paper is organized as follows. In Sec. II we define
the system and the scaling functions for the CCFs, as well as
the normalization scheme. In Sec. III we present the numerical
results obtained for the universal scaling functions of the CCFs,
from which we extract and analyze the three-body effects. In
Sec. IV we summarize our results and draw some conclusions.

II. PHYSICAL SYSTEM

We study the CCFs acting on three colloidal particles
immersed in a near-critical binary liquid mixture, which is
at the critical concentration. The surfaces of the colloids are
considered to have a strong adsorption preference for one of
the two components of the mixture corresponding to (+) or (−)
BCs, respectively. We calculate the forces numerically within
the aforementioned MFT [see Eq. (1)].

In particular, we consider three three-dimensional, parallely
aligned cylinders of radii Ri with BCs (ai) at surface-to-surface
distances Lij , with i,j ∈ {1,2,3} and i 	= j (see Fig. 1). In
the context of CCFs such elongated particles have so far
been investigated only in three theoretical studies [47,55,56].
The BCs of the whole system are represented by the set
(a1,a2,a3), where a1, a2, and a3 can be either + or −. It is
important to mention that we discuss colloidal particles with
the shape of hypercylinders in d = 4 which are taken to be
parallel along the y direction as well as the fourth dimension
with macroscopically long hyperaxes in these two directions.
Considering such hypercylinders allows us to minimize H [φ]
numerically using a finite-element method [57] in order to
obtain the spatially inhomogeneous order parameter profile
φ(x,z) for the geometries under consideration. As compared
with the case of spherical colloids, the analysis for cylindrical
colloids is technically simpler because the system as a whole
is translationally invariant along all directions but two, i.e., x

and z (see Fig. 1). This reduction in the number of relevant
dimensions allows us to perform numerical calculations with
adequate precision for a range of various model parameters
which is wider than in the case of spherical colloids. It has
advantageously turned out that qualitative and quantitative
features of suitably normalized scaling functions of the CCF
acting on a cylindrical colloid facing a homogeneous or
inhomogeneous substrate are similar to the ones for a spherical

FIG. 1. (Color online) Cross section of three parallel cylindrical
colloidal particles of radii Ri (i = 1,2,3) with their axes parallel to
the y axis, immersed in a near-critical binary liquid mixture (not
shown). The three colloidal particles with BCs (ai) are located at
surface-to-surface distances Lij , with i,j ∈ {1,2,3} and i 	= j . In
the case of four spatial dimensions the figure shows a cross section
of the system, which is invariant also along the fourth direction,
so the cylinders correspond to parallel hypercylinders with two
translationally invariant directions, i.e., the y direction and the fourth
dimension.

colloid [47]. For example, the scaling functions for (++) BCs
at the colloids and the substrate exhibit minima at T > Tc

which are, however, located closer to Tc by a factor of 1.2 for
spherical colloids as compared to cylindrical colloids of same
radius. This quantitative difference is related to the fact that the
decay rate of the scaling function of the order parameter profile
for critical adsorption at colloids increases upon increasing the
local curvature of the colloids [58]. Accordingly, we anticipate
that our present results also capture the corresponding trends
for three spherical colloids.

We consider a binary liquid mixture at its critical concen-
tration and with an upper critical demixing point. For this
situation, t > 0 corresponds to the mixed, disordered phase
of the fluid, while t < 0 corresponds to the demixed, ordered
phase. The meaning of the sign has to be reversed if one
considers a lower critical point.

We are interested in the CCF F
(1,x)
(a1,a2,a3)(L12,L13,L23,R1,

R2,R3,t) acting on colloid (1) in the presence of the colloids
(2) and (3) along the x direction. It takes the scaling form

F
(1,x)
(a1,a2,a3)(L12,L13,L23,R1,R2,R3,t)

= kBT
R1

Ld
12

K
(1,x)
(a1,a2,a3)(�12,�13,�23,�12,�13,�23), (2)

where �ij = Lij/min(Ri,Rj ) and �ij = sgn(t)Lij/ξ±.
Equation (2) describes the contribution to the CCF along the
x axis that emerges upon approaching Tc. F (1,x) is the force
divided by the product of the lengths of the hypercylinder in
its d − 2 translationally invariant directions (see Fig. 1). We
analyze the scaling functions K

(1,x)
(a1,a2,a3) within MFT as given

by Eq. (1) for hypercylinders in d = 4, which captures the
correct scaling functions in d = 4 up to logarithmic corrections
occurring in the upper critical dimension dc [54,59], with
dc = 4 here.

As a reference system we consider two parallel cylindrical
colloids of the same size (R1 = R2 = R) with BCs (a1) and
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(a2) separated by a surface-to-surface distance L; their axes
are parallel to the y axis and their centers lie on the x

axis [see Fig. 1 in the absence of colloid (3)]. Colloid (1)
experiences a CCF, divided by the product of the lengths
of the hypercylinders in their d − 2 translationally invariant
directions,

F
(∗,x)
(a1,a2)(L,R,t) = kBT

R

Ld
K

(∗,x)
(a1,a2)

[
� = sgn(t)

L

ξ±
,� = L

R

]
.

(3)

In the following we normalize the scaling functions
K

(1,x)
(a1,a2,a3) by the quantity K

(∗,x)
(+,+)(� = 0,� = 1), which cor-

responds to the amplitude of the CCF acting at Tc on one
of the two colloids with (+,+) BCs at a surface-to-surface
distance L = R. Therefore we consider the normalized scaling
functions

K
(1,x)
(a1,a2,a3)(�12,�13,�23,�12,�13,�23)

= K
(1,x)
(a1,a2,a3)(�12,�13,�23,�12,�13,�23)

K
(∗,x)
(+,+)(� = 0,� = 1)

. (4)

We note parenthetically that the standard normalization
scheme uses the more easily accessible normalization am-
plitude 	(+,+) for the CCF at Tc between two parallel plates
with (+,+) BCs, which is given within MFT by (see Ref. [47]
and references therein)

	(+,+) = −24
[K(1/

√
2)]4

u
� −283.61/u, (5)

where K is the elliptic integral of the first kind. Within MFT
the amplitude K

(∗,x)
(+,+)(� = 0,� = 1) can be expressed in terms

of 	(+,+):

K
(∗,x)
(+,+)(� = 0,� = 1) ≈ 0.2491 × 	(+,+). (6)

With Eq. (6) one is able to eliminate the coupling constant
u, which remains unspecified within MFT.

We numerically determine the order parameter profiles
φ(x,z) from which we calculate the CCFs by using the
stress tensor [41,47,60]. Specifically, we analyze the CCFs
acting on colloid (1) for the configuration shown in Fig. 1,
for t � 0, and with the binary liquid mixture at its critical
concentration. In the following we consider colloid (1) to
have the fixed BC (a1 = +) and equally sized colloids (i.e.,
R1 = R2 = R3 = R). We proceed by varying the surface-to-
surface distances between the colloids by varying L12, L13,

or L23. In particular, we consider three special geometrical
configurations for the three colloids (see Fig. 2): an isosceles
triangle (i.e., L13 = L23), a right-angled triangle with (L23 +
2R)2 = (L12 + 2R)2 + (L13 + 2R)2, and a line with L23 =
L12 + L13 + 2R. We also consider various sets of BCs for the
colloids (2) and (3). In the following results the numerical error
is typically less than 3%, unless explicitly stated otherwise.

III. RESULTS

A. Isosceles triangle

First, we consider a colloid configuration in which the
centers of the colloids form the vertices of an isosceles triangle

FIG. 2. (Color online) Three configurations considered for three
parallel cylindrical colloids: (a) isosceles triangle: L13 = L23;
(b) right-angled triangle: (L23 + 2R)2 = (L12 + 2R)2 + (L13 +
2R)2; (c) line: L23 = L12 + L13 + 2R. All macroscopically extended
cylindrical colloids are aligned parallel to the y axis (see Fig. 1).

with L13 = L23 [see Fig. 2(a)]. In Fig. 3 we show the behavior

of the normalized [Eq. (4)] scaling function K
(1,x)
(+,+,−)(�12 =

sgn(t)L12/ξ±,�12 = L12/R,�13 = L13/R) of the x compo-
nent of the CCF, i.e., the horizontal CCF acting on colloid
(1) with (a1 = +) BC and in the presence of the colloids
(2) and (3) with (a2 = +) and (a3 = −) BCs, respectively.
The scaling functions are shown as functions of the scaling
variable ratio �12/�12 = R/ξ+, i.e., for t > 0. By using the
relationship R/ξ+ = (|T − Tc|/Tc)νR/ξ+

0 the scaling variable
ratio R/ξ+ used in Figs. 3–9 can be expressed in terms
of the temperature T . In Fig. 3(a) the surface-to-surface
distance between the colloids (1) and (2) is L12 = R (i.e.,
�12 = 1), while in Fig. 3(b) L12 = 1.25R (i.e., �12 = 1.25).
The curves shown correspond to four values of �13 = L13/R.
For fixed R, Figs. 3(a) and 3(b) show the temperature
dependence of the horizontal CCF acting on colloid (1) for
four values of L13 = L23, with the colloids (1) and (2) fixed
in space. The blue bottom lines correspond to the situation in
which the third colloid is infinitely far away from the colloids
(1) and (2), which is equivalent to the pairwise interaction
between those colloids.

From Fig. 3 one can see that, upon increasing L13 (or �13)
while keeping the distance L12 between the colloids (1) and (2)
fixed, the curves approach the blue ones, which correspond to
the scaling function associated with the pairwise CCF between
the colloids (1) and (2). One can also infer from Fig. 3 that, for
fixed temperature and fixed �12 (i.e., �12/�12 fixed) there is a
change of sign of the scaling function upon varying the position
�13 of colloid (3). This means that, for a given temperature and
surface-to-surface distance between colloids (1) and (2) (i.e.,
fixed �12 and �12), there is a position �13 of colloid (3) above
the midpoint of the line connecting the centers of the colloids
(1) and (2) for which the horizontal CCF acting on colloid (1) is
zero. Furthermore, for an equilateral triangle there is a change
of sign of the scaling function upon varying the temperature,
as one can infer from the black curve in Fig. 3(a) and from the
red curve in Fig. 3(b), corresponding to �12 = �13 = �23 = 1
and �12 = �13 = �23 = 1.25, respectively.

Figure 4 shows the behavior of the normalized scaling

function K
(1,x)
(+,+,−)(�12 = sgn(t)L12/ξ±,�12 = L12/R,�13 =

L13/R) of the horizontal CCF acting on colloid (1) in the
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FIG. 3. (Color) Normalized scaling function K
(1,x)
(+,+,−)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) of the CCF acting on colloid
(1) along the x direction (i.e., of the total horizontal force on
(1)) for �12 = 1 in (a) and �12 = 1.25 in (b) with the centers of
the colloids forming an isosceles triangle (L13 = L23). The scaling
function is shown for t > 0 as function of the scaling variable
ratio R/ξ+ = �12/�12 = (|T − Tc|/Tc)νR/ξ+

0 for four values of the
scaling variable �13 = L13/R3: �13 = 1 (black lines), �13 = 1.25
(red lines), �13 = 2 (green lines), and �13 = ∞ (blue lines), while
�23 = �13 for all curves in (a) and (b). For fixed R, each curve
corresponds to a different vertical position of colloid (3) along the
perpendicular bisector of L12 (dotted double-headed arrow), with the
colloids (1) and (2) fixed in space. As expected, upon increasing �13

the scaling function approaches the blue lines, which correspond to
the scaling function of the pairwise force between the colloids (1) and
(2), i.e., if colloid (3) is infinitely far away from the colloids (1) and

(2). K
(1,x)
(+,+,−) < 0 (> 0) implies that colloid (1) is attracted to (repelled

from) colloid (2) along the x direction. Note that according to our
choice of the coordinate system the positive (negative) x direction
points away (towards) colloid (2) (see Figs. 1 and 2). The circles and
arrows in panel (a) are schematic representations of the colloids and
of the surface-to-surface distances between them; accordingly they
are not drawn to scale.

presence of the colloids (2) and (3) for �13 = �23 = 1.25 in
(a) and �13 = �23 = 1.5 in (b). The scaling functions are
shown for t > 0 as functions of the scaling variable ratio
R/ξ+ = �12/�12. The various lines correspond to certain
values of the scaling variable �12 = L12/R which for fixed R

correspond to distinct values of the surface-to-surface distance
L12 between the colloids (1) and (2). From Fig. 4 one infers
that, for a fixed temperature, there is a change of sign of
the scaling function upon varying L12 (or �12), indicating
the existence of an unstable equilibrium configuration, because
the force turns from attractive to repulsive upon increasing �12.
Hence, for colloid-colloid distances �12 sufficiently large,
colloid (1) is pushed away from colloid 2 due to the dominating
repulsion between colloids (1) and (3) in spite of the attraction
between the colloids (1) and (2), whereas for short distances
�12 it is pulled towards colloid (2) due to the attraction between
them dominating the repulsion between the colloids (1) and (3).
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FIG. 4. (Color) Normalized scaling function K
(1,x)
(+,+,−)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) of the total horizontal
CCF acting on colloid (1) for �13 = 1.25 in (a) and �13 = 1.5 in
(b) with the centers of the colloids forming an isosceles triangle
(L13 = L23). The scaling function is shown for t > 0 as function
of the scaling variable ratio R/ξ+ = �12/�12 for four values of the
scaling variable �12 = L12/R : �12 = 1 (black lines), �12 = 1.25
(red lines), �12 = 1.5 (green lines), and �12 = 1.75 (blue lines).
For fixed R, the curves correspond to different surface-to-surface
distances L12 between colloids (1) and (2). Varying L12 under
the constraint L13 = L23 implies that only colloid (3) is fixed in
space and the centers of the colloids (1) and (2) move, equally but
in opposite directions, on an arc centered at the center of colloid
(3) and with radius L13 + 2R. Accordingly, in this setup �12 can
vary between 0 � �12 � 2�13 + 2 where the maximum value
corresponds to a linear configuration with colloid (3) in the center.

K
(1,x)
(+,+,−) < 0 (> 0) implies that colloid (1) is attracted to (repelled

from) colloid (2) along the x direction. The circles and arrows in
panel (a) are schematic representations of the colloids and of the
surface-to-surface distances between them; accordingly they are not
drawn to scale.

In Fig. 5 we show the behavior of the normalized scaling

function K
(1,x)
(+,−,+)[�12 = sgn(t)L12/ξ±,�12 = L12/R,�13 =

L13/R] of the horizontal CCF acting on colloid (1) for
�13 = �23 = 1 in (a) and �13 = �23 = 1.25 in (b). The
scaling function is shown as function of the scaling variable
ratio R/ξ+ = �12/�12 for three values of �12: �12 = 1
(black curves), �12 = 1.25 (red curves), and �12 = 1.5 (green
curves). From Fig. 5(a) one infers that, for a fixed temperature,
there is a stable levitation position for colloid (1) along the
x direction: Upon increasing the surface-to-surface distance
between colloid (1) with (a1 = +) BC and colloid (2) with
(a2 = −) BC, the scaling function turns from positive to
negative, implying that the force changes from repulsive to
attractive. In this case, the attraction between colloids (1) and
(3) is dominating for large colloid-colloid distances �12, while
the repulsion between colloids (1) and (2) dominates for small
values of �12.
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FIG. 5. (Color) Normalized scaling function K
(1,x)
(+,−,+)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) of the total horizontal CCF
acting on colloid (1) in the presence of the colloids (2) and (3).
The scaling function is shown for t > 0 as function of the scaling
variable ratio R/ξ+ = �12/�12 for �13 = 1 in (a) and �13 = 1.25
in (b) with the centers of the colloids forming an isosceles triangle
(L13 = L23). Each curve corresponds to a certain value of the scaling
variable �12 = L12/R1: �12 = 1 (black curves), �12 = 1.25 (red
curves), and �12 = 1.5 (green curves). For fixed R, the curves
correspond to distinct surface-to-surface distances between colloids
(1) and (2). Varying L12 under the constraint L13 = L23 implies that
here one has the same kind of sequences of configurations as in

Fig. 4. K
(1,x)
(+,−,+) < 0 (> 0) implies that colloid (1) is attracted to

(repelled from) colloid (2) in the x direction. The circles and arrows
in panel (a) are schematic representations of the colloids and of the
surface-to-surface distances between them; accordingly they are not
drawn to scale.

We have determined the bona fide three-body (TB) CCF
F(1,TB)

(a1,a2,a3) acting on colloid (1) by subtracting from the total

CCF F(1)
(a1,a2,a3) the sum of the pairwise forces acting on it:

F(1,TB)
(a1,a2,a3) = F(1)

(a1,a2,a3) − F(12)
(a1,a2) − F(13)

(a1,a3), (7)

where F(1j )
(a1,aj ) is the pairwise CCF acting on colloid (1) due

to colloid (j ) for j = 2,3 and in the absence of the third
colloid; F(12)

(a1,a2) · ex ≡ F
(∗,x)
(a1,a2) [see Eq. (3)], where ex is the

unit vector pointing into the positive x direction, i.e., away
from colloid (2). In Eq. (7) the total force and the three-body
force depend on all variables L12,L13,L23,R1,R2,R3, and t ,
whereas F(1j ) depends only on L1j ,R1,Rj , and t . We have
studied the projection of F(1,TB)

(a1,a2,a3) onto the x axis (see Fig. 1):

F
(1,x,TB)
(a1,a2,a3) = F(1,TB)

(a1,a2,a3) · ex . (8)

The three-body CCF in Eq. (8) is characterized by the
corresponding scaling function [compare Eq. (2)]:

F
(1,x,TB)
(a1,a2,a3) = kBT

R1

Ld
12

K
(1,x,TB)
(a1,a2,a3)(�12,�13,�23,�12,�13,�23).

(9)
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FIG. 6. (Color) Normalized scaling function K
(1,x,TB)
(+,+,−)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) of the three-body horizontal
CCF acting on colloid (1) for �12 = 1 in (a) and �12 = 1.25 in
(b) with the centers of the colloids forming an isosceles triangle
(L13 = L23). The scaling function is shown as function of the
scaling variable ratio R/ξ+ = �2/�12. The black, red, and green
lines correspond to �13 = 1,�13 = 1.25, and �13 = 2, respectively.
For fixed R, each curve corresponds to a different vertical position
of the colloid (3) along the perpendicular bisector of L12 (dotted
double-headed arrow), with the colloids (1) and (2) fixed in space.
Figures 3 and 6 provide a direct comparison between the total
horizontal CCF and the corresponding three-body contribution (note
the different scales of the coordinates). The circles and arrows in
panel (a) are schematic representations of the colloids and of the
surface-to-surface distances between them; accordingly, they are not
drawn to scale.

As before we consider here the special case R1 = R2 =
R3 ≡ R and L13 = L23. Moreover, we introduce the relative
contribution of the three-body component of the total CCF as

δ = |F (1,x,TB)|
|F (1,x,TB)| + |F (12,x)| + |F (13,x)| , (10)

where F (1j,x) = F(1j ) · ex .
In Fig. 6 we show the normalized [see Eqs. (3) and (4)]

scaling function K
(1,TB)
(+,+,−)(�12 = sgn(t)L12/ξ±,�12 =

L12/R,�13 = L13/R) of the three-body contribution to the
total horizontal CCF acting on colloid (1). As one can infer
from Fig. 6, the three-body contribution to the total CCF can
be either positive (i.e., repulsive) or negative (i.e., attractive),
depending both on temperature and geometry. Thus for a
given value of �13 (i.e., along one of the curves shown in Fig.
6) there is a temperature for which the three-body contribution
to the total horizontal CCF acting on colloid (1) is zero. Hence
under such a condition the sum of pairwise forces provides
a quantitatively reliable description of the total horizontal
force acting on colloid (1). For temperatures sufficiently far
from Tc, the three-body CCF is always repulsive and decays
exponentially for R/ξ+ → ∞. The relative contribution of
the three-body component of the total CCF reaches 10% for
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�12 = �13 = 1 and, as expected, this contribution decreases
upon increasing �13 with �12 fixed.

We discuss our results by putting them into the context of
similar ones obtained for other systems. First, we consider the
van der Waals interaction between three atoms as described by
the Axilrod-Teller three-atom potential [24],

U123 = C
3 cos γ1 cos γ2 cos γ3 + 1

r3
12r

3
23r

3
31

, (11)

where rij = √
(xi − xj )2 + (yi − yj )2 + (zi − zj )2 = rji with

i,j ∈ {1,2,3} are the center-to-center distances between the
atoms located at (xi,yi,zi); γ1,γ2,γ3 are the angles formed
by the lines along r12 and r13, r21 and r23, and r32 and
r31, respectively, with γ1 + γ2 + γ3 = 180◦. Without loss of
generality, we choose y1 = y2 = y3 = z1 = z2 = x2 = 0 and
x1,x3,z3 > 0 for geometrical atom configurations correspond-
ing to the ones for colloids as shown in Fig. 2. The coefficient
C is given by

C = 3�

π

∫ ∞

0
α1(iω)α2(iω)α3(iω)dω > 0, (12)

where αi > 0 is the frequency-dependent polarizability of the
atom of type i = 1,2,3 (with the dimension of a volume). The
force F (1,x)

123 due to the potential U123, which is the analog of the
three-body CCF, follows from differentiatingU123 with respect
to x1 [61]:

F (1,x)
123 = − ∂

∂x1
U123. (13)

If the atoms are arranged as an equilateral triangle [i.e., if
γ1 = γ2 = γ3 = 60◦ so cos γi = 1/2 or, equivalently, if r12 =
r23 = r31, which corresponds to L12 = L23 = L31 with R → 0
in Fig. 2(a)], the three-atom force is

F (1,x)
123 = 99 C

16 x10
1

, (14)

which is positive, corresponding to repulsion, i.e., atom (1)
is pushed away from atom (2) along the x axis. In order to
compare this with our results for three colloids one should
consider the case of all BCs being equal, i.e., the (+, + ,+)
BCs case. To this end we have determined the three-body
component of the CCF acting on colloid (1) along the x

direction for the arrangement shown in Fig. 2(a) for �12 =
�13 = �23 = 1, 1.25, and 1.5 with (+, + ,+) BCs. The result
is qualitatively the same as in the case of the van der Waals
interaction, i.e., colloid (1) is pushed away from colloid (2)
along the x axis. We emphasize that this van der Waals
force has been derived for the case x1,x3 > 0 without loss
of generality. For geometrical configurations with x1,x3 < 0,
a similar calculation leads to a change of sign of the force in
Eq. (14), still corresponding to a repulsive three-atom force
acting on atom (1).

We also compare our results with those obtained for the
interaction between charged colloids. To this end we consider
the results of direct measurements of the three-body interaction
between charged colloids obtained by Brunner et al. [1]. The
system investigated by the authors consists of three equally
sized charged colloids arranged as an isosceles triangle. The
authors found that, regardless of the specific geometrical

parameters of the arrangement, the three-body component of
the force acting on the colloid corresponding to colloid (1)
in Fig. 2(a) along the line connecting colloids (1) and (2) is
attractive [i.e., it pulls colloid (1) towards colloid (2)], while
the corresponding two-body force is repulsive, in agreement
with earlier theoretical considerations using the nonlinear
Poisson-Boltzmann theory [62]. Our results, on the other hand,
show that the three-body component of the CCF can be either
attractive or repulsive for (+, + ,+) BCs, depending on the
geometrical parameters of the arrangement. In particular, for
an arrangement corresponding to an equilateral triangle, the
three-body component of the CCF acting on colloid (1) along
the x direction is always repulsive, whereas the corresponding
two-body CCF is attractive.

B. Right-angled triangle

We now consider a configuration consisting of a
right-angled triangle, i.e., for (L23 + 2R)2 = (L12 + 2R)2 +
(L13 + 2R)2 [see Fig. 2(b)]. In Fig. 7(a) we show the

normalized scaling functions K
(1,x)
(+,+,+)(�12 = sgn(t)L12/ξ±,

�12 = L12/R,�13 = L13/R) of the total horizontal CCF
acting on colloid (1) for �12 = L12/R1 = 1.25. The various
line colors correspond to distinct values of the scaling
variable �13 = L13/R3. As one can infer from Fig. 7(a), upon
increasing the surface-to-surface distance L13, the scaling
function uniformly approaches the one corresponding to the
pairwise CCF between colloids (1) and (2) (i.e., the blue
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FIG. 7. (Color) Normalized scaling function K
(1,x)
(+,+,+)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) in (a) and K
(1,x,TB)
(+,+,+)(�12,

�12,�13) in (b) of the horizontal total CCF and the three-body
CCF, respectively, acting on colloid (1) for a right-angled triangle,
i.e., (L23 + 2R)2 = (L12 + 2R)2 + (L13 + 2R)2 and �12 = 1.25. The
scaling functions are shown as functions of the scaling variable ratio
R/ξ+ = �2/�12. The black, red, green, and blue lines correspond
to �13 = 1,�13 = 1.5,�13 = 2, and �13 = ∞, respectively. In (b)
the horizontal dashed line corresponds to �13 = ∞. The circles and
arrows in panel (a) are schematic representations of the colloids and
of the surface-to-surface distances between them; accordingly they
are not drawn to scale.
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curve). Furthermore, one can infer that, for fixed values of
the temperature sufficiently away from Tc, there is a change of

sign of K
(1,x)
(+,+,+) upon varying the surface-to-surface distance

between colloids (1) and (3): Upon increasing L13 and R/ξ+
large enough the force changes from repulsive to attractive. A
change of sign also takes place for a change of temperature
for certain spatially fixed configurations [see the black curve
in Fig. 7(a)].

In Fig. 7(b) we show the normalized scaling functions

K
(1,x,TB)
(+,+,+)(�12 = sgn(t)L12/ξ±,�12 = L12/R,�13 = L13/R)

of the three-body component of the horizontal CCF acting on
colloid (1) for the same configurations as in Fig. 7(a), i.e., for
�12 = 1.25 and �13 = 1 (black line), �13 = 1.5 (red line),
and �13 = 2 (green line). As expected, the contribution of the
three-body component of the CCF decreases upon increasing
the surface-to-surface distance between colloids (1) and
(3). Moreover, we note that this result for the three-body
component of the horizontal CCF acting on colloid (1)
contrasts with previous results obtained for three-body effects
for CCF near a wall. In the case of two colloidal particles
facing a homogeneous planar substrate at equal distances it
was shown that in the case of all BCs being equal, i.e., if both
colloids and the substrate exhibit (+) BCs, the three-body
component of the lateral CCF acting on one of the colloids is
attractive (i.e., it pushes one colloid towards the other) if the
surface-to-surface distances between the colloids and between
the colloids and the substrate are equal to the radius common
to the colloids (see Figs. 1 and 8 in Ref. [51]). On the other
hand, in the case of three colloids arranged as a right-angled
triangle we have found that the three-body component of the
horizontal CCF is positive and therefore repulsive, i.e., it
pushes colloid (1) away from colloid (2). Since the substrate
can be viewed as the surface of a very large colloid, this
observation tells that the nature of the many-body CCF
depends also sensitively on the relative sizes of the colloids.

We compare our results with those for a system of three
atoms arranged as a right-angled triangle [see Fig. 2(b) with
R → 0] interacting via a van der Waals potential. One obtains a
right-angled triangle by setting γ = π/2, x3 = x1, and x2 > x1

so the three-atom force F (1,x)
123 is

F (1,x)
123 = 3C

x4
1

(
x2

1 + z2
3

)5/2
z3

, (15)

which is positive, meaning that the interaction is repulsive,
i.e., atom (1) is pushed away from atom (2). This is also the
case for a right-angled triangle arrangement of colloids with
all BCs being equal, i.e., (+, + ,+), as can be seen in Fig. 7(b).

We also compare our results with those obtained for
driven granular mixtures [20], which exhibit Casimir-like,
long-ranged effective interactions [21]. These systems consist
of a set of “intruder” particles immersed in a uniformly
agitated granular fluid (i.e., a set of granular particles which
are typically 10 times smaller than the intruders and which
undergo inelastic binary collisions). Recently, Shaebani et al.
have calculated the forces acting on three intruders in such
a granular mixture [22]. Considering a right-angled triangle
configuration they have found that the three-body component
of the total force, acting on the particle corresponding to
colloid (1) in Fig. 2(b), along the line which connects the

centers of those intruders which are the analogs of the colloids
(1) and (2) in Fig. 2(b) is attractive, while the corresponding
two-body force between the colloids (1) and (2) is repulsive.
The total force acting on particle (1) is smaller than the
vectorial sum of the pairwise forces due to the presence of
particles corresponding to colloids (2) and (3). These results
differ qualitatively from the ones for the CCFs shown in Fig.
7(b), where one can see that the three-body component of the
horizontal CCF acting on colloid (1) is repulsive, whereas
the corresponding two-body force [blue line in Fig. 7(a)]
is attractive. Hence for both systems the sign of the three-
body force acting on particle (1) is opposite to the one
of the two-body force. However, the relative contribution δ

of the three-body component of the force [see Eq. (10)] is
significantly larger in the case of the CCFs as compared to the
granular system considered in Ref. [22]: In the present case,
it is about 24% for �12 = 1.25 and �13 = 1 (black curve in
Fig. 7) and 10% for �12 = 1.25 and �13 = 1.5 (red curve in
Fig. 7); in the case of the granular system, for a configuration
of the intruders corresponding to �12 = �13 = 1, the relative
contribution of the three-body component is around 3%.

C. Line

Finally, we consider the situation in which the three colloids
are aligned linearly, with their centers lying on the x axis so
L23 = L12 + L13 + 2R [see Fig. 2(c)]. In Fig. 8 we show the

normalized scaling functions K
(1,x)
(+,+,a3)(�12 = L12/ξ+,�12 =

L12/R,�13 = L13/R) of the total CCF acting on colloid
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FIG. 8. (Color) Normalized scaling function K
(1,x)
(+,+,a3)(�12 =

L12/ξ+,�12 = L12/R,�13 = L13/R) of the total CCF acting on
colloid (1) for two linear configurations with �12 = 1.5 and for
(a3 = +) in (a) and (a3 = −) in (b). The centers of the three colloids
lie on the x axis so L23 = L12 + L13 + 2R [see Fig. 2(c)]. The
scaling functions are shown as functions of the scaling variable ratio
R/ξ+ = �2/�12. The black, red, green, and blue lines correspond to
�13 = 1,�13 = 1.5,�13 = 2, and �13 = ∞, respectively. The circles
and arrows in panel (a) are schematic representations of the colloids
and of the surface-to-surface distances between them; accordingly,
they are not drawn to scale.
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(1) along the x direction for �12 = L12/R1 = 1.25 and for
(a3 = +) in Fig. 8(a) and (a3 = −) in Fig. 8(b). [Note that
colloid (3) is the outer left one.] Each curve corresponds
to a certain value of �13 = L13/R3: �13 = 1 (black lines),
�13 = 1.5 (red lines), �13 = 2 (green lines), and �13 = ∞
(blue lines). As one can see from Fig. 8, upon increasing �13

[i.e., upon moving the left colloid (3) away from the colloids

(1) and (2)] the shapes of the scaling functions K
(1,x)
(+,+,a3)

approach the same one which corresponds to the pairwise CCF
for (+,+) (blue lines, �13 = ∞). The red curve in Fig. 8(a)
corresponds to the special case L12 = L13 for which, due
to all BCs being equal, the CCF acting on (1) is zero. As
can be inferred from Fig. 8(a), for every fixed value of the
temperature, there is a change of sign in the total CCF upon
changing the position of colloid (3), implying the existence of a
stable equilibrium position for colloid (1), which corresponds
to L12 = L13 [i.e., with the center of colloid (1) exactly at
the midpoint of the line connecting the centers of colloids
(2) and (3)]. From Fig. 8(b) one can see that even for a
surface-to-surface distance between the colloids (1) and (3)
which is 2 times larger than the radius of the particles (i.e.,
for �13 = 2), close to Tc there remains a significant deviation
from the pairwise force between the colloids (1) and (2). We
attribute this behavior to the fact that the ratio of the strengths
of the two-body CCFs for (+,−) and (+,+) BCs varies as a
function of temperature [56]. Whereas close to Tc the CCF
for (+,−) BCs is much stronger than the attractive CCF for
(+,+) BCs, both become comparable in strength for �12  1.
Therefore, even for �13 = 2 the repulsive interaction between
the colloids (1) and (3) significantly contributes to the force

K
(1,x)
(+,+,−) on the colloid (1) shown in Fig. 8(b) close to Tc.
In order to compare our results with those for analogous

systems, we consider again the Axilrod-Teller three-atom
potential given by Eq. (11). For the case of three atoms in
a line one can infer that the corresponding three-atom force is

F (1,x)
123 = 6C

2x1 − x3

x4
1 (x1 − x3)4x3

3

, (16)

which means that the three-body component of the force acting
on atom (1) points towards atom (2) if atom (1) is closer to atom
(2), i.e., F (1,x)

123 < 0 if x1 < x3/2; accordingly, it points towards
atom (3) if atom (1) is closer to atom (3), i.e.,F (1,x)

123 > 0 if x1 >

x3/2. This feature for the linear configuration is opposite to
our results for the three-body component of the CCF acting on
colloid (1) for (+, + ,+) BCs, which is positive (i.e., repulsive)
if L13 < L12 and negative (i.e., attractive) if L13 > L12 (not
shown by a figure).

In order to facilitate a comparison between our MFT-based
results for cylinders in d = 4 and possible future results for
spherical colloids in d = 3, in Fig. 9 we show the ratio between

the normalized scaling function K
(1,x)
(+,+,+)(�12,�12,�13) of

the total horizontal CCF acting on colloid (1) and the nor-

malized scaling function K
(1,x)
(+,+,+)(�12,�12,�13 = L13/R =

∞) of the pairwise CCF between the colloids (1) and
(2) as function of R/ξ+ = �12/�12 for �12 = 1.25 and
several values of �13. We consider two configurations: a
right-angled triangle in Fig. 9(a) and an isosceles triangle
in Fig. 9(b). If this mean-field expression for the ratio
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FIG. 9. (Color) Ratio between the normalized scaling function

K
(1,x)
(+,+,+)(�12,�12,�13) of the total horizontal CCF acting on colloid

(1) and the normalized scaling function K
(1,x)
(+,+,+)(�12,�12,�13 = ∞)

of the pairwise CCF between the colloids (1) and (2) for �12 = 1.25.
We consider the configuration of a right-angled triangle in (a) and of
an isosceles triangle in (b). The scaling functions are shown as func-
tions of the scaling variable ratio R/ξ+ = �2/�12. The black, orange,
red, blue, and green curves correspond to �13 = 1,�13 = 1.25,�13 =
1.5,�13 = 1.75, and �13 = 2, respectively. Upon construction these
ratios reduce to 1 in the limit �13 → ∞. For not-too-small values of
�13 these ratios exhibit only a weak temperature dependence. The
circles and arrows are schematic representations of the colloids and
of the surface-to-surface distances between them; accordingly, they
are not drawn to scale.

K
(1,x)
(+,+,+)(�12,�12,�13)/K

(1,x)
(+,+,+)(�12,�12,�13 = ∞) is mul-

tiplied by a bona fide expression for the pairwise CCF in
d = 3 – inferred from experiments or simulations or via the
Derjaguin approximation from the parallel plate geometry –
one obtains an approximate prediction for the scaling function

K
(1,x)
(+,+,+)(�12,�12,�13) in d = 3. Actually, this approach can

be used for any of the scaling functions presented here. Figure 9
reveals that these ratios exhibit only a weak temperature de-
pendence which makes it easier to implement this approach. In
the case of experiments encompassing binary liquid mixtures
of water and lutidine with a lower critical point at Tc = 307 K
and with ξ+

0 = 0.2 nm [42–48], for spherical colloids of radius
R = 100 nm in d = 3 the temperature differences 	T = |T −
Tc| = 0.05 K and 	T = 0.3 K correspond to R/ξ+ = 2.05
and R/ξ+ = 6.35, respectively. The experimental procedure
described in Ref. [45] allows one to stabilize temperatures
close to Tc within 0.01 K over several hours.

D. Influence of three-body CCFs on colloidal phase transitions

Dang et al. have used effective pair potentials between
colloids, as inferred from experiments, in order to perform
Monte Carlo simulations of the phase behavior of colloidal
suspensions immersed in near-critical solvents [7]. They
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have observed a shift of the calculated colloidal gas-liquid
coexistence curve towards the mixed, disordered phase of the
fluid as compared to the experimental data, where colloidal
gas and liquid phases refer to phases poor and rich in colloids,
respectively. These authors have hypothesized that this shift
is due to the neglect of repulsive many-body forces in the
Monte Carlo simulations and that significant improvement
of the theoretical approach may be obtained already with
the inclusion of three-body interactions. A similar result has
been obtained by calculating the phase diagram within the
framework of the random-phase approximation for an effective
one-component system [63].

Edison et al. have investigated colloidal phase transitions in
a near-critical solvent by computer simulations of an explicit
model of a ternary mixture consisting of hard disks and
two types of solvent molecules on a two-dimensional square
lattice [64]. They have observed that simulations of colloids
interacting solely via two-body forces lead to a shift of the
colloidal gas-liquid coexistence curve towards the mixed phase
as compared to the simulation results for the actual ternary
mixture.

Our theoretical analysis provides an explanation of the
observed overestimation of the width of the colloidal gas-
liquid coexistence region as obtained within the framework of
effective pair-potential descriptions in terms of predominantly
repulsive three-body CCFs. We have shown that for geometri-
cal arrangements of equilateral or right-angled triangles the
sign of the three-body CCF is opposite to the one of the
attractive two-body CCF for (+, +, +) BCs which correspond
to the BCs of the aforementioned experimental and theoretical
studies [7,63,64]. Moreover, the contribution of the three-body
CCF to the total force is rather large if the binary liquid mixture
is close to its critical point as it is apparent from Fig. 7. Of
course, it is technically not feasible to compute numerically the
three-body CCF for all possible geometrical arrangements of
three colloids, but on the basis of the presented and additional
numerical results we conclude that the three-body CCF for (+,
+, +) BCs is predominantly repulsive. Taking into account
this repulsive force in studies of colloidal phase transitions in
a near-critical solvents is likely to lead to better agreement
with experimental data as compared to descriptions in terms
of effective pair potentials.

In view of future experimental and theoretical studies of
the phase behavior of nonspherical colloids in near-critical
solvents we emphasize that the isotropic colloidal liquid
phase is stabilized by the repulsive three-body CCF, while
nematic colloidal liquids and smectic phases are disfavored,
similar to results of earlier studies concerning the influence of
interaction potentials on phase diagrams of fluids consisting
of nonspherical particles [65]. On the basis of our earlier
theoretical studies on the alignment of elongated nonspherical
colloids near homogeneous [41] or chemically patterned
substrates [56] we conclude that the attractive two-body CCF
favors colloidal nematic liquid and smectic phases.

IV. CONCLUSIONS AND DISCUSSION

We have studied CCFs for a system composed of three
equally sized, parallel cylindrical colloids of radius R

immersed in a near-critical binary liquid mixture (see Figs.
1 and 2). By denoting the set of boundary conditions (BC) of
the system as (a1,a2,a3), where ai corresponds to the BC at the
surface of colloid i = 1,2,3, we have focused on the horizontal
force acting on one of the colloids [labeled as “colloid (1)”;
see Figs. 1 and 2] for several geometrical configurations of the
system and various combinations of BCs at the surfaces of the
colloids (2) and (3), while keeping (a1 = +) fixed. We have
considered three distinct configurations for the three colloids
(see Fig. 2): isosceles triangles, right-angled triangles, and
lines.

The horizontal CCF is characterized by a universal scaling
function [see Eq. (2)], which has been studied in the one-phase
region of the solvent as function of R/ξ+, where ξ+ is the bulk
correlation length of the binary mixture in the mixed phase.
We have used mean-field theory together with a finite-element
method in order to calculate the order parameter profiles, from
which the stress tensor yields the normalized scaling functions
associated with the CCFs.

First, we have addressed the case in which the colloids
are arranged in such a way that their centers correspond to
the vertices of an isosceles triangle [see Fig. 2(a)]. For the
scaling function of the horizontal CCF acting on colloid (1)
with (a1 = +) BC, in the presence of colloids (2) and (3)
with (a2 = +) and (a3 = −), respectively, we have found
(Fig. 3) that the scaling function changes sign from negative
to positive, i.e., from attraction to repulsion, for fixed values
of R/ξ+ and of �12 = L12/R as the distance L13 between
the colloids (1) and (3) increases, signaling the occurrence
of a mechanically unstable equilibrium configuration charac-
terized by a vanishing horizontal force. For the same set of
BCs, i.e., (+, + ,−), we have found that for fixed values of
R/ξ+ and of �13 = L13/R, the scaling function also changes
sign upon increasing the distance L12 between the colloids
(1) and (2) (Fig. 4). We have also found that for certain fixed
geometrical parameters it is possible to observe a change of
sign in the scaling function upon varying the temperature [see,
for example, the black curve in Fig. 3(a) and the green one in
Fig. 4(b)]. Similar results have been obtained for the scaling
function in the case of (+, − ,+) BCs with L13 fixed and
several values of L12 (Fig. 5). However, for this combination
of BCs the equilibrium configuration of colloid (1) is stable in
the horizontal direction.

By calculating the pairwise colloid-colloid forces and
subtracting them from the total force, we have extracted
the three-body component of the force acting on colloid
(1). For the scaling function associated with the horizontal
three-body CCFs for the configuration of isosceles triangles
with (+, + ,−) BCs we have found a change of sign at fixed
temperature (i.e., for fixed values of R/ξ+) upon varying the
distance between the colloids (1) and (3), while keeping the
distance between the colloids (1) and (2) fixed (Fig. 6). This
indicates that, for a given temperature, there is a geometrical
configuration for which the three-body CCF acting on colloid
(1) is zero, in which case the sum of pairwise forces provides
a quantitatively reliable description of the interactions of the
system. As expected, we have found that the contribution of the
three-body CCF to the total force is large if the colloid-colloid
distances are small, as well as if the binary liquid mixture is
close to its critical point.
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We have compared our results with corresponding ones for
the van der Waals interaction between three atoms as described
by the Axilrod-Teller three-atom potential given by Eq. (11).
In the case of an equilateral triangle the horizontal three-atom
force acting on atom (1) is positive, which implies repulsion
from atom (2). This result agrees qualitatively with our results
for the horizontal three-body component of the CCF acting on
colloid (1), which is also repulsive for all BCs being equal.
We have also compared our results for this geometry with
experimental results for three-body interactions among equally
sized charged colloids obtained by Brunner et al. [1] for a
noncritical solvent. These authors found that the three-body
component of the force acting on the colloid corresponding
to colloid (1) in Fig. 2(a) is always attractive, which contrasts
with our results for the horizontal three-body component of
the CCF acting on colloid (1), which can be either attractive
or repulsive depending on the geometrical configuration of the
colloidal particles.

Next, we have considered the configuration of right-
angled triangles formed by the colloids [see Fig. 2(b)]. The
scaling function for (+, + ,+) BCs indicates that, keeping the
geometry fixed, there is a change of sign in the lateral CCF
acting on colloid (1) upon changing temperature [Fig. 7(a)].
As expected, we have found that the three-body component
of the total horizontal CCF decreases upon increasing the
distance between the colloids (1) and (3) [Fig. 7(b)]. We have
compared our results with corresponding ones for the van der
Waals interaction between three atoms forming the same con-
figuration. The horizontal three-body component of the force
acting on atom (1) is positive, which corresponds to repulsion
from atom (2) in horizontal direction. We have observed this
feature also for the three-body CCF [Fig. 7(b)]. Moreover, we
have compared our results with those obtained by molecular
dynamics simulations of driven granular mixtures [22], for
which it has been found that the three-body component of the
force acting on an intruder, corresponding to colloid (1), is
purely attractive and its relative contribution δ [see Eq. (10)]

is 3% for the case corresponding to �12 = �13 = 1 [see
Fig. 2(b)]. This is in contrast with our results for the three-body
component of the CCF which is repulsive with δ = 24% in the
case �12 = 1.25 and �13 = 1 (black curve in Fig. 7).

In addition, we have considered the configuration in which
the three colloids are horizontally aligned [Fig. 2(c)]. In the
case of (+, + ,+) BCs, if �12 = �13 [i.e., with the center
of colloid (1) being the midpoint of the line connecting the
centers of colloids (2) and (3); see the red curve in Fig. 8]
the CCF acting on colloid (1) vanishes due to symmetry. We
have compared our results with corresponding ones for the van
der Waals interaction between three aligned atoms in which
case the three-body component of the force acting on atom
(1) can be either attractive or repulsive, depending on whether
atom (1) is closer to atom (2) or atom (3), respectively. This
is opposite to our results for the three-body component of the
CCF acting on colloid (1).

Finally, in order to suggest a method to accomplish a future
quantitative comparison between our MFT-based results for
cylinders in d = 4 and possible results for spherical colloids
in d = 3, in Fig. 9 we have shown the ratio between the

normalized scaling function K
(1,x)
(+,+,+)(�12,�12,�13) of the

total horizontal CCF acting on colloid (1) and the normalized

scaling function K
(1,x)
(+,+,+)(�12,�12,�13 = L13/R = ∞) of

the pairwise CCF between the colloids (1) and (2). As function
of R/ξ+ = �2/�12 and for two configurations this ratio
exhibits only a weak temperature dependence. Multiplying this
ratio as obtained within MFT with the proper 3d counterpart
of the denominator – taken from experiment, simulation,
or from the slab geometry via the Dejarguin approximation
– renders an approximate prediction for the numerator in
d = 3. This approximate expression for the numerator yields
its correct expression in d = 3 for the limiting value of the
scaling variable as taken for the denominator within the ratio.
This scheme can be applied to any of the scaling functions
considered here.
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