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Electrical conductivity of quasi-two-dimensional foams
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Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly
spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in
foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a
model which we propose, and which successfully relates the structural and the conductive properties of the foam
over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams
the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may
provide different approaches for the characterization of foam properties and for the in situ characterization of the
liquid content of foams in confining geometries, such as microfluidics.
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I. INTRODUCTION

When a monolayer of bubbles is squeezed between two
solid plates in such a manner that each bubble touches both
plates a quasi-two-dimensional (quasi-2D) foam is formed
[also referred to as a 2D glass-glass (2D GG) foam in a Hele-
Shaw cell [1,2]; see Fig. 1]. Properties of such systems attract
significant interest as their local two-dimensional structure
can be directly observed which is awkward for classical
three-dimensional (3D) foams, yet many physical phenomena
linked to foam ageing or rheology can be analogously studied.
This makes quasi-2D foams an excellent model system.

Quasi-2D foams are used to study different aspects of
foam rheology [3–9]. Horizontal quasi-2D foams are not
significantly affected by drainage as long as the plate spacing
is smaller than the capillary length giving the opportunity to
investigate the coarsening of bubbles [10–13]. Coalescence in
quasi-2D foams was studied by gently heating them [14]; the
obtained results were afterwards supported by computer sim-
ulations [15]. The dynamics of the topological rearrangements
was studied in dry quasi-2D foams [16]. Instabilities induced
by a localized injection of air in quasi-2D foams were studied
experimentally and theoretically by Ben Salem et al. [17,18].
Bubble monolayers are also often used to investigate a foam
flow in a confined geometry [19,20]. Another very interesting
possible application of quasi-2D foams is to study more
complicated systems such as foamed emulsions (a mixture
of bubbles and oil droplets in water) or foams containing
nanoparticles.

Quasi-2D foams could be even more widely used but often
a measure of the liquid content and a proper description of the
detailed three-dimensional geometry is required. Despite the
ease of observation of the bubble size, a description of the full
structure is quite complicated. In addition to the bubble size
and liquid content typically used to characterize 3D foams,
a degree of squeezing (a ratio of the thickness of the bubble
monolayer to the bubble diameter) plays an important role for
quasi-2D foams giving an enormous variety of different bubble
shapes. An experimental determination of the exact geometry
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is hindered: the main source of structural information still
remains the computer simulation [1].

Valuable information about the foam structure can be
obtained from electrical conductivity measurements. The
electrical conductivity is very sensitive to the foam geometry
and is now widely used to investigate foams. The measure
of electrical conductivity is a powerful tool to determine the
foam liquid fraction ε defined as the ratio between the volume
of liquid and the total volume of the foam. For 3D foams
the relative conductivity σ (being the ratio of the foam σf

and the liquid σl conductivities) is found to be primarily a
function of the liquid fraction ε and does not depend on the
bubble size [21]. Theories describing the exact form of this
function are well elaborated for three-dimensional foams [22]
in two limiting cases of “dry” and “wet” foams. The dry foam
limit is generally taken as ε � 0.05, such that the foam can be
considered as being composed of polyhedral bubbles whose
edges are “decorated” with liquid channels, the so-called
Plateau borders [22,23]. In the wet limit the foam contains
enough liquid so that bubbles are nearly spherical. In the dry
limit for 3D foams the Plateau borders may be approximated
by straight conductors [22]. Taking into account the topology
of the foam, considered to be isotropic, Lemlich predicted
that [24]

σ = 1
3ε, (1)

which has been confirmed by numerous experiments [21–23].
The equation does not take into account the effect of the
swollen junctions of Plateau borders. But for dry foams these
junctions typically contain negligible amounts of liquid in
comparison with the Plateau borders and do not significantly
influence the conductivity [22]. In the case of anisotropic dry
foams it was shown that Lemlich’s limit gives an exact upper
bound for the conductivity [25].

The well-known Maxwell equation [26] describes the
conductivity of media with random spherical insulating
inclusions

σ = 2ε

3 − ε
. (2)

This equation is correct in the very wet limit (ε � 0.36) for
isolated spherical bubbles in a liquid.
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FIG. 1. A structure of quasi-2D foam squeezed between two glass
plates. The picture was obtained from [2], with the kind permission
of The European Physical Journal (EPJ).

In between the dry and the wet limits different semi-
empirical relations have been suggested [21,22,27] in order
to smoothly link the limits.

The above-mentioned limits can be easily rewritten in a two-
dimensional space for a hypothetical “true” 2D foam. Such
foams do not exist in reality but represent a useful theoretical
model. The 2D Lemlich formula gives [24]

σ2D = 1
2ε2D, (3)

where σ2D and ε2D are the two-dimensional conductivity
and liquid fraction, respectively. The 2D Maxwell equation
becomes [26]

σ2D = ε2D

2 − ε2D

. (4)

However the above-mentioned 2D equations cannot be
directly applied to quasi-2D foams. To properly describe
the electrical conductivity of quasi-2D foams their real
three-dimensional geometry should be taken into account.
Conductivity measurements may provide an easy solution to
the challenge of determining the liquid content of quasi-2D
foams which are used by many researchers to access foam
properties at the bubble scale.

In the present work we show a model describing the
quasi-2D foam geometry and propose geometrical parameters
which can be extracted from experimental data simply using
photographs. Using the example of ordered, monodisperse
foams we discuss how the electrical conductivity can be related
to these parameters and how it can help us to investigate the
geometry of quasi-2D foams.

II. MATERIALS AND METHODS

In our experiments a vertical home-made Hele-Shaw cell
consisting of two plexiglas plates with dimensions 10 × 50 cm
is used (see Fig. 2). The distance H between the two plates
can be slightly varied but it is typically about 2 mm. The
foam is produced by blowing nitrogen through a single orifice

FIG. 2. (Color online) Photograph of the experimental Hele-
Shaw cell. A pair of electrodes allows one to measure the electrical
conductivity. A rectangular prism in the center of the cell is used to
take the high-resolution photographs of the surface Plateau border
network. Foaming solution is injected at a constant flow rate Q at the
top of the cell to control the liquid fraction of the foam.

into a solution of sodium dodecyl sulfate (SDS) purchased
from Sigma-Aldrich. The surfactant concentration is kept
constant at 12 g/L (approximately 5 times the critical micelle
concentration) to avoid any surfactant depletion during the
generation of the foam. Three pairs of electrodes measure the
conductivity at different foam heights. Before each experiment
the cell is filled with the foaming solution to have a reference
conductivity σl . To avoid electrolysis of the foam an alternating
current is used with a frequency of 1 kHz and a voltage of
1 V. At the chosen frequency the capacitance of the foam
can be neglected and the active resistance can be directly
measured [23].

To vary the liquid fraction over a wide range, the exper-
iments are performed in a forced drainage regime: foaming
solution is added from the top of the foam at a constant flow
rate Q. The liquid fraction can be adjusted using different
liquid flow rates: a higher flow rate results in a higher
liquid fraction [22]. Such a regime significantly simplifies our
investigation providing us with a liquid fraction which is not
only constant with time but also throughout the entire foam.
A steady state, defined by constant conductivity, is reached
before each measurement.

The thickness of the wetting films hwf (see Fig. 4) between
the bubbles and the confining plates is calculated from the
reflected light spectrum measured by a USB 400 Ocean
Optics spectrometer. It was found that in our experiments
hwf shows negligible dependence on the flow rate of the
liquid and is constant at 3 ± 1 μm within the experimental
error. Assuming that the contribution of the wetting film
conductivity is directly proportional to this thickness we
subtract it systematically from the experimentally measured
value of the relative conductivity σm to have a pure signal
from the foam

σ = σm − 2hwf

H
. (5)
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FIG. 3. (Color online) High-resolution photographs of vertical
quasi-2D foams corresponding to different liquid flow rates: (a) Q =
4 ml/h, (b) Q = 60 ml/h, (c) Q = 100 ml/h, and (d) Q = 500 ml/h.
The thickness d of the surface Plateau border and the bubble diameter
D are indicated.

High-resolution photographs of the foam are made with
a CCD camera equipped with a telecentric lens through a
rectangular prism glued to the outside of the container wall
(see Fig. 3). This technique was first proposed by Garrett et al.
(cited in [28]). Slight deviations in the path of light reflected
by the curved interfaces of the Plateau borders prevent this
light from entering the camera. The full surface Plateau border
network appears therefore in black. The described optical
configuration provides us with reliable information on the
foam structure. Each image is treated with ImageJ software to
get an average distance D between the centers of the adjacent
bubbles and an average surface Plateau border thickness d as
shown in Fig. 3. In the case of dry foams, D corresponds to the
bubble size. Also a fraction of the surface covered by water
εsurface is calculated for each image.

III. GEOMETRY OF QUASI-2D FOAMS

To describe the properties of quasi-2D foams detailed in-
formation about their three dimensional structure is necessary.

Though our experimental foams are never perfectly ordered
we will limit our theoretical discussion to the case of ordered
monodisperse foams in equilibrium. They are much easier to
model and have been found to be very useful for the description
of real foams [29]. It can easily be shown with Euler’s equation
that in the case of a monodisperse ordered foam each bubble
has exactly six neighbors (as shown in Fig. 1). Each bubble
is, therefore, surrounded by 6 Plateau borders (liquid channels
that run across the gap between both solid plates at the junction
between three bubbles), 12 surface Plateau borders (liquid
channels that run along the solid plates at the junction between
two bubbles), 6 films separating bubbles (simply referred to as
films), and 2 wetting films covering the surface of the plates.
A junction of three surface Plateau borders and one genuine
Plateau border is called a node or a vertex.

In quasi-2D foams all these components make a contribu-
tion to the total liquid content but only the surface Plateau
borders and wetting films play an important role for the elec-
trical conductivity. This is because the genuine Plateau borders
are perpendicular to the electrical flow. An electrical potential

FIG. 4. (Color online) A top view and a cross-sectional view
perpendicular to the walls for different liquid fractions. A transition
from the dry to the wet limit is shown. The situation depicted here
corresponds to the case when the surface Plateau border radius of
curvature RsPb is much smaller than the distance between the plates
H . A hexagon circumscribing a single bubble is shown by a solid
gray line.

is constant along the genuine Plateau borders and their liquid
content has negligible influence on the conductivity. The films
separating bubbles are always thin in comparison to the surface
Plateau borders; that is why the conductivity through them
can be neglected. A contribution of the wetting films can be
taken into account as explained in Sec. II. We will therefore
pay attention in the further discussion of the quasi-2D foam
structure only to the surface Plateau borders.

Viewed from above, only the surface Plateau borders
are visible: they form two identical hexagonal honey-comb
networks. We consider here the case of two completely
separated surface Plateau border networks characterized by
a radius of curvature RsPb much smaller than the gap between
the plates, i.e., RsPb � H . A corresponding cross-sectional
view perpendicular to the walls is shown in Fig. 4. In this
case the surface networks can be considered as completely
independent which significantly simplifies the theoretical
description. Also, in the described geometry RsPb = d/2 [2],
the surface Plateau border radius of curvature can be easily
extracted from the photographs. So our discussion is limited
only to this case and in the experiment the foam is always
maintained in the above described regime.

The liquid content in the surface Plateau border network
εsPb can be naturally determined as a ratio of the volume of
the surface Plateau borders to the total volume of the foam.
However, defined in this manner the surface Plateau border
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liquid fraction has an important drawback. It depends on the
gap between the glass plates and cannot represent the real state
of the surface network. We can virtually increase the gap with-
out any change of the surface Plateau border structure. So it can
not be used as a parameter characterizing the foam geometry
in a unique manner. A value free of these disadvantages is a
layer liquid fraction, which only considers the layer of height
RsPb as shown in Fig. 4. It can be expressed as

εL
sPb = εsPb

H

d
. (6)

Thus determined, the layer liquid fraction reflects the real
state of the network.

The surface Plateau border network can be modeled as a
stack of infinitely thin slices parallel to the wall [see Fig. 4(c)].
This allows the layer liquid fraction to be determined by
integration:

εL
sPb = 2

d

∫ d/2

0
ε2D(x)dx, (7)

where ε2D(x) is a 2D liquid fraction in a slice at a height x.
To further simplify the calculations an angle θ is introduced
as shown in Fig. 4(c). Then the 2D liquid fraction in a given
cut can be determined from simple geometrical arguments and
written as

ε2D(θ ) = 1 − G

(
1 − d

D
[1 − cos(θ )]

)2

, (8)

where G is a bubble shape factor depending on the shape
of the bubble cross section in a given cut. Mathematically
it can be defined as the ratio of the bubble area to the area
of a circumscribed regular hexagon [see Fig. 4(c)]. Two
important limiting cases for the bubble shape geometry can
be distinguished: hexagonal and circular. The first regime is
experimentally observed for dry foams [Fig. 4(a)] while the
second one is obtained for wet foams [Fig. 4(c)]. It can be easily
shown that for circular bubbles G = π

2
√

3
≈ 0.906, while for

hexagonally shape bubbles G = 1.
For θ = π/2 the 2D liquid fraction corresponds to a wetted

fraction at the wall εsurface which can be extracted from the
foam images such as shown in Fig. 3. Inserting θ = π/2 into
equation (8) gives

εsurface = ε2D

(π

2

)
= 1 − G + 2G

d

D
− G

(
d

D

)2

. (9)

Equation (9) gives us a way to evaluate G directly from the
experimental data:

G = 1 − εsurface(
1 − d

D

)2 . (10)

Figure 5 shows the experimentally measured wetted frac-
tion and G vs d/D. One can see that for small d/D foam
can be considered as being dry (G ≈ 1), while for d/D higher
than 0.1 a transition to the wet limit can be clearly observed
(G ≈ 0.906). For small d/D and consequently dry foams, G

is close to 1 but with an increase of d/D it decreases. As it can
be observed from photographs in Fig. 3 bubbles get rounder
as G increases.

FIG. 5. (Color online) Wetted fraction of the wall εsurface vs d/D.
Blue (dashed) and red (solid) lines correspond to the prediction of the
equation (9) in the dry (G = 1) and the wet [G = π/(2

√
3)] limits,

respectively. Inset: G vs d/D dependence.

The evaluation of the integral in Eq. (7) in combination with
Eq. (8) finally gives an expression for the layer liquid fraction

εL
sPb = (1 − G) +

(
2 − π

2

)
G

d

D
+

(
π

2
− 5

3

)
G

(
d

D

)2

.

(11)

The third term in Eq. (11) is always small and can be
neglected. So the layer liquid fraction can be expressed as
a linear dependence on d/D:

εL
sPb = (1 − G) +

(
2 − π

2

)
G

d

D
. (12)

Equations (10) and (11) allow us to calculate the layer liquid
fraction of the foam from the experimental data. In Fig. 6 the
values calculated from the data are shown as a function of
d/D. One can see that the layer liquid fraction goes from the

FIG. 6. (Color online) The layer liquid fraction εL
sPb as a function

of d/D. Blue (dashed) and red (solid) lines correspond to the
prediction of the equation (11) in the dry (G = 1) and the wet
[G = π/(2

√
3)] limits, respectively.
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FIG. 7. (Color online) The layer liquid fraction εL
sPb vs the

surface liquid fraction εsurface.

dry to the wet limit and reaches relatively high values (more
than 20%).

In the present section three geometrical parameters were
introduced to describe the quasi-2D foam geometry: the bubble
shape factor G, the ratio between the surface Plateau border
thickness and the bubble separation d/D, and the surface liquid
fraction εsurface. Two of them, namely, d/D and εsurface, can be
directly measured from the photographs and the third one (G)
can be calculated from Eq. (10). But one can ask if d/D and
εsurface can be changed independently. Our experimental results
shown in Fig. 5 indicate that in the axes d/D and εsurface, all
data lies on one master curve. It implies that there exists a
unique dependence of εsurface on d/D. The exact form of this
dependence should be established in the future from more
detailed theoretical considerations or computer simulations.
However, here we can offer a polynomial fit of the data

εsurface ≈ 2.38
d

D
− 1.89

(
d

D

)2

. (13)

The fact that this dependence does exist means that the
layer liquid fraction can be expressed as a function of one
of the following variables: G, d/D, or εsurface. For future
experimental work with quasi-2D foams a εL

sPb vs εsurface

dependence is probably the most interesting, since the surface
liquid fraction εsurface is the easiest parameter to estimate
from photographs. Combining Eqs. (10), (11), and (13) we
can provide an approximation for εL

sPb(εsurface) within the
framework of our model (see Fig. 7):

εL
sPb ≈ 0.347εsurface. (14)

Such a master curve can be very useful for experimentalists
as it allows one to make a fast and reliable estimation the
quantity of liquid in the network of the surface Plateau borders
from the photographs.

IV. ELECTRICAL CONDUCTIVITY

First of all, one should state that in a quasi-2D foam an
electrical current can pass only through the network of surface
Plateau borders and through the wetting films. Genuine Plateau

borders are perpendicular to the electric field and do not
contribute to the conductivity. Also in most quasi-2D foams
the liquid fraction in the bubble-separating films is sufficiently
small. It can be estimated that the thin films contain about
10−3 of the total amount of liquid [30], so we can neglect the
conductivity through them. The contribution of the wetting
film conductivity can be subtracted as it is explained in Sec. II
to have a pure signal from the surface Plateau border networks.
We do it systematically in all presented data.

We consider the foam as two independent networks of
surface Plateau borders as discussed in Sec. III. It is useful to
introduce a relative conductivity corresponding to one surface
layer in exactly the same manner as we have already introduced
the layer liquid fraction [Eq. (6)]:

σL
sPb = σ

H

d
. (15)

Determined in the described way the layer conductivity and
the layer liquid fraction do not depend on the plate spacing
and represent an actual physical state of the surface networks.

We can apply the same approach used in Sec. III to
calculate the liquid fraction. A single surface plateau border
network can be represented as a parallel connection of
infinitely thin conductive slices as shown in Fig. 4. Then the
relative conductivity of the whole layer can be calculated by
integration:

σL
sPb = 2

d

∫ d/2

0
σ2D(x)dx. (16)

To perform an integration a link between the 2D layer
conductivity σ2D and the 2D liquid fraction ε2D should be
established.

By analogy with a 3D foam, two limiting cases for quasi-2D
foams can be considered. In the limit of a dry foam each
surface Plateau border can be considered as a thin straight
conductor of a constant cross-sectional area and a resistance
per unit length. Then the 2D Lemlich formula (3) can be used.
Taking into account Eq. (11) the conductivity in the dry limit
(G → 1,d/D → 0) can be written as

σL
sPb =

(
1 − π

4

) d

D
. (17)

An alternative way to calculate the layer conductivity of the
surface Plateau border networks is to apply the 2D Maxwell
equation (4) linking a two-dimensional conductivity with the
two-dimensional liquid fraction.

Using Eq. (8) and performing a change of variable x =
d
2 sin θ,θ ∈ [0,π/2], the layer electrical conductivity can be
represented as a function of d/D and G:

σL
sPb

(
d

D
,G

)
= −1 + 2

∫ π/2

0

cos(θ )

1+G
{
1− d

D
[1−cos(θ )]

}2 dθ.

(18)

The integral of Eq. (18) was numerically evaluated for
different values of d/D. The results are plotted in Fig. 8 for
two limiting values of G. One can see that for the hexagonal
bubbles Maxwell’s approach gives a result very close to
Lemlich’s one for sufficiently dry quasi-2D foams.
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FIG. 8. (Color online) The layer electrical conductivity σL
sPb vs

d/D measured for different bubble sizes and liquid flow rates. Blue
(dashed) and red (solid) lines correspond to the prediction of the
Maxwell model [Eq. (18)] in the dry (G = 1) and the wet [G =
π/(2

√
3)] limits, respectively. The black (dotted) line corresponds to

Lemlich’s model [Eq. (17)].

Also an enormous difference between the dry and the wet
limits can be observed allowing us to anticipate that electrical
conductivity can be used as a sensitive instrument to explore
the three-dimensional structure of quasi-2D foams.

Experimental data for the layer electrical conductivity are
represented in Fig. 8 for different liquid fractions and bubble
sizes. Except for very dry foams the error bars normally do
not exceed a few percent and are comparable with the symbol
sizes. For dry foams (d/D < 0.07) a certain uncertainty in a
wetting film thickness estimation can significantly influence
the accuracy of electrical conductivity measurements.

A clear transition between the dry and the wet limit is visible
at d/D ≈ 0.1. Such behavior can be attributed to the transition
of the foam structure from the dry to the wet limit. This can
be explained by calculating the minimal surface area. For dry
foam only a hexagonal structure is possible: to curve bubbles
and make them circular a certain amount of liquid is necessary.
But as long as it is possible to make circular bubbles they will
always have a smaller area and consequently a lower energy
than the hexagonal ones. A geometrical calculation shows that
the minimum liquid fraction required to make circular bubbles
is about 0.094. This value corresponds to a d/D of about 0.11
in the hexagonal model. It means that above this value hexago-
nal bubbles should not exist. In practice it means that after this
limit the circularity of bubbles significantly increases and the
geometry dramatically changes. This corresponds extremely
well with the experimentally observed transition in Fig. 8.

The complicated geometry of quasi-2D foams can be taken
into account by using the experimentally measured values of
G. To simplify our calculations a linear approximation of the
expression (18) can be used to predict σL

sPb,

σL
sPb

(
d

D
,G

)
≈ 2√

G(1 + G)

[
arctanh

(√
G

1 + G

)

−
√

G

1 + G

]
d

D
+ 1 − G

1 + G
. (19)

FIG. 9. (Color online) The layer electrical conductivity σL
sPb cal-

culated by Eq. (19) using the geometrical parameters extracted from
photographs vs the experimentally measured values.

For the dry limit this approximation gives

σL
sPb

(
d

D

)
≈ 0.246

d

D
(dry limit), (20)

which agrees well with Lemlich’s limit:

σL
sPb

(
d

D

)
≈ 0.215

d

D
. (21)

In the wet limit we get

σL
sPb

(
d

D

)
≈ 0.240

d

D
+ 0.049 (wet limit). (22)

The values of σL
sPb calculated by Eq. (19) vs the experimen-

tally measured ones are presented in Fig. 9. The values of G

are calculated from photographs using Eq. (10). The results are
in a good agreement with the experimental data and confirm
our theoretical assumptions. The obtained approximations (20)
and (22) can be very useful for future experimental work since
they allow one to estimate the electrical conductivity from
image treatment or to calculate the surface Plateau border
thickness from the known conductivity data in two limiting
cases of very dry and very wet foams. Along with the Eq. (11)
it gives a straightforward way to evaluate the surface Plateau
border liquid fraction from conductivity measurements in the
above-mentioned limits.

The dependence of the layer conductivity on the layer liquid
fraction is shown in Fig. 10. The data can be approximated by
a linear relationship:

σL
sPb ≈ 0.64εL

sPb. (23)

This relationship can be used to rapidly estimate the liquid
fraction from the electrical conductivity data.

The low error of layer electrical conductivity measurements
and the high sensitivity to the change of the foam structure
allows us to determine the geometry of the quasi-2D foam.

To check the applicability of the developed approach for
very high liquid fractions we also measured the conductivity
of a glass bead monolayer surrounded by the same foaming
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FIG. 10. (Color online) The layer electrical conductivity σL
sPb vs

the layer liquid fraction εL
sPb for different bubble sizes.

solution. Such system corresponds to the case d/D = 1. The
measured value of conductivity is in full agreement with the
prediction of our model as shown in Fig. 9.

V. CONCLUSION

In this article we introduced a simple model to describe
the geometry of a quasi-2D foam. We used this description
to model the electrical conductivity of quasi-2D foams. This
model describes well our accompanying experiments over a
wide range of liquid fractions. Our experiments show that even
foams at low liquid fraction have to be considered as wet.

We hope that this work can help in suggesting different
approaches for the characterization of foam properties. In
particular, it should prove useful in the in situ characterization
of foam flow in the presence of walls and in confining
geometries, such as microfluidic applications [31,32].

The reader should also keep in mind that our models are
equally valid for liquid-liquid foams, i.e., emulsions, if a
nonconducting dispersed phase is used.
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[7] G. Katgert, M. E. Möbius, and M. van Hecke, Phys. Rev. Lett.

101, 058301 (2008).
[8] C. Raufaste, A. Foulon, and B. Dollet, Phys. Fluids 21, 053102

(2009).
[9] S. Costa, S. Cohen-Addad, A. Salonen, and R. Hohler, Soft

Matter 9, 886 (2013).
[10] J. A. Glazier, Steven P. Gross, and Joel Stavans, Nucl. Phys. B,

Proc. Suppl. 2, 570 (1987).
[11] J. Stavans, Physica A (Amsterdam) 194, 307 (1993).
[12] A. E. Roth, C. D. Jones, and D. J. Durian, Phys. Rev. E 87,

042304 (2013).
[13] J. Duplat, B. Bossa, and E. Villermaux, J. Fluid Mech. 673, 147

(2011).
[14] G. D. Burnett, J. J. Chae, W. Y. Tam, Rita M. C. de Almeida,

and M. Tabor, Phys. Rev. E 51, 5788 (1995).
[15] A. Hasmy, R. Paredes, O. Sonneville-Aubrun, B. Cabane, and

R. Botet, Phys. Rev. Lett. 82, 3368 (1999).
[16] M. Durand and H. A. Stone, Phys. Rev. Lett. 97, 226101 (2006).
[17] I. Ben Salem, I. Cantat, and B. Dollet, J. Fluid Mech. 714, 258

(2013).
[18] I. Ben Salem, I. Cantat, and B. Dollet, Colloids Surf., A 438, 41

(2013).

[19] S. A. Jones, B. Dollet, N. Slosse, Y. Jiang, S. J. Cox, and F.
Graner, Colloids Surf., A 382, 18 (2011), collection of papers
from the 8th EUFOAM Conference and the Meetings of COST
Actions D43 and P21.

[20] C. Raufaste, B. Dollet, S. Cox, Y. Jiang, and F. Graner, Eur.
Phys. J. E 23, 217 (2007).

[21] K. Feitosa, S. Marze, A. Saint-Jalmes, and D. J. Durian, J. Phys.
Condens. Matter 17, 6301 (2005).

[22] D. Weaire and S. Hutzler, The Physics of Foams (Clarendon
Press, Oxford, 2005).

[23] F. Elias, F. Graner, R. Hohler, O. Pitois, F. Rouyer, I. Cantat,
S. Cohen-Addad, and A. Saint-Jalmes, Foams Structure and
Dynamics (Oxford University Press, Oxford, 2013).

[24] R. Lemlich, J. Colloid Interface Sci. 64, 107 (1978).
[25] M. Durand, J.-F. Sadoc, and D. Weaire, Proc. R. Soc. London A

460, 1269 (2004).
[26] J. C. Maxwell, Electricity and Magnetism (Clarendon Press,

Oxford, 1873), Vol. 1.
[27] R. Lemlich, Ind. Eng. Chem. Process. Des. Dev. 24, 686

(1985).
[28] S. Mukherjee and H. Wiedersich, Colloids Surf., A 95, 159

(1995).
[29] W. Drenckhan and D. Langevin, Curr. Opin. Colloid Interface

Sci. 15, 341 (2010).
[30] L. Saulnier, W. Drenckhan, P.-E. Larré, C. Anglade, D.
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