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Aging and crystallization in a lattice glass model
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We have studied the three-dimensional lattice glass of Pica Ciamarra et al. [Phys. Rev. E 67, 057105 (2003)],
which has been shown to reproduce several features of the structural glass phenomenology, such as the cage effect,
exponential increase of relaxation times, and aging. We show, using short-time dynamics, that the metastability
limit is above the estimated Kauzmann temperature. We also find that in the region where the metastable liquid
exists the aging exponent is lower than 0.5, indicating that equilibrium is reached relatively quickly. We conclude
that the usefulness of this model to study the deeply supercooled regime is rather limited.

DOI: 10.1103/PhysRevE.91.042302 PACS number(s): 61.43.Fs, 61.43.Bn, 71.55.Jv, 05.50.+q

I. INTRODUCTION

The physics of structural glasses and glass-forming liq-
uids [1], in particular, fragile liquids [2], is still an open
problem [3]. Several theoretical explanations have been put
forward to explain the sharp slowdown that supercooled liquids
experience near the glass transition temperature [1,4–6],
as well as other concomitant dynamic and thermodynamic
features, but no single one has gained widespread acceptance.
Part of the problem is that distinguishing among theories
requires data very difficult to obtain from experiment.

Numerical simulations have been heavily used to inves-
tigate this problem [7], employing models ranging from
realistic to minimal. A minimal model should exhibit the
basic phenomenology of glasses while allowing simplified
theoretical study and/or fast numerical simulation (slow
dynamics being usually an obstacle for numerical studies
and preventing thermalization at temperatures where the most
important observations would have to be made). Lattice models
belong naturally in the last category, and several have been
studied, so far.

Here we consider again a lattice model proposed a few
years ago: the monodisperse lattice glass introduced by Pica
Ciamarra et al. [8,9] (henceforth PCTCC). This model is
attractive theoretically because it is amenable to approximate
study under the Bethe lattice scheme, and numerically because
it can be studied with kinetic Monte Carlo without making
approximations, so that simulations can be carried to very
long times (1012 Monte Carlo steps or more). This model has
been shown to reproduce the cage effect and slow dynamics
(described by mode coupling theory [10,11]) in appropriate
density ranges, with a power-law diffusion coefficient and
stretched exponential decay of time correlations [8,9]), as well
as dynamical heterogeneity [12,13]. It also exhibits a random
first order transition [14] on the Bethe lattice [8,15] (i.e., a
Kauzmann transition with vanishing of complexity, like the
p-spin model [16,17]).
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We reexamine the phenomenology of this model with an
emphasis on deep supercooling and aging behavior. Since
this model, as the real materials it tries to emulate, has a
stable crystal phase, the (metastable) liquid cannot be found
at arbitrarily low temperatures. Not only does the metastable
phase eventually lose stability (at the thermodynamic spin-
odal [18,19]), but in finite dimension it ceases to be observable
(i.e., the metastability limit is reached) before it becomes
unstable [20], at a point called pseudospinodal, or kinetic
spinodal [21–23]. This is defined as the point where the
relaxation time of the liquid equals the time it takes for a stable
crystal nucleus to form. Near this point the size of the critical
nucleus should cross the liquid correlation length, which has
been argued to lead to a new crystallization mechanism [24].
Since the liquid relaxation time is growing rapidly in these
systems, the location of the kinetic spinodal arguably deserves
more attention than it is usually granted. This should be
especially the case in lattice models, where one does not
expect the elastic effects that may, in real liquids, depress the
kinetic spinodal enough that the liquid be well defined down
to the Kauzmann temperature [25]. This issue is also relevant
for out-of-equilibrium (aging) studies. The scaling exponent
ν has been shown to depend on how far from equilibrium
the system actually is [26], and at too high temperatures the
asymptotic regime ν = 1 may never be reached. On the other
hand, aging at temperatures below the kinetic spinodal (too
low temperatures) has a completely different phenomenology,
namely, that of coarsening [23].

We accordingly seek to establish under which values of the
control parameters the supercooled liquid is well defined in
this model. We also reconsider here its aging behavior, which
has up to here received less attention.

The paper is organized as follows: In Sec. I we introduce
the model and some details about our method of simulation, in
Sec. II we present the study of the limit of stability and aging,
and in Sec. IV we conclude.

II. MODEL AND SIMULATIONS

The PCTCC was introduced by Pica Ciamarra et al. in
Refs. [8,9]. It can be formulated as follows: classical particles
with an orientation (“spin”) are placed on a simple cubic
lattice of side L where the occupation number of site R is
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called nR. In each site the orientation σ R is a unit vector that
can point in the direction of one of the six first neighbors.
Hard excluded-volume constraints are imposed such that
(a) only one particle can occupy a given site (nR = 0,1)
and (b) the orientation vector must point to an empty site
(R + σ = R′ only if nR′ = 0). In the canonical ensemble,
the hard potential means that temperature does not play a
role, and the control parameter of the model is the density
ρ = N/L3 (N = ∑

R nR). On the other hand, in the grand
canonical ensemble, the control parameter is the dimensionless
Lagrange multiplier α = βμ (with β the inverse temperature
and μ the chemical potential). Here we work in the grand
canonical ensemble. For convenience, we report our results as
a function of T/μ = α−1, so that it is easier to draw parallels
with supercooled liquids, as one can imagine fixing μ and
varying α by changing T . This is for convenience in the
visualization of results only, and does not change the fact
that the model is athermal, and controlled by the density (or
chemical potential), and not energy or temperature.

The PCTCC has a known crystal state [9] for a cubic lattice
with periodic boundary conditions. It can be built with the
following rule: for each site R = (x,y,z) evaluate a = (x +
2y + 3z) mod 7, then

(1) if a = 0 leave site empty,
(2) if a = 1,2,3 place a particle pointing in the negative x,

y, or z direction, respectively,
(3) if a = 4,5,6 place a particle pointing in the positive x,

y, or z direction, respectively.
The crystal has a density of ρ = 6/7 � 0,86 (specific

volume v = ρ−1 � 1.167) and the unit cell is 7 × 7 × 7 sites.
To quantify the amount of crystal phase present in a given

sample define the crystal mass fraction m as the fraction
of empty sites surrounded by six particles pointing towards
them (which is the only way that empty sites appear in
the perfect crystal). This quantity is very easy to evaluate
and gives a measure of the amount of crystal, independent
of the size of domains. It is not a proper order parameter,
since it will be nonzero also in the liquid phase, but as
we shall see it increases significantly as the system starts
crystallizing and it is a useful measure to detect the onset of
crystallization.

To study the dynamics we will consider the self-overlap
Q(t,tw), defined by

Q(t,tw) =
∑

R

nR(t + tw)nR(tw)σ R(t + tw) · σ R(tw). (1)

Q(t,tw) is a measure of the memory of the configuration at
time tw retained at time tw + t . It is independent of tw if the
system is in equilibrium.

Simulations

At high densities (which is the regime of interest), the model
evolves very slowly because the number of allowed moves is
very small (by moves we mean all the transitions between
configurations proposed by the Monte Carlo algorithm; in
the grand canonical case this includes particle creation and
annihilation). Under these conditions, standard Metropolis
Monte Carlo is very inefficient, since most of the moves
proposed are ultimately rejected. Thus we resort to kinetic

Monte Carlo (KMC) [27] (also known as “the n-fold way,”
dynamic Monte Carlo, or Gillespie algorithm [28]). The idea
is to compute the probability of a transition out of the current
configuration (which will be very small at high densities) and
force a move to one of the possible destination configurations,
advancing the time by the inverse of the total transition
probability. The actual transition performed is selected at
random from a list of all possible moves. Although at the
beginning of a simulation with an empty lattice the list of
moves is very long, once the system starts filling up with
particles the move list becomes smaller and smaller, thus
speeding the simulation. Clearly, using KMC for low density
systems is a bad idea, since the additional bookkeeping
required to maintain a long list is more time consuming than a
simple Metropolis Monte Carlo. The algorithm consists of the
following steps:

(1) Compile a list of the M possible moves (translations,
rotations, particle annihilation, and particle creation) and their
probabilities pi .

(2) Perform a move randomly selected from the list
(weighted by its probability pi).

(3) Advance time by 1/
∑

i pi .
(4) Update the list of moves and go to step (2).
For our system with hard constraints

∑
i pi ∼ 1/M , so

that for small M each step advances time by a large amount.
Standard Monte Carlo (MC) performs at approximately the
same speed per MC time unit independent of T/μ, as shown
in Fig. 1. In contrast, KMC with L = 14 and T/μ > 1/5
(i.e., in the fast liquid regime) is 10 to 100 times slower
than MC. However, below T/μ = 1/5 the time decreases
exponentially and KMC is one or two orders of magnitude
faster than MC. Since we are studying the whereabouts of
the glass transition, which we study for T < Tm � 0.15μ (see
below), we are working in the region where KMC is faster than
MC. Figure 1 (inset) shows a particular heating run obtained
with both algorithms, confirming both produce the same
results.
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FIG. 1. (Color online) Comparison of real (wall) simulation
times of standard Monte Carlo and kinetic Monte Carlo. Kinetic
MC times highly depend on the density, which is directly related to
the available moves. Inset: Inverse density vs T/μ of a perfect crystal
heated at a rate Ṫ /T = 10−8 in grand canonical MC and KMC runs,
showing both algorithms give the same results.
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FIG. 2. (Color online) ρ−1 as a function of T for different cooling
rates. For Ṫ /T = −10−5 (red plus) the system goes quickly out
of equilibrium, while Ṫ /T = −10−6 (green cross), Ṫ /T = −10−7

(blue star) and Ṫ /T = −10−8 (purple square) allow the supercooled
metaequilibrium liquid to be found at progressively lower temper-
atures. Heating from the perfect crystal can be used to estimate
Tm, as in the cyan solid squares (Ṫ /T = 10−8) and yellow circles
(Ṫ /T = 10−9) curves.

III. RESULTS

As shown in Ref. [8], this model is very slow to crystallize.
If one prepares the system in the pure crystal state, one can
estimate the melting temperature Tm through slow heating. The
data shown in Fig. 2 for this slow heating gives Tm � 0.15μ.
In contrast, upon cooling no sign of crystallization is seen and
the system remains in a supercooled liquid state until it goes
out of equilibrium at a cooling-rate-dependent temperature
(Fig. 2). One can extrapolate the specific volume curve of the
supercooled liquid branch (dashed line in Fig. 2) and find its
intersection with the crystal value. The corresponding tem-
perature, TK � 0.05μ, is a rough estimate of the Kauzmann
temperature [20].

Relaxation times τR can be obtained by means of the self
overlap Q(t,tw). These times, plotted in Fig. 3, are well fitted
with a Vogel-Fulchner-Tamman law

τR(T ) = τ0 exp[B/(T − T0)], (2)

with T0 = 0.048μ, quite close to TK .

A. Metastability limit

We now attempt to establish the lowest temperature at
which the supercooled liquid can be equilibrated, i.e., the
metastability limit. We have done quenches from the empty
lattice to several values of Tf (Fig. 4). For Tf � μ/8, the
lattice fills up relatively quickly until the density reaches a
T -dependent plateau after ∼103–105 steps. The crystal mass
fraction m increases more slowly but also reaches a plateau
(Fig. 5). The plateau regime is a candidate (subject to aging
checks; see Sec. III B) for the equilibrium (metaequilibrium
for T < Tm ≈ 0.15μ) liquid. This being a short-range model,
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FIG. 3. (Color online) Angell plot showing non-Arrhenius be-
havior. Full curve is a Vogel-Fulchner-Tamman fit with T0 = 0.048μ.

however, the metaequilibrium state cannot be expected to last
forever, and indeed at T = μ/9 one clearly sees that ρ and m

leave the plateau after about 1010 steps and continue increasing
towards the crystal values. We interpret this as a crystal growth
regime, where one or more supercritical crystal nuclei have
formed and are slowly growing. The system is no longer liquid,
but out of equilibrium again.

For Tf = μ/12, however, the behavior is different: the
growth of ρ and m is slower, but a plateau is never reached.
Instead, both quantities continue to grow towards the crystal
values, reaching relatively high values more quickly than
systems at higher values of Tf . The system is never in a
metastable state, instead entering a coarsening regime before
the metastable liquid can equilibrate. We can thus take μ/12 �
0.083μ as a lower bound for Tsp. The estimated Kauzmann
point, at TK = 0.05μ is thus way past the metastability limit,
making it of questionable relevance.

Short-time dynamics

To locate the thermodynamic spinodal, which serves as a
lower bound on the metastability limit, we used the short-time
dynamics technique as recently proposed [29]. The technique
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FIG. 4. (Color online) Density vs time for (from bottom to top)
T/μ = 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, and 1/12.
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FIG. 5. (Color online) Crystal mass fraction for (from bottom to
top) T/μ = 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, and 1/12.

is based on the fact that the thermodynamic spinodal is
an instability similar to a critical point, but located in the
metastable region. Then this instability can be exploited [29]
to locate the spinodal studying the critical short-time dynam-
ics [30–32]. The procedure consists in looking for a power-law
time relaxation from an initial state prepared according to
some prescription. In equilibrium critical points the power-law
regime lasts for a time increasing with the system size, but in
the case of spinodals (in a sense metastable critical points) this
regime is found only for a finite interval [29]. The procedure
was as follows:

(1) Prepare a well equilibrated sample at high temperature
Ti = 4Tc. This is the disordered initial state.

(2) At t = 0 quench suddenly to Tf � Tc. Let the system
relax while recording the order parameter and its fluctuations
up to t ∼ 106 MCS (short time).

(3) Look for power-law behavior. The spinodal temperature
is determined as that where the power-law regime lasts the
longest.

We chose the crystal mass fraction m(t) as order parameter
and along with it computed the sample-to-sample fluctuations

χm(t) = Nσm(t) = N
√

〈[m(t) − 〈m(t)〉]2〉, (3)

where 〈· · · 〉 stands for average over thermal history and sample
(starting configuration). The normalized fluctuation χm should
be independent of the system size and invariant under a shift
of m, avoiding the problem that m is not a proper order
parameter for the spinodal point. Thus, in this point we expect
a pseudocritical dynamics given by χm(t) ∝ tφ .

Figure 6 shows the time evolution of the mass fraction m,
starting at configurations prepared at Ti = 4Tc, for different
temperatures (in the supercooled region) and using systems
of side L = 21 and L = 30. This quantity always increases,
being a good parameter to detect the onset of the process of
forming the solid phase. Note that size effects disappear for
t > 102, and also the technique starts to distinguish different
temperatures for t > 103.

Figure 7 shows χm(t) vs t for a system of side L = 30
at different temperatures. These data are obtained with 104

runs. We can see a power-law behavior in the range 200 �
t � 27 000 (more than two decades) at T = Tsp = 0.104μ.

101 102 103 104 105 106

time

10-3

10-2

C
ry

st
al

lin
e 

M
as

s

FIG. 6. (Color online) Evolution of the crystal mass fraction
starting from the disordered initial condition (Ti = 4Tc) with final
temperatures Tf = 0.08μ (circle), 0.09μ (square), 0.104μ (triangle),
and 0.112μ (diamond), and using a system of side L = 21. Con-
tinuous lines are the same temperatures for a bigger system of side
L = 30.

The power-law fit gives an exponent φ = 0.20 ± 0.01. In the
inset of Fig. 7 we plot a comparison of χm(t) for a system of
L = 21, showing again that the results are independent of L

for t > 200. From this data we estimate the temperature for
the thermodynamic spinodal point as

Tsp = (0.104 ± 0.004)μ. (4)

This temperature is about twice TK , confirming our earlier
statement that the Kauzmann point is irrelevant in this system.
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FIG. 7. (Color online) Evolution of the normalized fluctuations
for different temperatures (as indicated) for a system of side L = 30.
For T = Tsp = 0.104μ we obtain a power-law behavior; the dashed
black line is a fit of a power law with exponent φ = 0.203. The
inset shows results for T = Tsp and two system sides L = 21 (black
squares) and L = 30 (green circles).
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FIG. 8. (Color online) Overlap vs time at T = μ/9 for tw = 106

(red plus), tw = 107 (green cross) tw = 2 × 108 (blue stars) and tw =
2 × 109 (purple squares).

B. Aging

To study aging, we consider the self-overlap Q(t,tw) as a
function of two times for waiting times tw � 106, starting with
the lattice empty, in the region of slow approach to the plateau
of the density (Fig. 4).

For T > μ/8 we find that time-translation invariance
holds, i.e., Q(t,tw) ≡ Q(t − tw) and consequently no aging is
observed (not shown). On the other hand, for T = μ/9, we find
tw dependence (Fig. 8). The system shows signs of aging from
tw = 106 to tw ∼ 108; after that the curves start becoming close
to each other. This interruption of aging coincides roughly with
the appearance of the plateau in ρ and m (Figs. 4 and 5), and is
an indication that the liquid is equilibrating. This plateau lasts
up to t ∼ 1011, when the system leaves equilibrium again to
begin crystallizing.

In the aging regime, structural glasses have been found to
obey the scaling

Q(t,tw) = f

(
t

tνw

)
, (5)

with ν close to 1 [33,34]. This relation clearly cannot
apply to the data of Fig. 8 across all waiting times; this is
because the curves coincide for t > 3 × 109. We can, however,
compute an effective scaling exponent ν(tw) [26,33]: Defining
a characteristic decay time tc using a fixed threshold for the
overlap [we chose Q(tc) = 0.3], one can define an effective
scaling exponent through νeff(tw) = ∂ ln tc/∂ ln tw. Rather than
evaluating the derivative numerically, we use a sigmoidal
fit for tc vs tw [26] (see Fig. 9). The low values of ν for
tw = 108 confirm that the liquid is reaching (meta)equilibrium.
However, ν is never higher than 0.5, quite far from the value
ν ≈ 1. According to Ref. [26], and taking also into account
the behavior of the density, we interpret this as evidence that
the model is always “too close” to equilibrium to reproduce
the experimental aging behavior. In other words, the dynamics
is starting to become slow, so that it takes a relatively long
time for the system to equilibrate, but there is no proper aging
regime; equilibrium is reached relatively soon after one-time
quantities begin to stabilize (while experimentally aging in
the correlation function happens with very little variation of
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FIG. 9. (Color online) Characteristic time of the relaxation (tc)
vs tw for T = μ/9. The full line is a fit to a four parameter sigmoid
S(t) = A + B

1+e−(t/D−C) . Inset: effective exponent νeff = ∂ ln tc/∂ ln tw .

one-time quantities [33]. The situation is similar at the other
temperatures we have studied (above and near the metastability
limit) (see Table I).

Of course, at lower temperatures the dynamics will be
slower, and it will take longer to reach equilibrium. However,
as shown above, temperatures beyond 0.10μ are below the
metastability limit, so that the out-of-equilibrium behavior in
that region corresponds to a coarsening regime, where aging
is qualitatively different from a structural glass [35].

IV. CONCLUSIONS

We have revisited the Pica Ciamarra–Tarzia–de Candia–
Coniglio lattice glass. While it reproduces many features of
supercooled liquids, as previously pointed out, the present
analysis shows that it is not suitable to study the deeply
supercooled regime. We have shown that the metastability limit
is at a temperature not too far from the melting point, making
the metastable liquid nonexistent for T � 0.10μ, above the
estimated Kauzmann temperature. Although thermodynamic
studies, and in particular, theories relating dynamic behavior
to thermodynamic properties, are not invalidated by an
unreachable Kauzmann point (as long as the metastable liquid

TABLE I. Estimate of maximum value of the aging exponent ν

for different temperatures.

T/μ νmax

1/8 0.441
1/9 0.476
1/10 0.455
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exists), in the present model the range of validity of such
studies seems to be too restricted.

Studies of the structural glass (out-of-equilibrium) state
are also somewhat limited. Beyond the metastability limit,
the out-of-equilibrium behavior is that of coarsening, in
principle rather different than what has been observed in
experimental and numerical studies of structural glasses. The
range between T = 0.10μ and melting indeed corresponds to
the structural glass situation, i.e., an out-of-equilibrium system
slowly evolving towards an equilibrium liquid. However, we
have found that the t/tw scaling is not obeyed by this model,

probably because it reaches equilibrium too quickly in this
temperature range. When cooled further, relaxation becomes
slower and one would hope to get something closer to a
structural glass; unfortunately, the liquid ceases to exist before
a regime with the correct scaling sets in.
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