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The electrostatic interaction in ionic fluids is well known to give rise to a characteristic phase behavior and
structure. Sometimes its long range is proposed to single out the electrostatic potential over other interactions
with shorter ranges. Here the importance of the range for the phase behavior and the structure of ionic fluids
is investigated by means of grandcanonical Monte Carlo simulations of the lattice restricted primitive model
(LRPM). The long-ranged electrostatic interaction is compared to various types of short-ranged potentials
obtained by sharp and/or smooth cutoff schemes. Sharply cutoff electrostatic potentials are found to lead to a
strong dependence of the phase behavior and the structure on the cutoff radius. However, when combined with
a suitable additional smooth cutoff, the short-ranged LRPM is found to exhibit quantitatively the same phase
behavior and structure as the conventional long-ranged LRPM. Moreover, the Stillinger-Lovett perfect screening
property, which is well known to be generated by the long-ranged electrostatic potential, is also fulfilled by
short-ranged LRPMs with smooth cutoffs. By showing that the characteristic phase behavior and structure of
ionic fluids can also be found in systems with short-ranged potentials, one can conclude that the decisive property
of the electrostatic potential in ionic fluids is not the long range but rather the valency dependence.
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I. INTRODUCTION

Over the last two decades, the scientific interest in organic
salts with melting points near room temperature, so-called
room temperature ionic liquids (RTILs), has been growing
steadily. Features such as a negligible vapor pressure and a
remarkable thermal stability [1–4] promise future applications
as solvents for syntheses, electrolytes in fuel cells, solar
cells, and batteries, as well as in biomass processing [5–10].
Moreover, due to the tiny vapor pressure many applications are
conceivable under ultrahigh vacuum [1,3,11,12]. However, the
technological use of RTILs requires an in-depth understanding
of ionic systems.

The Coulomb interaction, underlying these systems, acts
repulsively for equally charged and attractively for oppositely
charged ions and it decays ∝1/r; i.e., it is long-ranged. On
the other hand, the pair distribution functions of an ionic
fluid decay exponentially, which is called the Stillinger-
Lovett perfect screening property [13–16] and which is a
necessary consequence of the long range of the Coulomb
potential [17,18]. It is a challenge for more than a century now
to develop quantitatively reliable theoretical descriptions of
this peculiar combination of properties. For dilute electrolyte
solutions Debye-Hückel theory [19–21] is typically a good
starting point, whereas for dense ionic systems ion pairing
is relevant [13,14]. From experimental work [22–25] as well
as continuum simulations [26–29], there is evidence that in
particular the critical behavior of ionic systems is very similar
to the Ising universality class, which typically applies to
systems with short-ranged interactions. This result suggests
that the long-range character of the bare Coulomb potential
might be of minor importance for the critical properties of
ionic fluids.

*hbartsch@is.mpg.de
†bier@is.mpg.de

The aim of the present work is to investigate the relevance of
the long range of the Coulomb interaction for the whole phase
diagram and the bulk structure. This is done by studying the
lattice restricted primitive model (LRPM) for the Coulomb
potential being truncated smoothly on a length scale 1/α

and sharply at a cutoff radius rcut. The technical details
of the model and the approach are presented in Sec. II.
The long-ranged LRPM is well known to exhibit tricritical
behavior at the crossover from a first- to a second-order phase
transition between a charge-ordered and a charge-disordered
phase [30,31]. The (L)RPM renders the ions as homogeneous
charged hard spheres, which is of course not valid for ionic
liquids in general, since they may exhibit charge as well as
shape anisotropy. However, this work is concerned with the
influence of the long range and the valency dependence of
the electrostatic interaction, being omnipresent in all kinds of
ionic systems. In particular, the impact of the long range will
not depend on rather short-range features like charge or shape
anisotropy; therefore we consider this simple model of ionic
fluids as sufficient for the present investigation. It is shown in
Sec. III that, upon varying the smooth cutoff decay constant
α and the sharp cutoff radius rcut, the short-ranged LRPM can
be tuned from a system void of a charged-ordered phase via
one exhibiting charge-ordered and charge-disordered phases
but differing quantitatively from the long-ranged LRPM to a
model with short-ranged interactions whose phase behavior
and structure is quantitatively the same as for the long-ranged
Coulomb interaction. Moreover, even the Stillinger-Lovett per-
fect screening property can be fulfilled for suitable smooth cut-
off potentials, an observation which is not trivial in the context
of short-ranged interactions. By showing that the characteristic
phase behavior and structure of ionic fluids can also be found
in systems with short-ranged potentials, it is concluded in
Sec. IV that the decisive property of the electrostatic potential
in ionic fluids is not the long range but rather the valency
dependence.
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II. MODEL AND METHOD

A. LRPM with truncated Coulomb potential

Consider the lattice restricted primitive model (LRPM)
of univalent cations (valency z⊕ = +1) and anions (valency
z� = −1) with hard cores of diameter σ occupying but not
necessarily exhausting the sites of a three-dimensional simple
cubic lattice with lattice constant σ . Global charge neutrality
is guaranteed by an equal number of cations and anions in
the system, and the hard cores ensure that each site is either
empty or singly occupied. Within the original LRPM two
ions of species i,j ∈ {⊕,�} at a distance r interact, besides
the hard core exclusion, via the infinitely ranged Coulomb
potential lbzi zj

r
, where lb = e2

4πεkT
is the Bjerrum length with

the electronic permittivity ε, the Boltzmann constant k, and the
temperature T , and where r is measured with the Euclidean
metric.

In the present work the relevance of the long-range
character of the Coulomb interaction for the properties of
ionic systems is studied by considering the implications of
replacing the infinitely ranged Coulomb potential by the
truncated Coulomb-like potential

βφp,q(r,zi,zj ) =
{

lbzi zj

‖r‖p
erfc(α‖r‖p), ‖r‖q � rcut

0, ‖r‖q > rcut

(1)

with the inverse temperature β = 1/(kT ), the decay constant
α � 0, and the cutoff radius rcut. By means of Eq. (1)
two different methods of cutting off the Coulomb potential
can be studied: On the one hand, the factor erfc(α‖r‖p)
leads to a smooth cutting off on the length scale 1/α,
and, on the other hand, a sharp cutting off at radius
‖r‖q = rcut can be considered. Inspired by the short-ranged
potentials appearing within the Ewald method [32], here the
smoothening factors are chosen to be complementary error
functions erfc(x) = 2/π

∫ ∞
x

dτ exp(−τ 2). Obviously the in-
finitely ranged Coulomb potential corresponds to α = 0,rcut =
∞. Besides the Euclidean norm ‖r‖2 =

√
x2 + y2 + z2 to

measure distances, the 1-norm ‖r‖1 = |x| + |y| + |z| and
the supremum norm ‖r‖∞ = max(|x|,|y|,|z|) are considered,
which are more adapted to a lattice model since, for lattice
vectors r, they lead to values which are integer multiples of
the lattice constant σ . Since all norms are equivalent in finite
dimensions, the power law ∝1/r is asymptotically preserved
irrespective of the choice of the norm. The parameters p and
q in Eq. (1) describe the norms to be used for measuring the
distance determining the interaction potential and the sharp
cutoff, respectively.

B. Grandcanonical Monte Carlo simulations

In order to discuss the thermal and structural properties
of the LRPM with the truncated Coulomb-like interaction
Eq. (1), the packing fraction η and the pair distribution
functions gij (r), i,j ∈ {⊕,�}, are determined for cubic boxes
V := {0,σ, . . . ,(L − 1)σ }3,L ∈ N, with periodic boundary
conditions using grandcanonical Monte Carlo simulations. The
set of all configurations ζ of cations and anions occupying V

can be expressed as the set of all maps ζ : V → {0,z⊕,z�},
which result in the charge ζ (r) ∈ {0,z⊕,z�} located at position
r ∈ V , i.e., ζ (r) = 0 iff site r is empty, ζ (r) = z⊕ iff site
r is occupied by a cation, and ζ (r) = z� iff site r is
occupied by an anion. Standard Metropolis importance sam-
pling of the grandcanonical Boltzmann distribution P (ζ ) ∝
exp(βμN[ζ ] − βH [ζ ]) with the chemical potential μ, the total
number of ions N [ζ ] = N⊕[ζ ] + N�[ζ ], and the Hamiltonian

βH [ζ ] = 1

2

∑
r,r′ ∈ V
r 
= r′

βφp,q (r − r′,ζ (r),ζ (r′)) (2)

on the set of all charge-neutral configurations ζ is applied.
Charge neutrality is preserved during the simulation runs due
to insertions and removals of only neutral pairs of cations and
anions; i.e., the number of cations N⊕[ζ ] equals the number
of anions N�[ζ ].

The packing fraction is the average

η = 〈N [ζ ]〉
L3

, (3)

and the pair distribution functions are given by

gi,j (r) = 4〈Ni,j (r,[ζ ])〉
Vshell(r)L3η2

(4)

with i,j ∈ {⊕,�}, r being a distance measured in the 1-norm,
Vshell(r) = 4(r/σ )2 + 2 representing the number of all sites in
the shell of 1-norm distance r around a site, and Ni,j (r,[ζ ])
denoting the total number of all ordered pairs (ri ,rj ) of
positions ri ,rj ∈ V being separated by a 1-norm distance
r = ‖ri − rj‖1 and such that an ion of species i is located
at position ri and an ion of species j is located at position rj .
Here the pair distribution functions gi,j (r) are defined in terms
of 1-norm distances r because, for the present simple-cubic
lattice geometry, this choice is most convenient in order to
distinguish charge-ordered and charge-disordered phases.

The equilibrium state of the LRPM is determined by
the choice of the (dimensionless) temperature T ∗ := σ/lb
and the (dimensionless) chemical potential μ∗ := βμ. Within
the present work we considered temperatures and chemical
potentials in the ranges T ∗ ∈ [0.04,10] and μ∗ ∈ [−8,0], re-
spectively. Box sizes were varied in the range L ∈ {8, . . . ,19}.

From an analysis of the equation of state, which are
investigated as isotherms in η − μ∗ space and of the structure
in terms of the pair distribution functions the phase diagram
of the LRPM for various sets of values of the decay constant
α and of the cutoff radius rcut are inferred. The following
subsections explain the procedures to estimate the locations
of the binodals of the first-order gas-liquid phase transition
and of the so-called λ-line of the continuous phase transition
between the charge-ordered and the charge-disordered phase.

C. Estimation of the binodals

Estimates of the binodals of the first-order gas-liquid phase
transition are obtained by determining the equation of state
η(T ∗,μ∗). Figure 1 displays isotherms T ∗ ∈ {1.25,1.43,1.67}
for L = 12,α = 0,rcut/σ = 1 using the 1-norm (p = q = 1)
in Eq. (2). For the lowest temperature T ∗ = 1.25 a discon-
tinuity in the packing fraction η(μ∗) indicates a first-order
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FIG. 1. (Color online) Isotherms T ∗ ∈ {1.25,1.43,1.67} for
L = 12,α = 0,rcut/σ = 1 using the 1-norm (p = q = 1) in Eq. (2).
For T ∗ = 1.25 a distinct discontinuity of the packing fraction η at
chemical potential μ∗ ≈ −2.3 can be observed, while for T ∗ = 1.67
a continuous curve occurs. Therefore, the critical temperature T ∗

c ,
where the first-order gas-liquid phase transition associated with the
discontinuity of the packing fraction η terminates, is located within
this temperature range: T ∗

c ∈ [1.25,1.67]. For each isotherm two sets
of data points are shown, which correspond to either an initially empty
system (large dots connected by solid lines) or an initially totally filled
system (small dots connected by dashed lines). The inset sketches
the procedure to estimate the packing fractions at coexistence
(see Sec. II C).

gas-liquid phase transition, whereas for the highest temper-
ature T ∗ = 1.67 no gas-liquid phase transition occurs. An
estimate of the critical temperature T ∗

c is obtained as a
temperature for which η(μ∗) is discontinuous for T ∗ < T ∗

c and
continuous for T ∗ > T ∗

c . This simple method is sufficiently
precise for the present purpose.

In order to estimate the binodal packing fractions η1(T ∗)
and η2(T ∗) of gas-liquid coexistence at a temperature T ∗ < T ∗

c

the phase transition is first located within a range of the chem-
ical potentials μ∗ which is as narrow as possible and outside
which the well-known hysteresis effect of first-order phase
transitions does not occur. For T ∗ = 1.25 in Fig. 1, e.g., the
inset leads to the range μ∗ ∈ [−2.33, − 2.28]. Our estimate of
the chemical potential μ∗

coex(T ∗) at coexistence is the midpoint
of the μ∗ interval of steepest increase of the packing fraction
η(μ∗). For the isotherm depicted in the inset of Fig. 1, this
choice yields μ∗

coex(T ∗) ≈ −2.305 for T ∗ = 1.25. Estimates of
the binodal packing fractions η1(T ∗) and η2(T ∗) are obtained
by linearly extrapolating the hysteresis-free parts of η(μ∗) to
μ∗ = μ∗

coex(T ∗) from below and from above, respectively. For
Fig. 1, e.g., these estimates are η1(T ∗) ≈ 0.27 and η2(T ∗) ≈
0.73 for T ∗ = 1.25. Again, this simple method is sufficiently
precise, since, for the purpose of the present work, the location
of the binodals is required to be known only semiquantitatively
but not to the highest technically feasible accuracy. More
sophisticated and thus precise methods, such as umbrella
sampling techniques or methods based on finite-size scaling
and histogram reweighting [33,34], are not required here.

D. Estimation of the λ line

The structure of the charge-ordered and charge-disordered
phase can be observed by analyzing the pair distribution
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FIG. 2. (Color online) Pair distribution functions for L = 12,

α = 0,rcut/σ = 1 using the 1-norm (p = q = 1) in Eq. (2) at
temperature T ∗ = 2 and packing fraction η = 0.37 (a) and η = 0.90
(b). The red curves represent the pair distribution function for equally
charged ions, while the blue curves represent those of oppositely
charged ions. (a) Structure of the charge-disordered phase, which is
characterized by a rapid vanishing of the spatial correlations. (b) Case
of the charge-ordered phase, where correlations are long ranged due
to a shellwise alternating distribution of cations and anions.

functions gi,j (r) [see Eq. (4)]. Figure 2 shows the respective
structures of both phases for the case T ∗ = 2,L = 12,α =
0,rcut/σ = 1 using the 1-norm (p = q = 1) in Eq. (2). For the
charge-disordered phase, spatial correlations vanish rapidly,
while for the charge-ordered phase one observes long-ranged
correlations due to a shellwise alternating assembly of cations
and anions.

In order to locate the charge-ordered to charge-disordered
phase transition, i.e., the λ line, in the phase diagram, the
so-called staggered order parameter

φ :=
〈

1

L3

∑
r∈V

(−1)||r||1ζ (r)

〉
(5)

is considered. Here |φ| is positive in the charge-ordered phase,
and it vanishes in the charge-disordered phase. In order to
account for finite-size effects, the convention is adopted that a
thermodynamic state belongs to the charge-disordered phase
iff |φ| < 0.03. Obviously this convention is largely arbitrary,
but it allows a sufficiently precise localization of the λ line.
Figure 3 displays |φ| as a function of the chemical potential
μ∗ for decay constant α = 0, cutoff radius rcut/σ = 1, and
temperature T ∗ = 1.67 for box sizes L ∈ {12,18}. For this
example, the second-order phase transition, which is expected
to belong to the Ising universality class [35], is located at
μ∗ ≈ −1.65.

III. RESULTS AND DISCUSSION

A. Sharp cutoff schemes

In this subsection a sharp cutting off of the Coulomb
potential, i.e., α = 0 in Eq. (1), is considered with cutoff radii
rcut/σ � (L − 1)/2. First, the discussion is concerned with the
dependence of the critical temperature T ∗

c on the cutoff radius
rcut, which is obtained following the procedure described in
Sec. II C.

Figure 4 compares T ∗
c using the 1-norm (p = q = 1) and

the 2-norm (p = q = 2) in Eq. (2) with the critical temperature
�∗

c ∈ [0.14,0.16] of the long-ranged Coulomb system, i.e.,
for rcut = ∞ [30,31,36]. Distinct oscillations of T ∗

c for both
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FIG. 3. (Color online) Order parameter |φ| as a function of the
chemical potential μ∗ for decay constant α = 0, cutoff radius
rcut/σ = 1 using the 1-norm (p = q = 1) in Eq. (2), and temperature
T ∗ = 1.67 for box sizes L ∈ {12,18}. It signals the second-order
phase transition between the charge-disordered (CD) phase, where
|φ| ≈ 0, and the charge-ordered (CO) phase, where |φ| 
≈ 0. In order
to account for finite-size effects, the convention is adopted that the
phase transition occurs at |φ| = 0.03, which is located at μ∗ ≈ −1.65
here.

1-norm and 2-norm can be observed, where the amplitude of
the latter is much smaller than that of the former. For both
metrics, no signs of convergence of T ∗

c towards the value
�∗

c of the long-ranged potential are observable within the
considered range of cutoff radii rcut. Moreover, the amplitude
of the oscillations appears to even increase for the 1-norm.
This odd-even dependence likewise occurs within the structure
for sufficiently large packing fractions: While for odd values
of rcut/σ a charge-ordered phase is realized at large packing
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1 2 3 4 5 6 7

T
∗ c

rcut /σ

9

1-
no

rm

2-norm

MIArcut → ∞
0.15 ± 0.01

FIG. 4. (Color online) Critical temperature T ∗
c as a function of

the cutoff radius rcut for sharp cutoff truncation schemes, where the
decay constant α = 0 is used in Eq. (1). Data points labeled “1-norm”
and “2-norm” are obtained by truncation of the Coulomb potential
at distances rcut/σ � (L − 1)/2, where all distances are measured
in the respective norms, i.e., p = q (see Sec. III A). Moreover,
the values within the minimum image approximation (MIA) are
displayed, which corresponds to p = 2,q = ∞,rcut/σ = (L − 1)/2
(see Sec. III B). By comparison with the critical temperature �∗

c ∈
[0.14,0.16] for the long-ranged Coulomb potential (rcut = ∞) one
observes that the MIA results match the long-range value very well,
whereas the 1-norm and the 2-norm results largely overestimate the
critical temperature.

fractions, no charge ordering is observed for even values of
rcut/σ .

In order to understand the presence or absence of a
charge-ordered phase in the case of odd or even values of
rcut/σ , respectively, consider the particular case of the 1-norm
metric [p = q = 1 in Eq. (2)] and a perfectly charge-ordered
configuration ζCO. The energy of such a configuration is given
by [see Eq. (2)]

βH [ζCO] = L3

2T ∗

rcut/σ∑
i=1

(−1)i

i
Vshell(iσ )

= L3

2T ∗

(
− 6 + 18

2
− 38

3
+ 66

4
− 102

5
+ · · ·

)
,

(6)

where Vshell(iσ ) = 4i2 + 2 is the number of sites in the ith
shell of 1-norm distance iσ around a site. For rcut/σ = 1
only nearest neighbors interact, and due to βH [ζCO] < 0 it
is energetically favorable for the ions to arrange alternatingly
for sufficiently large η. However, for rcut/σ = 2 the coions
in the second shell overcompensate the contribution of the
counterions in the first shell, such that βH [ζCO] > 0, which
renders the charge-ordered phase unfavorable as compared
to the charge-disordered phase. This pattern repeats upon
increasing rcut with βH [ζCO] < 0 for odd and βH [ζCO] > 0
for even values of rcut/σ . Since the size of the ith shell grows
∝i2 and the strength of the interaction with the central ion
decreases ∝1/i, the total energy βH [ζCO] oscillates with
an amplitude which increases ∝i. This growing stability of
the charge-ordered phase for odd values of rcut/σ causes
the increase in the critical temperature T ∗

c for odd-valued
cutoff radii. Furthermore, for all cases studied here, it is
found that the total energies within the charge-ordered phases
for odd-valued cutoff distances are much lower than for the
long-ranged Coulomb potential and therefore that the stability
of the latter’s charge-ordered phase is much weaker. This leads
to a significantly lower critical temperature compared to those,
obtained using the sharp cutoff scheme. The absence of a
charge-ordered phase in the case of even-valued cutoff radii
and the increasing deviation of the critical temperature T ∗

c from
that of the conventional LRPM with long-ranged Coulomb
potential, �∗

c ∈ [0.14,0.16] in the case of odd-valued cutoff
radii leads to the conclusion of some major defect of the sharp
cutoff scheme.

Calculations using the 2-norm lead to qualitatively similar
results. The quantitative differences for rcut/σ > 1 to the case
of a 1-norm metric can be attributed to the occurrence of
noninteger-valued distances and to the fact that the shells
of constant distance from a central site are spheres and not
octahedrons. Note, that for the case rcut/σ = 1 the distinction
between 1-norm and 2-norm is irrelevant. Remarkably the crit-
ical temperatures T ∗

c for odd values of rcut/σ are considerably
smaller than those for the 1-norm metric, whereas for even
values of rcut/σ the differences are very small.

Figure 5 displays the phase diagrams for cutoff radii
rcut/σ ∈ {1,3,5} (1-norm, p = q = 1), which have been de-
termined using the methods presented in Secs. II C and II D.
Close to the critical point, the binodals follow a straight line,
which corresponds to the critical exponent β = 1. Due to this
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FIG. 5. (Color online) Phase diagrams for 1-norm metric [p =
q = 1 in Eq. (2)], decay constant α = 0, box size L = 12, and
cutoff radii rcut/σ ∈ {1,3,5} compared with that of the conventional
long-ranged LRPM (rcut = ∞ [31]). All these phase diagrams exhibit
the same topology of a charge-ordered and a charge-disordered phase
separated by a first-order phase transition below and a continuous
phase transition above a tricritical point (•). However, for the cases
with finite values of the cutoff radius rcut, the tricritical temperature
is about an order of magnitude too high and it increases upon
increasing rcut.

observation and since the λ line terminates at the critical point,
this critical point actually is a tricritical point (tagged by a
black dot). The long-ranged LRPM qualitatively shows the
same phase diagram, including tricriticality. In accordance
with the results of Fig. 4, the tricritical point moves upwards to
higher temperatures for larger odd values of rcut/σ ; however,
the topology of the phase diagram is not affected. It has
already been mentioned that for even values of the cutoff
radius rcut/σ no charge-ordered phase is present so that a
phase separation occurs between a charge-disordered gas and
a charge-disordered liquid, and the phase diagram exhibits an
ordinary critical point and no λ-line. Since the phase diagrams
for even-valued cutoff radii are qualitatively different from that
of the long-ranged LRPM they are not shown in Fig. 5.

B. Minimum image approximation (MIA)

When discussing the sharp cutoff schemes, i.e., with decay
constant α = 0 in Eq. (1), in the previous Sec. III A, cutoff radii
rcut/σ � (L − 1)/2 have been assumed throughout. The phase
diagram for odd values of the cutoff radius rcut/σ � (L − 1)/2
turned out to be qualitatively identical to the phase diagram of
the conventional long-ranged LRPM, but the tricritical point
is located at a too high temperature T ∗

c , which even increases
upon increasing rcut. Here another sharp cutoff scheme is
discussed which, in the notation of Eq. (1), can be specified
by α = 0,q = ∞,rcut/σ = (L − 1)/2. This cutoff scheme is
equivalent to the well-known minimum image approximation
(MIA) [37,38], which disregards all contributions to the
interaction energy which do not correspond to the minimum
distance between two ions or their periodic images. For a
cubic simulation box, it can be interpreted such that only those
interactions within a cutoff distance ‖r‖∞ � rcut are taken
into account, where the cutoff radius rcut has to be chosen such
that the interaction range equals a cube of volume L3 with
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FIG. 6. (Color online) Comparison of the equations of state and
of the pair distribution functions for odd and even box sizes L.
The green and blue dots in the main plot correspond to results
within MIA [p = 2,q = ∞,α = 0,rcut/σ = (L − 1)/2 in Eq. (1)],
and the black dots are obtained by means of the Ewald method. The
same odd-even effect of L in the high-density regime is encountered
within both methods. Furthermore, the high-density phase displays
decorrelations in the case of odd values of L, whereas the charge
ordering is long-ranged in the case of even values of L. The occurrence
of decorrelations in the high-density phase for odd-valued L can
be understood in terms of equally charged ions at the rim of the
simulation box, which interact with each other due to periodic
boundary conditions.

L = 2rcut/σ + 1. Note that the distances, which determine
interaction potential, are measured in the p-norm [see Eq. (1)],
which is chosen as p ∈ {1,2}.

Figure 4 also displays the critical temperatures T ∗
c within

MIA for p = 2, which are in excellent agreement with the crit-
ical temperature �∗

c ∈ [0.14,0.16] of the long-ranged LRPM.
Moreover, the MIA results in Fig. 4 can be subdivided into
integer and half-integer values of rcut/σ , which corresponds
respectively to odd and even values of the box size L =
2rcut/σ + 1. A close look at Fig. 4 reveals that the values
of T ∗

c within MIA for odd values of L are slightly below those
for even values of L, which indicates a certain odd-even effect
of L on T ∗

c . Whereas the odd-even effect of L on T ∗
c is rather

weak, Fig. 6 shows for the examples L = 13 and L = 14 that
there is a significant odd-even effect of L on the equation
of state and on the structure at large packing fractions. The
reason for mentioning the odd-even effects of L within MIA
here is that exactly the same odd-even effects of L occur for
the long-ranged LRPM using the full Ewald method, which
are shown in Fig. 6 too. In other words, MIA is such a good
approximation of the full Ewald method that it exhibits even
the same odd-even effects.

The insets in Fig. 6, which show the pair distribution
functions at the indicated thermodynamic states, reveal a
distinct charge-ordering behavior in the high-density regime
for even box sizes L, whereas for odd L a decaying oscillatory
behavior of the pair distribution functions can be observed.
Although the latter behavior does not correspond to a genuine
charge-ordered phase, it is clearly different from the structure
in the dilute regime, where correlations decay rapidly. What is
the reason for this qualitatively different high-density structure
for even and odd box sizes L? In the limit of perfect
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charge-ordering at sufficiently high densities, the periodic
boundary conditions lead to destabilizing contributions to
the interaction energy for odd values of L, since in this
case there are equally charged ions located at the rim of
the simulation box which, due to the periodicity, are nearest
neighbors. This effect does not occur for even box sizes L.
Since this is obviously an effect related to the “surface” of the
simulation box, it decreases with increasing box size L. The
same odd-even dependence of the equation of state and of the
structure is observable within the long-ranged LRPM. As a
consequence of the above argumentation, the results for even
box sizes L, whether using MIA or the full Ewald method, can
be expected to be more accurate than for odd box sizes L.

It is striking that isotherms within MIA sample the long-
range limit rcut → ∞ very well for dilute as well as for
dense systems. This indicates that the Hamiltonian of an ionic
fluid with long-ranged Coulomb interaction can be reliably
approximated by Eq. (2) with p = 2,q = ∞,α = 0,rcut/σ =
(L − 1)/2 in Eq. (1). In fact, for L = 14, there is almost
no difference between MIA and the full Ewald method with
respect to the equations of state (see Fig. 6).

This quantitative agreement can be understood as follows:
The contribution to the energy due to the long-ranged Coulomb
potential beyond MIA involves the electrostatic interaction
of the simulation box with its images, which, due to the
charge neutrality of the simulation box, decays at least as
a dipole-dipole interaction, i.e., ∝1/r3. However, numerical
calculations reveal that the dipole-dipole contribution vanishes
and that the decay is actually ∝1/r4, which renders the
long-range contributions beyond MIA absolutely convergent
and, for sufficiently large L, small. The same argument does
not apply to the sharp cutoff potentials of Sec. III A, since
no charge neutrality inside spheres of radius rcut within
the underlying norm is guaranteed so that the long-range
contributions beyond those due to the sharp cutoff potential
are due to an effective monopole-monopole interaction, i.e.,
∝1/r , and, hence, typically not small.

Figure 7 displays the phase diagram within MIA for
rcut/σ = 4.5; those for rcut/σ ∈ {6,6.5,9} obtained similarly
are not shown here. For all considered cases of rcut, the phase
diagrams are qualitatively and quantitatively in accordance
with those obtained by means of the corresponding full
Ewald method. The important point is that the MIA can
be interpreted as a sharp cutoff truncation scheme of the
Coulomb potential. The results discussed above indicate that
the long-range character of the electrostatic interaction may not
be necessary for the thermal and structural properties of ionic
fluids, because there is the possibility that the same properties
can be generated by suitable short-ranged interactions. A
comparison of the MIA, where rcut/σ = (L − 1)/2, with
the sharp cutoff schemes of the previous Sec. III A, where
rcut/σ � (L − 1)/2, reveals that the ability of a sharp cutoff
scheme to mimic the properties of the long-ranged LRPM
depends delicately on the relation between the cutoff radius rcut

and the size of the simulation box L. However, the simulation
box L is not a physical but rather a technical parameter,
and the properties of the LRPM within reasonable sharp
cutoff schemes Eq. (1) with α = 0 should be independent
of (large values of) L. Consequently there are no sharp
cutoff schemes which quantitatively reproduce the thermal and

0.1

1

10

0 0.5 1

T
∗

η

charge-
ordered

charge-disordered
rcut = ∞
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rcut /σ = 5
Sharp

FIG. 7. (Color online) Comparison of the phase diagrams of the
LRPM within the sharp cutoff scheme p = q = 1,ασ = 0,rcut/σ =
5 � (L − 1)/2 in Eq. (1), the MIA [p = 2,q = ∞,ασ = 0,rcut/σ =
4.5 = (L − 1)/2], the smooth cutoff scheme [p = q = 2,ασ = 0.8,

rcut/σ = 5 � (L − 1)/2], and the long-ranged Coulombic interaction
(ασ = 0,rcut = ∞). The agreement of the MIA and the smooth cutoff
scheme with the case of the long-ranged interaction is excellent,
whereas there are large quantitative deviations of the sharp cutoff
scheme with rcut/σ � (L − 1)/2.

structural properties of the long-ranged LRPM and which, at
the same time, correspond to physically acceptable underlying
short-ranged interactions.

C. Smooth cutoff potentials

It turned out in the previous section that there are sharp
cutoff schemes, i.e., with α = 0 in Eq. (1), which, although
based on a short-ranged potential Eq. (1), lead to quantitatively
identical thermal and structural properties as the conventional
LRPM with the long-raged Coulomb potential. However, these
sharp cutoff schemes do not correspond to physical systems,
because one has to tune the cutoff radius rcut according to
the unphysical simulation box size L, whereas for physically
acceptable short-ranged potentials rcut should be independent
of L. Here potentials Eq. (1) with α > 0 are considered, which
correspond to a smooth cutting off of the Coulomb potential
on the length scale 1/α. Note that this type of functions occurs
within the Ewald method as a result of splitting the total
electrostatic potential into a short-ranged contribution, which
leads to a sum in real space, and a long-ranged contribution,
which leads to a sum in reciprocal space. Within the Ewald
method, α is adjusted such that, on the one hand, the error
due to the unavoidable truncation of the sums in real and
reciprocal space are sufficiently small and that, on the other
hand, the computational effort is acceptable. However, here α

controls the decay length of a genuine short-ranged interaction,
which can take, in principle, any (positive) value. For α → 0
the sharp cutoff truncation schemes discussed in Sec. III A are
obtained.

Figure 8 displays the critical temperature T ∗
c and the critical

packing fraction ηc of the LRPM with smooth cutoff potentials
Eq. (1) with p = q = 2,rcut/σ ∈ {1,5} as functions of the
decay constant ασ . For rcut/σ = 5 a plateau of T ∗

c is present
in the range ασ ∈ [0.4,1.0], where the critical temperature
T ∗

c is quantitatively equivalent to the critical temperature
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FIG. 8. (Color online) Critical temperature T ∗
c and critical pack-

ing fraction ηc of the LRPM with smooth cutoff potentials Eq. (1) with
p = q = 2,L = 12,rcut/σ ∈ {1,5} as functions of the decay constant
ασ . For rcut/σ = 5 the critical temperature T ∗

c exhibits a plateau
around ασ ≈ 0.8 which is close to the critical temperature �∗

c of the
long-ranged Coulombic system. As in Figs. 4, 5, and 7, the critical
temperature T ∗

c within sharp cutoff schemes (ασ = 0) is an order of
magnitude to high. The critical packing fraction ηc ≈ 0.5 is rather
independent of the decay constant α and the cutoff radius rcut.

�∗
c of the long-ranged LRPM [see Fig. 8(a)]. For larger

values of ασ the decay length of the interaction Eq. (1)
becomes too short, so that even nearest neighbors barely
interact with each other. Hence, for ασ → ∞, one obtains
the ideal gas limit and consequently T ∗

c → 0. For rcut/σ = 1
all contributions beyond the nearest neighbors are neglected,
and no plateau is observable at all. However, the critical
packing fraction ηc ≈ 0.5 appears to be independent of the
decay constant α and the cutoff radius rcut. In addition to the
coincidence of the critical points for the appropriate choice
of ασ , a charge-ordered phase at large packing fractions and
a charge-disordered phase at small packing fractions can be
found. Ultimately, the phase diagrams of the smooth cutoff
scheme are in quantitative agreement with the long-ranged
limit too (see Fig. 7).

The long-range character of the Coulomb interaction is
well-known to generate the so-called Stillinger-Lovett perfect
screening property of ionic fluids [13–18]. In the present
context of an LRPM it corresponds to the accumulated charge

Q(r) := 1 + η

2

∑
r′ ∈ V

1 � ‖r′‖1 � r

[g⊕,⊕(r′) − g⊕,�(r′)] (7)

up to a 1-norm distance r around a positively charged central
ion to vanish Q(r) → 0 in the limit r → ∞. Figure 9
compares the accumulated charge Q(r) for the sharp cutoff
potential with ασ = 0,rcut/σ = 1,p = q = 2, the MIA with
ασ = 0,rcut/σ = 6.5,p = 2,q = ∞ and the smooth cutoff
potential ασ = 0.7,rcut/σ = 5,p = q = 2 within the charge-
disordered phase at packing fraction η ≈ 0.3. For the sharp
cutoff potential, Q(r) appears to converge towards a nonvan-
ishing (positive) value for large radii r , which corresponds
to an imperfect screening of the positive central charge.
However, perfect screening occurs within the MIA and the
smooth cutoff potential. This is an interesting finding since,
in contrast to the long-range Coulomb potential, the perfect
screening property is not necessarily fulfilled in systems with
short-ranged interactions.

It can be shown for smoothly cutoff potentials Eq. (1)
with rcutα � 1 that the charge-charge pair correlation function

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7

Q
(r

)

r/σ

ασ = 0.0
ασ = 0.7

MIA

FIG. 9. (Color online) Accumulated charge Q(r) [see Eq. (7)]
up to a distance r in 1-norm around a positively charged central ion.
The Stillinger-Lovett sum rule [13–16] requires Q(r) to vanish in
the limit of large distances r → ∞. This condition appears to be
fulfilled within the charge-disordered phase (here at packing fraction
η ≈ 0.3) for the case of the smooth cutoff potential ασ = 0.7
(p = q = 2,rcut/σ = 5,L = 12) as well as for the MIA (ασ = 0,

p = 2,q = ∞,rcut/σ = 6.5 = (L − 1)/2,L = 14), but not for the
sharp cutoff potential ασ = 0 (p = q = 2,rcut/σ = 1,L = 12).

hzz(r) := 2[g⊕,⊕(r) − g⊕,�(r)], which is related to the accu-
mulated charge Q(r) in Eq. (7), decays asymptotically on the
length scale of the Debye length 1/κ with (κσ )2 = 4πη/T ∗ iff
κ � 2α. Since α > 0 is a constant, which is chosen to match
the phase diagram of the long-ranged Coulomb interaction
(see Figs. 7 and 8) and which does not depend on the
thermodynamic state (η,T ∗), the condition κ � 2α > 0 will
not be fulfilled at very low packing fractions η and/or high
temperatures T ∗; i.e., the Debye-Hückel limit is not recovered
within smooth cutoff schemes. However, we do not consider
this a major defect for two reasons: On the one hand, the
remaining parts of the phase diagram outside the region of the
Debye-Hückel limit, particularly in the range of high densities,
e.g., close to the critical point (ηc ≈ 0.5), are reproduced
quantitatively (see Figs. 7 and 8). On the other hand, the
crossover, where the condition κ � 2α begins to be violated,
can be shifted to arbitrarily small values of κ by decreasing
α, which can be achieved by accordingly increasing rcut

[see Fig. 8(a)].
Concerning the phase behavior and the structure, the

LRPM with the smooth cutoff potentials considered here is
qualitatively equivalent to that with long-ranged Coulomb
interactions. Moreover, by choosing an appropriate decay
constant α, the short-ranged smooth cutoff potential LRPM
becomes even quantitatively equivalent to the conventional
long-ranged LRPM. The essential difference to the sharp cutoff
schemes considered in Subsecs. III A and III B is that these
statements are independent of the choice of the actual (large)
value of the simulation box L; i.e., the smooth cutoff potentials
discussed here are candidates of physically meaningful short-
ranged interactions. Consequently, the long-range character
of the electrostatic potentials is of minor importance for the
thermal and structural properties of ionic fluids, since, as has
been demonstrated here, short-ranged interaction potentials do
exist, which lead to the same thermal and structural properties.
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IV. CONCLUSIONS AND SUMMARY

In order to elucidate the role of the long-range character
of the Coulomb potential for the thermodynamic and the
structural properties of ionic fluids, the lattice restricted
primitive model (LRPM) with various truncated Coulomb-like
interaction potentials Eq. (1) has been studied in this work by
means of grandcanonical Monte Carlo simulations.

The simplest approach of sharply truncating the Coulomb
potential at a certain cutoff radius rcut (Sec. III A) turned out to
be not appropriate to reproduce the properties of the long-
ranged LRPM, either qualitatively or quantitatively. When
measuring distances within the 1-norm, e.g., no charge-ordered
phase occurs for even-valued cutoff radii rcut/σ , i.e., the
topology of phase diagram differs from that of the conventional
long-ranged LRPM. On the other hand, odd-valued cutoff
radii lead to qualitatively the same phase diagrams as the
conventional long-ranged LRPM (Fig. 5), but there is a
large quantitative difference, e.g., of the value of the critical
temperature T ∗

c (Fig. 4).
In contrast, the well-known minimum image approximation

(MIA), which may be viewed as a sharp cutoff scheme with
the cutoff radius rcut being related to the side length of the

simulation box L, leads to quantitative agreement of the phase
behavior and the structure of the LRPM with that of the long-
ranged LRPM (Fig. 7).

However, due to the relation of the cutoff radius with
the unphysical parameter L, the MIA does not correspond
to a physically acceptable, i.e., L-independent, short-ranged
potential. Quantitative agreement of the phase behavior and the
structure of short-ranged and long-ranged LRPMs is achieved
by smoothly cutting off the Coulomb interaction, which is
expressed by a decay constant α, corresponding to a decay
length of 1/α (Fig. 8). Interestingly, the LRPM with the
smoothly cutoff Coulomb potential possesses, although it is
based on short-ranged potentials, the Stillinger-Lovett perfect
screening property (Fig. 9).

By showing that the characteristic phase behavior and
structure of ionic fluids can also be found in systems with
short-ranged potentials, one can conclude that the decisive
property of the electrostatic potential in ionic fluids is not
the long range but rather the valency dependence. As this
conclusion is drawn from a study of the LRPM, the natural
question arises whether it holds for off-lattice models, too.
This task is left for future investigations.
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