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Effect of interference between two colored noises on the stationary states of a Brownian particle
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In this paper we present properties of an external colored cross-correlated noise-driven Brownian system
which is coupled to a thermal bath. Multiplicative cross-correlated noises can stabilize the transition state. Thus
by monitoring the interference between the noises one can understand the mechanism of a chemical reaction. At
the same time, we have investigated how the interference affects the barrier-crossing dynamics. In its presence
breakdown of the Arrhenius result occurs. The breakdown becomes prominent if the multiplicative noises become
additive in nature. We have also investigated how the power law behavior of the rate constant as a function of
damping strength is affected by the properties of external colored noises. Furthermore, we have observed that
multiplicative colored cross-correlated noises can induce the resonant activation phenomenon.

DOI: 10.1103/PhysRevE.91.042145 PACS number(s): 02.50.Ey, 05.40.−a

I. INTRODUCTION

Study of noise-driven dynamical systems has long been
the focal theme in the field of statistical mechanics, simply
because of its potential applications in physics, chemistry
[1–6], biology [7–9], economics [10], social sciences [11–13],
etc. One of the key areas of the stochastic processes is the
activated barrier-crossing dynamics which is an important
issue in chemistry and condensed matter physics. In this
context the system may be thermodynamically closed [14,15]
or open [16,17,18–22]. When a stochastic system is thermo-
dynamically made open by the action of external periodic
or random forces, significant changes in the dynamics take
place which reflect the constructive role of noise in dynam-
ical systems. The well-known examples include stochastic
resonance [16,23,24], resonant activation [15,17,18,19,22,25],
noise-induced transition [26], ratchet and rectification of noise
[27], etc., to mention a few. In these issues more than one noise
may be relevant. If the noises are from the same origin, then
they may be cross-correlated [28,29]. Noises of this kind have
attracted strong interest in the recent past in different contexts.
The effect of cross-correlation has been considered in different
contexts such as relaxation time in a bistable system [30,31],
a single-mode laser dynamics [32], bistable kinetics [33],
transport of particles [34], stochastic resonance [23,35], effect
of environment on the growth of cancer cells [36], entropy pro-
duction [37], splitting of the Kramers rate in a symmetric triple
well potential [20], and others [31,38]. In Ref. [31], the authors
have pointed out that the cross-correlated noises may appear
in the system in different ways. Keeping this in mind, in the
present paper we have considered a colored cross-correlated
noise-driven nonlinear dynamical system. To make the present
study general we have also considered the that noises may be
either additive or multiplicative in nature. The specific aim is
to investigate the role of interference of colored multiplicative
noises on the stationary states of the Brownian system. We
have shown that multiplicative cross-correlated noise can
stabilize the transition state. In other words, the transition state
becomes intermediate like in the presence of cross-correlated
multiplicative noises. Thus it is possible to understand the
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mechanism of a chemical reaction by controlling the cross-
correlation behavior between the multiplicative noises. In
Ref. [39] the authors have shown that study of intermediate is
important to understand protein folding kinetics. We have also
addressed another issue. How do the properties of the Brown-
ian particle change if the multiplicative noises become additive
in their characteristics? We have explored these issues based on
the Fokker-Planck description of the stochastic process. Our
investigation shows that colored cross-correlation between the
multiplicative noises can induce resonant activation. Another
point to be mentioned here is that comparing the present
calculation with the earlier studies in Refs. [40,41] one may
conclude that the present method is a unified approach.

Before leaving this section we would like to mention
the relevance of the present study. A photosensitive thermal
reaction of a carbonyl compound (R2C = O, R may be an alkyl
or aryl group, and it may also be hydrogen) with an acid, HX

(X refers to halogens), in the presence of a fluctuating electric
field may mimic the present model study. For the chemical
reaction with lowest potential energy path, it is necessary
to break π bond in R2C = O and dissociation of the HX

bond. In the next step, atoms are recombined to from a stable
compound, R2C(OH)X. The reaction coordinate comprises
both bond-breaking and -making processes. The reaction
path with minimum potential energy suggests a double-well
potential in terms of the reaction coordinate. One of the wells
is for the reactant side, and the another well corresponds to
the product side. However, one may carry out the present
chemical reaction in the presence of electric fields. One of
the fields will break the π bond in R2C = O, and another
will break the σ bond in HX molecules. In an experimental
situation one may introduce a light field of fluctuating intensity
which polarizes the photosensitive carbonyl group to speed
up a chemical reaction. If an electric field of fluctuating
intensity of common origin is now imposed, in addition, on the
polarized system, then the rate of nucleophilic attack of X−
will depend on the cross-correlation between the fluctuating
light and electric fields. Thus the chemical reaction may
take place in the presence of two cross-correlated noises.
Now, we would like to mention how one can generate the
cross-correlated electric fields experimentally. It is well known
that one can generate fluctuating voltage from ambient energy
through piezoelectric materials [22]. If a coil is coupled to
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this device, then fluctuating magnetic as well as electric fields
will be generated. Electric fields having a wide spectrum may
be created here. Because of the common origin, any two
fluctuating fields may be cross-correlated. Thus the proposed
chemical reaction may be carried out experimentally.

The present model study may also be important in the
context of barrier-crossing dynamics in biology such as
chemical reactions in cell and protein-folding dynamics. A
barrier-crossing system experiences a fluctuating force due to
direct coupling with its immediate surroundings via a strong
chemical bond. At the same time, the system also experiences
a random force from the thermal bath of biological fluids. The
fluctuating force from the direct coupling may be influenced
by the thermal bath. Thus the fluctuating forces acting on the
barrier-crossing system may be cross-correlated.

The outline of the paper is as follows: In Sec. II we present
the model and general aspects. The barrier-crossing rate has
been calculated in Sec. III. The paper is concluded in Sec. IV.

II. THE MODEL AND GENERAL ASPECTS

To begin, we consider a noise-driven dynamical system at
an overdamped limit. The corresponding Langevin equation
of motion for a Brownian particle with mass, m = 1, can be
written as

dq

dt
= −V ′(q)/γ + qη1(t)/γ + qη2(t)/γ + ζ (t)/γ. (1)

Here the prime denotes the derivative with respect to position
(q). For the present problem we have chosen the potential en-
ergy function, V (q) = aq4 − bq2. We now define all the noises
in Eq. (1). η1 and η2 are Gaussian colored noises, and their

two time correlation functions are 〈η1(t)η1(t ′)〉 = D′
1

τ1
e

−|t−t ′ |
τ1 ,

〈η2(t)η2(t ′)〉 = D′
2

τ2
e

−|t−t ′ |
τ2 , and 〈η1(t)η2(t ′)〉 = 〈η2(t)η1(t ′)〉 =

λ
√

D
′
1D

′
2

τ
e

−|t−t ′ |
τ , respectively.

Here λ measures the strength of interference between the
colored noises and τ is the correlation time for the cross-
correlation. The remaining noise in Eq. (1) is a white Gaussian
thermal noise, and it is related to the damping strength of
the thermal bath through the standard fluctuation-dissipation
relation, 〈ζ (t)ζ (t ′)〉 = 2γ kBT δ(t − t ′). T is the temperature
of the thermal bath. We now replace two multiplicative noises
by an effective noise [31], η,

η(t) = η1(t) + η2(t). (2)

Then one can write the two time correlation function for η

as

〈η(t)η(t ′)〉 = De

τe

e
−|t−t ′ |

τe , (3)

where

De =
∫ ∞

0
〈η(t)η(0)〉 dt = D1 + 2λ

√
D1D2 + D2 (4)

and

τe =
∫ ∞

0
t〈η(t)η(0)〉 dt = D1τ1 + 2λ

√
D1D2τ + D2τ2

De

.

(5)

In the above two equations we have used D1 = D
′
1/γ

2 and
D2 = D

′
2/γ

2.
Based on Eqs. (2)–(5), it seems that use of two noise terms

in Eq. (1) may create confusion. Here we should mentione
that if each noise renders an independent parameter like D1 to
the effective description of the system, then we cannot avoid
the existence of the individual parameters. For example, in the
proposed chemical reaction, η1 may be used to break the π

bond in R2C = O. The related parameters for this process are
D1 and τ1. They have a specific role to control the chemical
reaction. Another noise, η2, may be used to dissociate the HX

molecule. For this part the related parameters are D2 and τ2.
These parameters also posses a specific role. If the two noises
are correlated (depending upon the nature of the source of the
fluctuating electric fields), then there may be parameters like
λ and τ . They have a role to control both processes. Thus
Eq. (1) takes care of the importance of all the individuals.
For a mathematically convenient description we have replaced
the two noises by an effective noise, η. Any property of η

should be a function of all the above mentioned parameters.
By virtue of this one may identify the role of the properties
of the individual noise to control the chemical reaction in the
effective single noise description. To be mentioned here is that
the replacement of two noises by an effective single noise has
been adopted earlier in different contexts [31]. Another point to
be mentioned is that in the cross-correlated noise-driven model
system it has been assumed that one of the noises is multiplica-
tive in nature [35–37]. But in reality both noises may be either
additive or multiplicative in their characteristics. Then one
may apply the present method to study these kinds of systems.
Finally, even if a system is driven by a multiplicative colored
noise and an additive thermal noise, then the present study is
also applicable to this system according the effective single
noise description. Then De and τe would be the characteristic
parameters of the single noise. The multiplicative colored
noise may correspond to the fluctuating light field which may
induce the photochemical reaction. Organic photochemistry
in the presence of a single electric field is well known. Thus
the present model study is a general one.

To describe the colored noise-driven dynamical system
different approximate methods have been developed such
as the unified colored noise approximation (UCNA) scheme
[4,42–44]. This scheme has been justified as a reliable Marko-
vian approximation by means of a path integral technique
[45]. Based on the interpolation procedure an extension of the
unified colored noise description has been done for an additive
colored noise-driven system in Ref. [46]. Shortly we will
use the result of this approach. To study the present problem
based on the effective Fokker-Plank description of the colored
multiplicative noise-driven system, we have used the UCNA
into Eq. (1). Then it becomes

dq

dt
= [−V ′(q)/γ + qη0(t) + ζ (t)/γ ]

A
, (6)

where

A = 1 − τe[h′(q) − h(q)/q]. (7)

In the above equation we have used h(q) = − 1
γ

d
dq

V (q). The
multiplicative noise, η0, in Eq. (6) is a Gaussian white noise.
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Then the two time correlation function for it is given by
〈η0(t)η0(t ′)〉 = 2Deδ(t − t ′).

Now the equivalent description corresponding to the
Langevin equation (6) can be written as [23]

∂ρ(q,t)

∂t
= − ∂

∂q

h(q)ρ(q,t)

A
+ De

∂

∂q

q

A

∂

∂q

qρ(q,t)

A

+DT

∂

∂q

1

A

∂

∂q

ρ(q,t)

A
, (8)

where DT = kBT
γ

. If the correlated noises are additive in nature,
then the above equation becomes

∂ρ(q,t)

∂t
= − ∂

∂q

h(q)ρ(q,t)

A
+ (De + DT )

∂

∂q

1

A

∂

∂q

ρ(q,t)

A
.

(9)

A in the above equation can be read as

A = 1 − τeh
′(q). (10)

From Eq. (6), it seems that we have deviated from the
original problem, which is the colored noise-driven dynamical
system. Here we should give probable justification for the
acceptance of the Markovian description (6). For this we
consider a simple case, the additive Ornstein-Uhlenbeck noise-
driven harmonic oscillator. Based on the exact calculation the
variance (σq2 ) of the position variable is given by

σq2 = Deγ
2(

γ + τeω
2
0

)
ω2

0

, (11)

where ω0 is the frequency of the harmonic oscillator. At the
limiting condition where τe → 0,λ = 0,D′

2 = 0, and D′
1 =

γ kBT , the above equation becomes

σq2 = kBT

ω2
0

. (12)

This is the well-known standard result. We would like to
note that the unified colored noise approximation also gives the
same result as given by Eq. (11). Thus the effective Markovian
description is an exact one for the additive Ornstein-Uhlenbeck
noise-driven harmonic oscillator. Shortly we will present
further verification of the approximation scheme through the
calculation of a probability distribution function for a nonlinear
system which is driven by multiplicative noises.

We now mention some of the signatures of the colored
noise-driven Brownian motion. Equation (6) suggests that the
potential energy function is modified by A(q), which is a
function of the noise correlation time. The effective potential
energy function [Veff(q)] is given by

Veff(q) =
∫ q

0

4aq ′3 − 2bq ′

A(q ′)
dq ′. (13)

The colored noise-driven motion is more correlated com-
pared to the white noise-driven case. This implies that the
colored noise itself can introduce a sense of additional quaside-
terministic force compared to its counterpart. Therefore it is
apparent in the above equation that the deterministic force
derived from the potential energy function may be affected
by the noise memory-induced quasideterministic correlated
motion. For a colored thermal noise-driven system, an effective

potential energy function exists in the effective Markovian
description in terms of the system coordinate and an auxiliary
variable corresponding to the thermal noise [47]. However,
the effective potential energy function for an additive colored
noise-driven harmonic oscillator system is given by

Veff(q) = ω2
0q

2

2A
, (14)

where A = 1 + τe
ω2

0
γ

> 1. The above relation implies that
the frequency of the harmonic motion is suppressed more
as the noise correlation time grows. This suggests that the
noise memory-induced quasideterministic force opposes the
deterministic force derived from the potential energy function.
According to the suppression of frequency of the harmonic
potential, one may expect that the variance of the position
variable would increase as the correlation time of the noise
grows. But Eq. (12) suggests that σq2 decreases with an
increase in τe. This anomaly can be resolved considering the
effect of the noise correlation time on the diffusion constant.
It decreases [as explicitly indicated in Eq. (9)] due to the
noise memory-induced correlated motion. The role of this
decrease on the change of the variance as a function of the
noise correlation time may dominate over the other effect. It
is the reason for the decrease of σq2 with increase in τe in spite
of the suppression of the frequency of the harmonic potential.

To have further insight one may rearrange the Fokker-
Planck equations (8) and (9) into the following forms:

∂ρ(q,t)

∂t
= − ∂

∂q

{ [
h(q)

A
+ Deq

A2

]
− A′

A

(
Deq

2

A2
+ DT

A2

)

− ∂

∂q

(
Deq

2

A2
+ DT

A2

) }
ρ(q,t) (15)

and

∂ρ(q,t)

∂t
= − ∂

∂q

[
h(q)

A
− A′ (De + DT )

A3

− (De + DT )
∂

∂q

1

A2

]
ρ(q,t). (16)

The above equations are explicit description of the effect of
noise properties on the drift and diffusion terms. If the noises
are additive and white, then they have no contribution to the
drift term. However, one may realize the signature of the noise
properties through the following stationary solutions (ρeqm and
ρeqa) of the above Fokker-Planck equations for additive and
multiplicative noises,

ρeqm(q) = NA(q)2

(Deq2 + DT )

× exp

(∫ q

0

{
[h(q ′)A(q ′) + Deq

′]
(D′

eq
2 + DT )

− A′

A

}
dq ′

)
(17)

and

ρeqa(q) = NA(q)2

(De + DT )
exp

{∫ q

0

[
h(q ′)A(q ′)
(De + DT )

− A′

A

]
dq ′

}
,

(18)
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FIG. 1. (Color online) Plot of distribution function vs coordinate for common parameter set a = 0.25,b = 0.5,γ = 1.0 and the following
cases: (i) kBT = 0.05,d1 = d2 = 1.0,τ1 = τ2 = 5.0 (a) τ = 5.0,λ = 1.0; (b) τ = 0,λ = 1.0; (c) τ = 0,λ = 0.0. (ii) kBT = 0.01,d1 = d2 =
0.5,τ1 = τ2 = 1.0 (a) τ = 1.0 = λ; (b) λ = τ = 0.0; (c) λ = 1.0,τ = 0.0. (iii) c = 0.05,kBT = 0.05,d1 = d2 = 1.0,τ1 = τ2 = 5.0, (a) τ =
5,λ = 1.0; (b) τ = 0,λ = 1.0; (c) τ = 0,λ = 0.0. (iv) (a) Theoretical, same set of parameters as in (ii) (a); (b) simulation, same set of parameters
as in (ii) (a); (c) theoretical, same set of parameters as in (ii) (b); (d) simulation, same as in (ii) (b); (e) theoretical, same set of parameters as in
(ii) (c); (f) simulation, same set of parameters as in (ii) (c) (units are arbitrary).

respectively. N in the above equations corresponds to the
normalization constant for the respective cases. To check the
validity of the present calculation we consider the limiting sit-
uation, De = 0 and τe = 0. Then both probability distribution
functions reduce to the following form:

ρeq(q) = N exp

[
−V (q)

kBT

]
. (19)

Thus our calculation reproduces the standard result. We
now explore how the distribution function depends on charac-
teristics of the noises.

A. Cross-correlated colored noise-induced
stabilization of transition state

We have calculated the probability distribution function
using Eq. (17). The trapezoid rule with the integration step
length, 0.01, has been used to find the distribution function
as a function of the coordinate. We have checked that the
numerical results are superposed for both step lengths, 0.01
and 0.005, respectively. With this check we have plotted the
numerical results in Fig. 1 for several sets of parameters for
the multiplicative noise (MN)-driven case. For this figure we
have used a = 0.25,b = 0.5,γ = 1.0. Figure 1 suggests that
by controlling the strength of cross-correlation among the
multiplicative colored noise, the particle can be localized at

the transition state corresponding to the double-well potential
energy function. Even the probability of finding the particle
may be maximum at the barrier top as implied in Fig. 1(ii).
At the same time, we have demonstrated in Fig. 1(iii) that
how the distribution function for the following asymmetric
potential energy function depends on the characteristics of the
multiplicative colored noises:

V (q) = aq4 − bq2 − cq3. (20)

The particle also can be localized at the transition state
corresponding to the asymmetric potential energy function by
the cross-correlated colored multiplicative noises at the cost
of reduction of the asymmetric behavior of the system. The
change of symmetry is mainly governed by the multiplicative
noise-induced drift term. Thus external multiplicative noise
can monitor a chemical reaction to understand the mechanism
of the process.

We now check the validity of the unified colored noise
approximation scheme. We have calculated a distribution
function solving the Langevin equation (1) numerically using
the Heun method [48]. It is a stochastic version of the Euler
method, which reduces to the second order Runge-Kutta
method in the absence of noise. Calculating the distribution
function for a charged Brownian particle in the presence
of a constant magnetic filed we have checked that this
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FIG. 2. (Color online) (i) Plot of distribution function vs coordinate for the parameter set a = 0.25,b = 0.5,γ = 1.0, d1 = d2 = 0.5,τ =
τ1 = τ2 = 1.0,λ = 1.0. The same parameter set is used for the other subfigures. (ii) Plot of the renormalized potential energy function [Vq (q)]
vs coordinate. (iii) Plot of the renormalized potential energy function [Vq (q)] vs coordinate. (iv) Plot of φ(q) vs coordinate (units are arbitrary).

method gives a very accurate result [49]. To solve the
stochastic differential equation we have used an integration
step length 0.001. However, for different sets of parameters
for a multiplicative noise-driven system we have calculated
the distribution function numerically and compared with the
approximate calculation in Fig. 1(iv). It shows a very good
agreement between theory and numerical experiment. Then
one may get further motivation to study another aspect like
calculation of the mean first passage time as well as the barrier-
crossing rate constant using this approximate description.
The shape of the distribution function is strongly governed
by the cross-correlation strength and noise correlation time
of the colored multiplicative noises-driven open systems. It
implies that these noise parameters may have a strong role in
controlling the barrier-crossing rate along with the equilibrium

population. In the next section we will explore barrier-crossing
dynamics.

We now demonstrate how the distribution function (17)
depends on the temperature. In Fig. 2 we have plotted the
distribution function for different temperatures. It suggests
that the particle is more localized at the transition point as
the temperature of the system goes down. To understand this
we have rearranged the distribution function (17) into the
following form:

ρeqm(q) = Nφ(q) exp

[
−Vq(q)

DT

]
, (21)

where

φ(q) = A(q)2

(Deq2 + DT )
(22)

and

Vq(q) = −
∫ q

0

[h(q ′)A(q ′) + Deq
′]A(q ′) − A′(q ′)(Deq

′2 + DT )

A(q ′)
(D′

eq
2

DT
+ 1

) dq ′. (23)

It is implied in Eq. (22) that φ(q) in the distribution
function is the inverse of the position-dependent diffusion
coefficient. Vq(q) in Eq. (21) may be interpreted as the

renormalized potential energy function for the system. In
Fig. 2, we have demonstrated how φ(q) and Vq(q) depend
on the temperature. It shows that at a low-temperature limit,
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the position-dependent diffusion coefficient (DC) around the
barrier top is very small. As the particle moves away from the
origin, the DC first increases to an optimum value and then
monotonically decreases to a zero value. The particle may be
localized at the barrier top of the renormalized double-well
potential (as implied in both Figs. 1–2) by virtue of very weak
diffusion at this point. The very nonmonotonous behavior of
the diffusion process creates two minima around the barrier
top in the variation of the probability distribution function as a
function of the coordinate. There are two maxima around the
two minima. These are certainly corresponding to the minima
of the double-well potential. Thus the origin of the central
maximum is quite different from the the other two, and the
tristability is the signatures of both the position-dependent
diffusion coefficient and the double-well potential. We now
consider another limit. If the temperature is appreciably large,
then the diffusion coefficient monotonically decreases as the
particle moves away from the origin. Therefore the probability
of finding a particle at the barrier top may be lower compared
to its value at the minima of the double-well potential. Thus in
the presence of colored multiplicative noises, the temperature
of the thermal bath has an important role to contort the shape
of the probability distribution function.

III. BARRIER-CROSSING DYNAMICS OF COLORED
MULTIPLICATIVE NOISE-DRIVEN OPEN SYSTEMS

To determine the role of interference between the multi-
plicative noises on the barrier-crossing rate we have calculated
the mean first passage time (〈T 〉, MFPT) [50] based on the
Fokker-Planck equation (15). For the present problem it can
be read as

〈Tm〉(qb| − qb) =
∫ qb

−qb

dq

∫ q

0 ρeqm(q ′) dq ′

(Deq2 + DT )ρeqm(q)
. (24)

This is the mean time which is required for a Brownian
particle to travel the path from the minimum of the left well
(−qb) to the other minimum at the right well (qb) for the first
time. If the colored noises in Eq. (1) are additive in nature,
then the above expression becomes

〈Ta〉(qb| − qb) =
∫ qb

−qb

dq

∫ q

0 ρeqa(q ′) dq ′

(De + DT )ρeq(q)
. (25)

The expressions for the rate constant corresponding to above
equations are

km = 1

〈Tm〉(qb| − qb)
(26)

and

ka = 1

〈Ta〉(qb| − qb)
. (27)

To get an idea about the dependence of km or ka on various
parameters of the system we will calculate these using an
approximate method. To begin we consider the Fokker-Planck
equation (8) at a long time limit. It can be rearranged as

−∂j

∂t
= 0, (28)

where

j = h(q)

A
ρ(q) − Deqρ(q)

A2
− Q

dρ(q)

dq
(29)

with

Q =
(
cf Deq

2
f + DT

)
A(qf )2

(30)

and A(qf ) = 1 − cf 1τe[h′(q) − h(q)/q]. Here qf is the parti-
cle’s position at a fixed point around which dynamics has been
considered. To compensate the approximate description for Q

and A, we have included parameters cf and cf 1 for best fit of
the approximate results with the numerical experiment. Now
Eq. (29) can be rewritten as

dρ(q)

dq
+ V ′(q)

QAγ
ρ(q) + Deqρ(q)

QA2
= − j

Q
. (31)

Multiplying the integrating factor, e
V (q)
QAγ

+ Deq2

2QA2 , in the both
sides of the above equation and then integrating the above
equation between −qb and B we have{

ρ(q) exp

[
V (q)

QAγ
+ Deq

2

2QA2

]}B

−qb

= − j

Q

∫ B

−qb

exp

[
V (q)

QAγ
+ Deq

2

2QA2

]
dq. (32)

The constant current or flux across the barrier top (q0) is thus

j = −Q

{
ρ(q) exp

[
V (q)

QAγ
+ Deq

2

2QA2

]}B

qb

×
∫ B

−qb

exp

[
V (q)

QAγ
+ Deq

2

2QA2

]
dq. (33)

At the right side of the barrier top ρ(q) is zero, i.e., ρ(B) = 0.
Then the above equation becomes

j =Q

{
ρ(−qb) exp

[
V (−qb)

Q(−qb)A(−qb)γ

+ Deq
2
b

2Q(−qb)A(−qb)2

]} ∫ B

−qb

exp

[
V (q)

QAγ
+ Deq

2

2QA2

]
dq.

(34)

Our next task is determination of the population at left well
(na) at a zero current situation. Using the solution of Eq. (31)
we have

na = ρ(−qb) exp

[
V (−qb)

Q(−qb)A(−qb)γ
+ Deq

2
b

2Q(−qb)A(−qb)2

]

×
∫ q2

q1

dq exp

[
V (q)

QAγ
+ Deq

2

2QA2

]
. (35)

Using Eqs. (34)–(35) one can write the expression for
approximate rate constant (kam) as

kam = Q∫ B

−qb
exp

[
V (q)
QAγ

+ Deq2

2QA2

]
dq

∫ q2

q1
dq exp

[
V (q)
QAγ

+ Deq2

2QA2

] .

(36)
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To evaluate the integrals in the above equation the potential
function around the barrier top and the minimum of the left
well can be approximated as

V (q) = V (q0) − 1
2ω2

b(q − q0)2 (37)

and

V (q) = V (qb) + 1
2ω2

0(q − qb)2, (38)

respectively. Here ωb and ω0 are the frequencies at the
barrier top and the minima of the potential energy function,
respectively. Using the above relations in Eq. (36) we have

kam =
√

a0ab

π
e
− �E

Q0 e
− �E1

Q0 , (39)

where a0 = ω2
0

2A0γ
+ De

2A2
0

= 2b
A0γ

+ De

2A2
0
, A0 = A(−qb) = 1 +

ω2
0τe

γ
= 1 + 4bτe

γ
, ab= ω2

b

2Abγ
− De

2A2
b

= b
Abγ

− De

2A2
b

, Ab=A(q0)=1,

�E
Q0

= V (q0)
AbQbγ

− V (−qb)
A0Q0γ

= b2

4aA0Q0γ
, Q0 = Q(−qb)=

Deb2

2a
+DT

A2
0

=

kBT
γDeb2

2akB T
+1

γA2
0

, �E1
Q0

= b2

aA0Q0γ
− 2b3

A2
0Q0γ 2a0a

. Here we have used

q0 = 0,qb = −
√

b
2a

,ω2
0 = 4b and ω2

b = 2b. The expression for
the rate constant can be further simplified to have a better
impression as

kam =
√

a0ab

π
e
− �E0×�Ecf

kB T , (40)

where �E0 = V (q0) − V (−qb) = b2

4a
and �Ecf =

2A0akBT (4A0b+5Deγ )
(4A0b+Deγ )(2akBT +Deb2γ ) . We now check whether the above
expression reduces to the standard result or not at the specific
limit. First, we consider that De = 0.0 and τe = 0.0. For this
limit Eq. (40) becomes

kam = ω0ωb

2πγ
e
− �E0

kB T . (41)

Equation (41) is the well-known Kramers result at over-
damped limit [51]. Thus it is a good check of our calculation. At
the same time, the above equation implies how the frequency
factor and activation energy depend on properties of cross-
correlated multiplicative noises. It also implies the role of
temperature and damping strength in this context.

We now consider the additive cross-correlated colored
noises in the presence of thermal noise. Following the above
prescription one can write the expression for the rate constant
for the present case as

kaa =
√

a0ab

π
e
− �E0

γA0Q0 =
√

a0ab

π
e
− �E0�Ecf 1

kB T , (42)

where a0 = ω2
0

2A0γ
= 2b

A0γ
, A0=A(−qb)=1 + ω2

0τe

γ
=1+ 4bτe

γ
,

ab = ω2
b

2Abγ
= b

Abγ
, Ab = A(q0) = 1 − ω2

bτe

γ
, Q0 = Q(−qb) =

De+DT

A2
0

= kBT γ
γDe
kB T

+1

(1+4bτe)2 , and �Ecf 1 = kBT (γ+4bτe)
γ (kBT +Deγ ) .

Finally, we consider another limit, D2 = 0.0,τ2 = 0.0, and
kBT → 0. Then De = D1

γ 2 and τe = τ1. For this condition
Eq. (42) becomes

kaa =
√

2b

πγ

√
1

A0Ab

e
− �E0(γ+4bτ1)

D1 . (43)

For γ = 1.0 and bτ1 � 1, then the above relation takes the
following form:

kaa =
√

2b

π

√
1

1 + 2bτ1
e
− �E0(1+4bτ1)

D1 . (44)

We mention that the pre-exponential factor in the above ex-
pression is similar to the frequency factor of the rate constant,
which was determined in Ref. [40], and the exponential factor
(EF) in Eq. (44) is very close to the EF in the barrier-crossing
rate which was calculated in Ref. [41]. Thus the present method
is a unified approach.

Before leaving this part we would like to discuss the
dependence of the rate constant on the strength of the cross-
correlation and the noise correlation time of the external noises.
As a signature of multiplicative noise-induced drift term, the
frequency factor in the rate constant [Eq. (40)] depends on
the strength of the multiplicative noise. Another usual role
of the noise strength is to control the probability (through
energy input) at top of the barrier against the dissipation for
the open system. Thus activation energy depends on damping
strength and noise intensity as indicated by Eqs. (40) and
(42) for additive and multiplicative noise-driven processes,
respectively. We now consider the role of noise correlation time
in the present context. The memory effect of the external noise
introduces the correlated motion of the Brownian particle like
the deterministic force. As a signature of this, the frequency
factor of the rate constant depends on the noise correlation
time of the colored noise. Another role of the noise correlation
time is that it enhances the effective barrier height through
the reduction of the noise variance. Since the effective noise
strength and noise correlation time depend on the nature
of the cross-correlation among the noises, the rate constant
depends on both the strength and the correlation time of the
cross-correlation. The present discussion may be helpful in
understanding the result, which will be demonstrated in the
following subsections.

A. Breakdown of the Arrhenius result in the presence
of the external noises

We now demonstrate how the rate constant depends on
the temperature of the thermal bath. Using Eq. (26), we have
calculated the rate constant (km) as a function of temperature
for different noise parameters and plotted in Fig. 3. It shows
that a breakdown of the Arrhenius result [51] occurs in the
presence of colored multiplicative noise. One can account for
it based on the approximate calculation. Equation (40) implies
how the activation energy is influenced by the temperature
of the thermal bath in the presence of colored multiplicative
noises. The approximate calculation is corroborated by the
exact calculation of the rate constant. A numerically calculated
barrier-crossing rate has been presented in Fig. 6(i). It also
implies a breakdown of the Arrhenius result in the presence of
colored multiplicative noise. Thus the external noise-induced
temperature dependent activation energy leads to the deviation
from the Arrhenius result. For a given noise correlation time,
the deviation is enhanced by the increase of strength of the
cross-correlation or the intensity of the noises. It is manifested
in the figure by the temperature independence on the rate
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FIG. 3. (Color online) (i) Plot of ln km vs 1/T for the common parameter set a = 0.25,b = 0.5,kB = γ = 1.0 and the following cases:
(a) d1 = d2 = 0.0,τ = τ1 = τ2 = 0.0,λ = 0.0; (b) d1 = 0.05,d2 = 0.0,τ = τ1 = τ2 = 0.0,λ = 0.0; (c) d1 = 0.05,d2 = 0.0,τ1 = 1.0,τ =
τ2 = 0.0,λ = 0.0; (d) d1 = 0.05 = d2,τ1 = τ = τ2 = 0.0,λ = 0.0; (e) d1 = 0.05 = d2,τ1 = τ = τ2 = 0.0,λ = 0.0; (f) d1 = 0.05 = d2,τ1 =
τ2 = 1.0,λ = τ = 0.0; (g) d1 = 0.05 = d2,τ1 = τ2 = 1.0,λ = 1.0,τ = 0.0; (h) d1 = 0.05 = d2,τ1 = τ2 = 1.0,λ = 1.0 = τ . (ii) Plot of
ln km vs 1/D1 for the common parameter set a = 0.25,b = 0.5,kBT = 0.05,γ = 1.0 and the following cases: (a) d2 = 0.0,τ = τ1 =
τ2 = 0.0 = λ; (b) d2 = 0.0,τ1 = 1.0,τ = τ2 = 0.0 = λ; (c) d2 = 0.05,τ1 = τ = τ2 = 0.0 = λ; (d) d2 = 0.05,τ1 = τ = τ2 = 0.0,λ = 1.0;
(e) d2 = 0.05,τ1 = τ2 = 1.0,τ = λ = 0.0; (f) d2 = 0.05,τ1 = τ2 = 1.0,τ = 0,λ = 1.0; (g) d2 = 0.05,τ1 = τ2 = 1.0,τ = λ = 1.0 (units are
arbitrary).

constant at a low temperature regime. At this limit, the effect of
temperature on the barrier-crossing rate becomes insignificant
compared to the strength of external noises, which is implied in
Eq. (40). On the other hand if the noise becomes more colored
for the given values of the strength of cross-correlation or noise
intensity, then the extent of deviation is reduced, particularly
at low-temperature regime.

In the next step, based on Eq. (26) we have demonstrated
the dependence of the rate constant on the strength of the
multiplicative noise in Fig. 3(ii). It is apparent in this figure
that ln km is a nonlinear function of 1

D1
. Deviation from the

linear behavior is strong at relatively higher noise strength.
This nonlinear behavior is implied in Eq. (40) through the
appearance of D1 in both the frequency factor and the

activation energy. It is a signature of the multiplicative
noise-induced drift term, which is a function of the noise
strength.

B. The deviation of the rate constant from the power law
behavior as a function of damping strength

in the presence of external noise

Equations (40) and (41) imply that the rate constant as a
function of damping strength deviates from the power law [51]
in the presence of the multiplicative noises. Based on Eq. (26)
the role of noise properties on the deviation is demonstrated in
Fig. 4(i). The curves (g) and (h) in the figure imply that as the
noise becomes more colored, then the deviation from the power
law is stronger. One can interpret it physically that the effect of

FIG. 4. (Color online) (i) Plot of km vs γ for the common parameter set a = 0.25,b = 0.5,kBT = 0.05 and the following cases: (a) d1 =
d2 = 0.0,τ = τ1 = τ2 = 0.0,λ = 0.0; (b) d1 = 0.05,d2 = 0.0,τ = τ1 = τ2 = 0.0,λ = 0.0; (c) d1 = 0.05,d2 = 0.0,τ1 = 1.0,τ = τ2 = 0.0,λ =
0.0; (d) d1 = 0.05 = d2,τ1 = τ = τ2 = 0.0,λ = 0.0; (e) d1 = 0.05 = d2,τ1 = τ = τ2 = 0.0,λ = 1.0; (f) d1 = 0.05 = d2,τ1 = τ2 = 1.0,λ =
τ = 0.0; (g) d1 = 0.05 = d2,τ1 = τ2 = 1.0,λ = 1.0,τ = 0.0; (h) d1 = 0.05 = d2,τ1 = τ2 = 1.0,λ = 1.0 = τ . (ii) Plot of km vs strength of
cross-correlation (λ) for the common parameter set a = 0.25,b = 0.5,kBT = 0.02,γ = 1.0,d1 = 0.05 = d2. (a) τ = τ1 = τ2 = 0.0; (b) τ1 =
1.0,τ = τ2 = 0.0; (c) τ1 = 1.0 = τ2,τ = 0.0; (d) τ1 = 1.0 = τ2 = τ (units are arbitrary).
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FIG. 5. (Color online) Plot of knum,km,kam,kmip vs τ1 for fixed variance and the common parameter set a = 0.25,b = 0.5,kBT = 0.04,γ =
1.0. (i) c0 = 0.1,λ = 0.0, cf = 0.25,cf 1 = 0.06. (ii) c0 = 0.1,λ = 1.0,cf = 0.25,cf 1 = 0.1. In the inset we have plotted kmip vs τ1 for fixed
variance with the same parameter set as in the main figure (units are arbitrary).

damping strength on the diffusion is reduced for the decrease
of noise fluctuations with increase in noise correlation time.
Thus if the cross-correlation is white, then deviation from the
power law is small compared to the colored cross-correlation
situation.

C. The behavior of the rate constant as a function
of strength of the interference between the noises

The strength of the cross-correlation among the noises
affects both the effective noise strength and the correlation
time of the stochastic process. Its control on the rate constant
through these quantities has been demonstrated in Fig. 4(ii).
This figure shows that the barrier-crossing rate increases
as a nonlinear function of the strength of the interference
between the noises. It is a signature of increase of effective
noise strength and decrease of noise correlation time with the
enhancement of the strength of the interference. The growth
rate reduces as the individual noises and their cross-correlation
become colored. It may be due to an insignificant decrease of
effective noise correlation time with the increase of λ. Another
point to be mentioned here is the increase of the rate constant as
a function of strength of cross-correlation in the present system
is behavior in contrast to that in Ref. [29]. In other words, if one
of the cross-correlated noises becomes additive, then the rate
constant decreases as the strength of the interference grows.

D. The cross-correlation-induced resonant activation

During the last two decades it has been observed that the
exploring of the resonant activation phenomenon has been a
key issue in the field of barrier-crossing dynamics. In this
context, we have examined the role of noise cross-correlation.
In Fig. 5 we have demonstrated the variation of the rate
constant as a function of effective noise correlation time for
a given noise variance. Thus for this plot the effective noise
strength (De) and τe obey the following relationship:

De = 2c0(1 + λ)τe. (45)

One can achieve the above relation easily by the simple choice,
D2 = D1 = c0τ1 and τ = τ2 = τ1. For D2 = 0, relation (45)

becomes

De = D1 = c0τe = c0τ1. (46)

The above equation is generally considered to study the
resonant activation behavior [15,18,19,52]. However, it is
apparent in Fig. 5 that colored cross-correlation may induce
resonant activation. For the given parameter set the resonant
activation phenomenon almost disappears in the absence of
cross-correlation. Then the rate constant increases nearly
monotonically as a function of noise correlation time. Here
enhancement of the barrier-crossing rate due to increase of
noise strength dominates over the suppression of the rate
constant by the noise correlation time [18]. To check the
validity of the unified colored noise approximation we have
presented the result from the numerical experiment in Fig. 5.
We have calculated the barrier-crossing rate numerically using
the earlier mentioned procedure. For the multiplicative noise-
driven case, we have represented the numerical result by knum.
In the same figure we have also presented the result, which is
calculated following the interpolation method [46]. According
to this method, 1

A
in Eq. (9), has to be replaced by

1

Aipa

= 1 − c[τeh
′(q)]n−1

1 + c[τeh′(q)]n
. (47)

c and n in the above equation are adjustable parameters for
the best fit of a particular experimental data. It is noted here
that the above equation reduces to Eq. (9) for c = −1 and
n = 2. It is difficult to develop the interpolation scheme for
the multiplicative noise-driven case. We assume a similar kind
of function like Aipa for A in Eq. (7), and it is represented by

1

Aipm

= 1 − c{τe[h′(q) − h(q)/q]}n−1

1 + c{τe[h′(q) − h(q)/q]}n . (48)

If we replace A in Eq. (26) by Aipm, then km is substituted
by kmip. It is surprising to note that the very approximate
calculation based on the above function qualitatively agrees
with the numerical result as shown in Fig. 5(ii). Here
another issue to be mentioned that c = 0.44 and n = 2
are corresponding to the best fit of theoretical result with the
numerical experiment. This choice has been considered for the
additive noise-driven case in Ref. [46]. We have also checked
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FIG. 6. (Color online) (i) Plot of ln knua, ln ka , ln kaip, ln knum and ln km vs 1/T for the parameter set kB = γ = 1.0,d1 = d2 = 0.02,τ =
τ1 = τ2 = 0.25,λ = 1.0. (ii) Plot of ln knua, ln ka , ln kaip, ln knum and ln km vs 1/D1 for the parameter set kBT = 0.02,d2 = 0.05,τ = τ1 =
τ2 = 0.25,λ = 1.0. (iii) Plot of knua, ka , kaip, knum and km vs γ for the parameter set kBT = 0.02,d1 = d2 = 0.02,τ = τ1 = τ2 = 0.25,λ = 1.0.
(iv) Plot of knua, ka , kaip, knum and km vs τ1 for fixed noise strength and the parameter set kBT = 0.02,d1 = d2 = 0.05,τ = τ2 = 0.25,λ = 1.0.
(v) Plot of knua, ka , kaip, knum and km vs τ for fixed noise strength and the parameter set kBT = 0.02,d1 = d2 = 0.05,τ1 = τ2 = 0.25,λ = 1.0.
(vi) Plot of knua, ka , kaip, knum and km vs strength of cross-correlation (λ) for the parameter set, kBT = 0.02,d1 = d2 = 0.05,τ = τ1 = τ2 =
0.25 (units are arbitrary).

that it is the best choice for an additive colored cross-correlated
noise-driven system for any parameter set. Shortly we will
present the result for the additive noise-driven case. However,
Fig. 5 implies that the pattern of the result which is calculated
based on the unified colored noise approximation and the
numerical result is quite similar for the wide range of noise
intensity and correlation time. At the same time, this figure
also suggests that at the small noise correlation time limit the
scheme may be a good one. We will further check the validity
of this method in the next subsection.

E. A comparative study of the rate constants for additive
and multiplicative noise-driven cases

In this subsection we investigate how the rate constant
changes if the multiplicative noises (MNs) become additive
in nature. The dependence of the rate constant on the noise
properties has been demonstrated in Fig. 6. For this figure we
have chosen the common parameter set, a = 0.25,b = 0.5. It
shows that the rate constant for a given set of parameters
is significantly greater for the additive noises (AN)-driven
process compared to the other case. This is implied in the
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approximate calculation. The calculation suggests that the
frequency factor for the AN-driven case is greater than that
of the other. One can account for further details of Fig. 6
(such as a breakdown of the Arrhenius result being stronger
for AN than that of MN) based on the earlier discussion
and the approximate calculations. In this figure we have
compared the numerical result with analytically calculated
data. The numerically calculated barrier-crossing rate constant
for additive colored noise-driven case is denoted by knua. In
Fig. 6 kaip corresponds to the rate constant, which has been
calculated using Aipa in Eq. (27). However, Fig. 6 suggests that
sometimes the interpolation method is better than that of the
unified colored noise approximation scheme. Thus searching
for an interpolation-like scheme for the multiplicative colored
noise-driven case may be an important issue in the near future.

IV. CONCLUSION

Based on the Fokker-Planck description of the stochastic
process we have studied properties of the cross-correlated
colored noise-driven dynamical system. To make the present
study general we have considered that the noise may be
either additive or multiplicative in nature. Here we present
a comparative study based on the two cases. Our major
observations include the following points.

(i) The transition state of the double-well potential can
be stabilized by the introduction of colored cross-correlation
between the multiplicative noises. This can be achieved for
the asymmetric double-well potential also at the cost of
reduction of the asymmetric behavior of the system. Thus the
external multiplicative noises can monitor a chemical reaction
to understand the mechanism of the process.

(ii) Breakdown of the Arrhenius result occurs in the pres-
ence of multiplicative noise. For the cross-correlated noises
it becomes stronger. If the cross-correlation or noises become
colored, then the extent of the breakdown reduces. Further-
more, for a given noise parameter set the breakdown is strong
for the additive noise compared to the other case. Here it should
be noted that the rate constant is higher for additive noise
compared to multiplicative noise. The Arrhenius-like plot for
the variation of rate constant as a function of the strength of the
external noise is a nonlinear type. The nonlinearity is strong
for multiplicative noise compared to additive noise.

(iii) Deviation from the power law behavior of the rate
constant as a function of damping strength is stronger if the
noise becomes more colored. Thus if the cross-correlation is
white, then deviation from the power law is small compared
to the colored cross-correlation situation.

(iv) There is a cross-correlation induced resonant activation
for the colored multiplicative noises-driven system.

(v) Barrier-crossing rate increases with increase in cross-
correlation strength. The growth rate enhances as the interfer-
ence between the noises becomes stronger. If the individual
noises and their cross-correlation become colored, then the
growth rate is reduced. Furthermore, increase of the rate con-
stant in the present system is in sharp contrast to the case where
one of the cross-correlated noises is additive in nature [29].

(vi) Finally, comparing the present calculation with the
earlier studies in Refs. [40,41] one may conclude that the
present method is a unified approach.

(vii) A comparative study suggests that sometimes the inter-
polation method is better than that of the unified colored noise
approximation scheme. Thus searching for an interpolation-
like scheme for the multiplicative colored noise-driven case
may be an important issue in the near future.
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