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Nash equilibrium and evolutionary dynamics in semifinalists’ dilemma
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We consider a tournament among four equally strong semifinalists. The players have to decide how much
stamina to use in the semifinals, provided that the rest is available in the final and the third-place playoff. We
investigate optimal strategies for allocating stamina to the successive matches when players’ prizes (payoffs)
are given according to the tournament results. From the basic assumption that the probability to win a match
follows a nondecreasing function of stamina difference, we present symmetric Nash equilibria for general payoff
structures. We find three different phases of the Nash equilibria in the payoff space. First, when the champion
wins a much bigger payoff than the others, any pure strategy can constitute a Nash equilibrium as long as all
four players adopt it in common. Second, when the first two places are much more valuable than the other two,
the only Nash equilibrium is such that everyone uses a pure strategy investing all stamina in the semifinal. Third,
when the payoff for last place is much smaller than the others, a Nash equilibrium is formed when every player
adopts a mixed strategy of using all or none of its stamina in the semifinals. In a limiting case that only last
place pays the penalty, this mixed-strategy profile can be proved to be a unique symmetric Nash equilibrium, at
least when the winning probability follows a Heaviside step function. Moreover, by using this Heaviside step
function, we study the tournament by using evolutionary replicator dynamics to obtain analytic solutions, which
reproduces the corresponding Nash equilibria on the population level and gives information on dynamic aspects.
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I. INTRODUCTION

During the 1938 FIFA World Cup in France, Adhemar
Pimenta, the coach of the Brazilian national team, was facing
a dilemma: Spearheaded by Leônidas da Silva, the Brazilians
had defeated the Polish in extra time and consecutively
eliminated Czechoslovakia in a replay after the “Battle of
Bordeaux.” Pimenta was becoming worried about the fatigue
accumulation of his team members. The next opponent in
the semifinal was Italy, the reigning world champion at that
time. Worse was that the final with Hungary would not be
easier. After changing the starting lineup eight times, the coach
decided to play the semifinal against Italy without Leônidas.
Then Brazil lost to Italy.

One might say retrospectively that the coach was imprudent.
However, it is not a trivial question what would have been a
better choice in that situation, especially for the person directly
involved. Let us look back at their next encounter during the
1970 World Cup in Mexico. This time, Italy advanced to the
final after the “Game of the Century” against Beckenbauer’s
Germany. However, the energy exhausted in the semifinal
turned out to be such a great loss that the Azzurri was utterly
defeated by the Brazilians in the final. So they had to watch
helplessly as Brazil took permanent ownership of the Jules
Rimet Trophy.

This kind of dilemma is by no means rare in tournament
competitions. It might have originated from the unfairness of
sports tournament compared to sports leagues, which is traded
off against the efficiency of tournament competitions [1–4].
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How to distribute stamina over a series of matches takes up an
important part of the players’ strategies. We also point out that
the dilemma captures an aspect of our society as a series of
competitions, which is an essential part of our daily life from
television shows like Project Runway to presidential elections
with the two-round system. A sports tournament serves as a
striking metaphor here, as clearly seen from the fact that people
often talk about fair play, front runners, and a knockout punch
in these activities as well.

In order to investigate this dilemma, we consider a simple
model for a two-round tournament among four players with
equal stamina. The players have to decide how much stamina
to use in the first round (i.e., semifinals) provided that only
the rest is available in the second round. The second rounds
take place between winners (losers) of the first round for the
championship (third place). We assume that the outcome of
a match is described by a well-defined probability function.
This function should contain all the essential information of
the sport under consideration, such as the rules to decide
the winner (for additional discussions about the dynamics
of competitions see Refs. [5,6].) It gives the probability
for a player to defeat an opponent as a function of their
invested stamina, so it will be called the winning probability
function [7]. The chance is 50:50 when two players spend
the same amount of stamina and it is reasonable that the
winning probability is a nondecreasing function of the stamina
difference. At the end of the tournament, each player gets a
prize (payoff) for the finishing place. We consider a general
payoff structure under a plausible constraint that the payoff
never decreases as a player moves up in rank.

Having defined the game by choosing the winning probabil-
ity function together with the payoffs, we have to ask ourselves
what we mean by solving this game. In game theory, the Nash
equilibrium is the most well-known solution concept: Once it
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is achieved, players cannot be better off by changing their own
strategy alone [8]. One may also investigate the game from an
evolutionary point of view. The replicator dynamics is widely
used to study the evolution of an infinite population with pure
strategies [9–12]. In this study, we apply both methods to our
tournament model for a better understanding and compare the
results to check their consistency.

In terms of Nash equilibrium, we find three different phases,
which divide the payoff space into three regions. (i) First, when
the champion wins a much bigger payoff than the others, any
pure strategy can constitute a Nash equilibrium as long as
all four players adopt it in common. (ii) If the payoff for
the second-place winner is also valuable enough, one has no
reason to fight in the second round. Therefore, the only Nash
equilibrium is such that everyone spends all the stamina in
the first round, i.e., semifinals. (iii) Finally, if the payoff for
last place is much smaller than the others, a Nash equilibrium
emerges when everyone adopts a mixed strategy using all or
none of the stamina with proper weights.

The above three phases are also analytically tractable from
the viewpoint of evolutionary dynamics when the winning
probability function is the Heaviside step function of the
stamina difference between two players. The results of the
replicator dynamics are as follows. For case (i), the population
evolves to a single species adopting a common pure strategy.
Which pure strategy to adopt in the long run depends on the
initial strategy distribution. For case (ii), the population evolves
to a single species using all the stamina in the first round. For
case (iii), the population becomes a genetic polymorphism of
two species. One spends all the stamina in the first round,
while the other reserves it all for the second round. The
proportions of these species correspond to the weights of the
mixed-strategy Nash equilibrium in case (iii). These solutions
are fully consistent with the analysis of Nash equilibria.

This paper is organized as follows. In the next section we
define our game of the two-round tournament in detail by
specifying its strategy space and payoff structure. In Sec. III
we focus on symmetric Nash equilibria of this game. We
begin with simple limiting payoff structures and then proceed
to a general payoff structure to find Nash equilibria for the
entire payoff space. This analysis is followed in Sec. IV
by the evolutionary dynamics of an infinite population with
pure strategies and a comparison of the results with the Nash
equilibria.

II. MODEL

Let us consider four equally strong semifinalists and denote
them by A, B, C, and D, respectively. In the first round, player
A meets B, while C meets D. The second round takes place
between winners (for the championship) and between losers
(for third place) of the first round. The players’ payoffs are
given according to the tournament result. The numerical values
of the payoffs are denoted by s for the champion, u for the
second-place winner, v for the third-place winner, and w for

last place, where w � v � u � s. Nash equilibria and repli-
cator dynamics are invariant under translation and rescaling
of the payoffs by a positive factor, so we may set w = 0 and
s = 1 without loss of generality. Then the payoff parameter
space reduces to the (u,v) plane with 0 � v � u � 1.

Each player’s strategy determines how much stamina will
be spent in the first round provided that the rest is available in
the second round. We assume that all the players have an equal
amount of stamina at the beginning and normalize it as 1. Then
player i’s strategy, which is generally a mixed one, is expressed
by a normalized distribution function φi(x) of the mixing
weights over a closed interval [0,1], i.e.,

∫ 1
0 φi(x)dx = 1.

If the player adopts a pure strategy of investing xi in the
first round, for example, φi(x) = δ(x − xi). As a slight abuse
of notation, we will often abbreviate such a pure strategy
as xi .

Suppose that the players have formed a strategy profile [13]
(φA,φB,φC,φD). In order to calculate expected payoffs, we
need the winning probability function f (xi,xj ). It tells us how
likely player i is to defeat player j when they use stamina xi

and xj , respectively. We furthermore assume that f is a nonde-
creasing function of the stamina difference �xij ≡ xi − xj ∈
[−1,1], i.e., f (xi,xj ) ≡ f (xi − xj ) = f (�xij ). This implies
that a player’s winning probability never decreases as that
player’s investment increases. We do not consider a draw as a
match outcome and require f (�xij ) + f (�xji) = 1. Then we
have f (0) = 1

2 , i.e., two players spending the same amount of
stamina have an equal chance to win the match. It is convenient
to consider only the relative difference from f (0) by defining
h(�x) ≡ f (�x) − f (0), which is an odd function, because
h(�x) + h(−�x) = 0. It is non-negative for �x � 0 and has
a maximum at �x = 1. The maximum is bounded by 1

2 from
above, because f (�x) = h(�x) + 1

2 � 1.
To demonstrate how to calculate the expected payoffs, let

us assume that the players’ moves are xA, xB , xC , and xD ,
respectively. For player A, the probability to win the semifinal
is defined as 1

2 + hAB , where hij ≡ h(xi − xj ). If player A

has really made it, the remaining stamina for the final must be
1 − xA. Then, who will be A’s next opponent in the final? With
probability 1

2 + hCD , it is player C with remaining stamina
1 − xC . Player A will defeat C with probability 1

2 + h[(1 −
xA) − (1 − xC)] = 1

2 − hAC . Alternatively, the opponent can
be player D with probability 1

2 − hCD and player A will defeat
D with probability 1

2 − hAD . Therefore, we find the probability
of A to be the champion as

(
1
2 + hAB

)[(
1
2 + hCD

)(
1
2 − hAC

) + (
1
2 − hCD

)(
1
2 − hAD

)]
.

(1)

It is straightforward to find the probability to take second or
third place as well. Then player A’s expected payoff πA for
these particular moves xA, xB , xC , and xD is expressed as

πA = (
1
2 + hAB

)[(
1
2 + hCD

)(
1
2 − hAC

) + (
1
2 − hCD

)(
1
2 − hAD

)] + u
(

1
2 + hAB

)[(
1
2 + hCD

)(
1
2 + hAC

)
+(

1
2 − hCD

)(
1
2 + hAD

)] + v
(

1
2 − hAB

)[(
1
2 − hCD

)(
1
2 − hAC

) + (
1
2 + hCD

)(
1
2 − hAD

)]
. (2)
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This should be averaged over the distribution functions φA(xA),
φB(xB), φC(xC), and φD(xD) to yield the eventual expected
payoff for player A. The other players’ payoffs are readily
obtained by permuting the indices.

Note that our model is similar to the war of attrition
(WA) in that each strategy is defined on a continuous space,
leading to an infinite-sized payoff matrix. In addition, the
WA bears a strong similarity to the chicken game, as ours
does when it matters not to be the loser. One might even
think of the semifinalists’ dilemma as a variant of this famous
game, where each player’s remaining resources after the bid
become as much important as the victory itself. Obviously,
such a variation would just reflect the existence of the second
round in our case. In addition, this modification will induce a
player to give up the first round more easily whenever the
opponent appears aggressive enough. Beyond a qualitative
level, however, it is hard to predict the behavior, like the ratio
between investing 0% and 100% in the first round, by this
analogy. At the same time, we point out a subtle difference
of our game in that it is essentially one’s own bid in the first
round that determines one’s remaining resources, whereas it
would rather be one’s first opponent’s bid in the WA [9,12,14].

III. NASH EQUILIBRIA

Let us first consider a simple limiting case of the payoff
structure by setting u = v = 0. In other words, only the
champion who has won both rounds gets a prize, so it can be
regarded as a winner-take-all system. We will show that there
exists an infinite number of Nash equilibria of pure strategies
where the players coordinate their strategies by choosing the
same value. If someone spends less in the first round than this
coordination, that player becomes more likely to lose the first
match. If someone spends more, on the other hand, that player
is risking the chance to win the second round.

We can argue this statement more rigorously by taking
player A’s viewpoint. If A uses a pure strategy xA while the
other three use a common pure strategy x∗, then hCD = 0
and hAB = hAC = hAD = h(xA − x∗) ≡ h. Equation (2) thus
reduces to

πA(xA,x∗,x∗,x∗) = 1
4 − h2 � πA(x∗,x∗,x∗,x∗) = 1

4 . (3)

Therefore, the pure-strategy profile S∗ ≡ (x∗,x∗,x∗,x∗) is a
Nash equilibrium for any x∗ ∈ [0 1] if u = v = 0.

A. Region I

Now let us check how robust the Nash equilibrium S∗ is for a
general payoff structure. Player A’s expected payoff of Eq. (2)
becomes πA(x∗,x∗,x∗,x∗) = 1

4 (1 + u + v) because the total
prize should be equally distributed among the four players. If
player A uses xA while the other three use a common strategy
x∗, Eq. (2) is simplified to

πA(xA,x∗,x∗,x∗) = (
1
2 + h

)(
1
2 − h

) + u
(

1
2 + h

)(
1
2 + h

)
+ v

(
1
2 − h

)(
1
2 − h

)
, (4)

where h ≡ h(xA − x∗). For the strategy profile S∗
to be a Nash equilibrium, �πA ≡ πA(x∗,x∗,x∗,x∗) −
πA(xA,x∗,x∗,x∗) � 0 for any xA ∈ [0,1]. From Eq. (4)

we have

�πA = h(v − u) + h2(1 − u − v) (5)

= h[(1 − h)v − (1 + h)u + h]. (6)

First, consider the case of xA > x∗, i.e., h � 0. The payoff
difference �πA is non-negative only when

v � 1 + h

1 − h
u − h

1 − h
. (7)

We have assumed u � v, so the inequality Eq. (7) automati-
cally implies that

u � 1 + h

1 − h
u − h

1 − h
, (8)

which is satisfied only when u � 1
2 . If this is the case, the

right-hand side (RHS) of Eq. (7) is a nonincreasing function
of h because

∂

∂h

(
1 + h

1 − h
u − h

1 − h

)
= 2u − 1

(1 − h)2
� 0. (9)

Let h0 be the greatest lower bound of h(xA − x∗) for xA >

x∗. If a certain payoff structure represented by (u,v) satisfies
Eq. (7) for h = h0, it is guaranteed by Eq. (9) that Eq. (7) holds
true for any h � h0. In other words, �πA remains non-negative
for any xA > x∗ as long as

v � 1 + h0

1 − h0
u − h0

1 − h0
. (10)

If xA < x∗, on the other hand, we have h � 0. Rewriting Eq. (5)
as �πA = h2[(1 − u − v) + |h|−1(u − v)], we see that it is
always non-negative for v � u � 1

2 .
Therefore, a strategy profile S∗ = (x∗,x∗,x∗,x∗) is a Nash

equilibrium for any x∗ ∈ [0,1] if the payoff structure (u,v)
satisfies the inequality (10). We call this area region I in the
(u,v) payoff space. This region is not observable if h0 vanishes:
For example, if �x can be infinitesimally small and h(�x)
continuously approaches zero as �x → 0, then S∗ remains as
a Nash equilibrium only for 0 � v = u � 1

2 unless x∗ = 1. On
the other hand, region I becomes the largest when h0 = 1

2 , i.e.,
when f (�x) is the Heaviside step function as follows:

f (�x) =
⎧⎨
⎩

0, �x < 0
1
2 , �x = 0
1, �x > 0.

(11)

In this case, the region is bounded by v � 3u − 1 and 0 � v �
u � 1

2 .

B. Region II

If x∗ = 1, it is impossible to have xA > x∗ and we only need
to consider h � 0. Then �πA expressed in Eq. (5) is always
non-negative for u � 1

2 because both terms on the RHS are
non-negative due to v � u. For u > 1

2 , it is better to work with
Eq. (6), which tells us that �πA is non-negative if

v � 1 + h

1 − h
u − h

1 − h
. (12)

As shown in Eq. (9), if u > 1
2 , the RHS of Eq. (12) only

grows as h ≡ h(xA − 1) increases. Therefore, once (u,v)
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FIG. 1. (Color online) Schematic phase diagrams with a general
payoff structure, where u is the relative payoff of the second-place
winner and v is that of the third-place winner, for (a) h0 > 0 and
(b) h0 = 0. The region of interest u � v is divided into three regions,
denoted by I, II, and III, respectively. Region I is characterized by the
strategy profile S∗ = (x∗,x∗,x∗,x∗) for any pure strategy x∗ ∈ [0,1]
and bounded by Eq. (10). However, as drawn (b), it shrinks to a
line segment of 0 � u = v � 1

2 if min�x>0 h(�x) = 0. In region II
bounded by Eq. (13), S∗ is not a Nash equilibrium unless x∗ = 1. If
v is large enough, the players may have a common mixed strategy as
a Nash equilibrium in region III (see the text for details).

satisfies Eq. (12) for the minimum of h(xA − 1), the inequality
holds true for any xA. Due to the fact that h(�x) is a
nondecreasing function, the minimum of h(xA − 1) should
be h(−1) = −h(1) ≡ −h1. We thus conclude that the strategy
profile S1 = (1,1,1,1) is the only Nash equilibrium if

v � 1 − h1

1 + h1
u + h1

1 + h1
. (13)

Region II is the set of (u,v) points at which S1 is a Nash equilib-
rium but S∗ = (x∗,x∗,x∗,x∗) is not for x∗ < 1. If h1 = 1

2 , for
example, this region is bounded by v � 1

3 (u + 1), v � 3u − 1,
and 0 � v � u � 1. We depict a graphical representation of
regions I and II in Fig. 1. Note from Eqs. (10) and (13) that the
boundaries meet at (u,v) = ( 1

2 , 1
2 ) for any h0 and h1 in general.

It is very interesting that the phase boundaries are determined
only by both extreme values h0 and h1 and are independent of
the shape of the function h(�x) for 0 < �x < 1.

C. Region III

The remaining region is given by

v � 1 − h1

1 + h1
u + h1

1 + h1
, (14)

which is referred to as region III. We assume h1 > 0 because
h1 = 0 would mean that each player’s expected payoff is
trivially 1

4 (1 + u + v) irrespective of one’s strategy. Let us
consider a simple limiting payoff structure again by setting
u = v = 1. This is disadvantageous only for last place, so
we may call it a loser-pay-all system as a rhyme for the
winner-take-all system given above. If only the one that has
lost both matches gets nothing, the immediate goal should
be to win at least one match. The important keyword here is
concentration. It means that it is advisable to concentrate either
on the first round or on the second round. For this reason, we
look for a mixed-strategy Nash equilibrium in the form

mp = pδ(x) + (1 − p)δ(1 − x) (15)

with p ∈ [0,1] and indeed find a strategy profile Sm =
(mp∗ ,mp∗ ,mp∗ ,mp∗ ) as a Nash equilibrium, where

p∗ =
1 + h1 −

√
1 + h2

1

2h1
. (16)

The proof is given in Appendix A. It is noteworthy that when
h1 = 1

2 , the mixing weights p∗ and 1 − p∗ are ϕ−2 and ϕ−1 =
1 − ϕ−2, respectively, where ϕ = (1 + √

5)/2 is the golden
ratio. This means that Sm is a Nash equilibrium if the weights
of concentration between the first and second rounds are in
the golden ratio. The condition that h1 = 1

2 is often reasonable
because one cannot win without making an effort, especially
if the opponent is doing the best.

We can repeat the same procedure for general payoffs in
region III. The above result is generalized by the finding that
Sm = (mp∗ ,mp∗ ,mp∗ ,mp∗ ) is a Nash equilibrium, where

p∗(u,v) =
kh1 − l −

√
k2h2

1 + l2 − 2k2 + 2k

2kh1
(17)

with k ≡ 1 − u + v and l ≡ 1 − u − v. In Appendix B we
prove that

πA(x,mp∗ ,mp∗ ,mp∗ ) � πA(mp∗ ,mp∗ ,mp∗ ,mp∗ )

= 1
4 (1 + u + v) (18)

for any x ∈ [0,1] under the condition that h(�x) > 0 for �x >

0. The equality holds at both x = 0 and x = 1. In other words,
when player A adopts a concentration strategy in the form
of Eq. (15), A’s payoff is predetermined as (1 + u + v)/4,
independent of the choice of p. In that sense, mp∗ can be
considered as a partial equalizer strategy [15,16]. One can
readily check that Eq. (17) reduces to Eq. (16) as (u,v) →
(1,1). It is also worth noting that Eq. (17) vanishes, i.e., p∗ →
0, so Sm converges to S1 as v approaches the boundary given
in Eq. (14).

Interestingly, Sm can be shown to be the only symmetric
Nash equilibrium for u = v = 1, when the winning probability
is taken as the Heaviside step function [Eq. (11)]. Suppose that
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every player is using a mixed strategy m(x) given by

m(x) = pδ(x) + qδ(1 − x) + g(x), (19)

where p and q are probabilities of using x = 0 and x = 1, re-
spectively, and g(x) is non-negative on (0,1). The conservation

of total probability requires that
∫ 1−

0+ g(x)dx = 1 − p − q �
0. Noting that player A’s initial payoff must be 3

4 due to
symmetry, we will check whether A can be better off by
adopting mp∗ . When A has adopted mp∗ , whereas the others are
still using m(x), player A’s payoff πA can be easily calculated
since it depends on p and q but not on the explicit shape of
g(x). (Recall that mp∗ consists of 0 and 1 strategies only.)
Straightforward calculation shows

πA = 1 − 8p − 8p2 + 2p3 − (1 + √
5)(q3 − 2q)

4(3 + √
5)

(20)

and we can show that this is always greater than 3
4 unless

m(x) = mp∗ . Therefore, any symmetric strategy profile cannot
be sustained as an equilibrium except for Sm.

It is also instructive to consider other strategy profiles
without such symmetry. For example, let us choose f (�x)
as

f (�x) =
{

1 − 1
2e−�x/� for �x > 0

1
2e�x/� otherwise,

(21)

where � is a parameter for controlling sensitivity to the
difference of the stamina [7]. This choice permits a strategy
profile S10 = (1,0,1,0) (and other combinations exchanged
between A and B, or C and D) to be a Nash equilibrium at
(u,v) = (1,1), as shown in Appendix C. It is another possible
manifestation of concentration, the keyword of region III, in
addition to the mixed-strategy profile Sm. This seems to be
parallel to the following asymmetric Nash equilibrium in the
WA [9,12,14], i.e., one player bids zero while the other does
any number equal to or higher than the value of the resource
in hand. We observe a similar situation in the chicken game as
well because it has one symmetric mixed-strategy equilibrium
plus two asymmetric pure-strategy equilibria where one player
plays dove and the other plays hawk. There seems to be a class
of games that permits both symmetric and symmetry-breaking
solutions.

IV. EVOLUTIONARY DYNAMICS

In this section we consider replicator dynamics for the
evolution of an infinite population with pure strategies. When
f (�x) is chosen as Eq. (21) with � → 0, this evolutionary
framework provides an alternative derivation or interpretation
of the Nash equilibria considered in the previous section. The
condition that � → 0 can be understood as restricting our
interest to a particular case of h0 = h1 = 1

2 [see, e.g., Eq. (11)].

A. Winner-take-all system

If u = v = 0, only the final victory matters and there
exists an infinite number of Nash equilibria where the players
coordinate their strategies. We will review this result by
introducing an evolutionary process governing an infinite
population in which each individual has a pure strategy x. The

distribution of x inside the population at time t is denoted by
the probability density P (x; t) and assumed to be continuous
at any finite t . We assume that the population evolves in such a
way that successful strategies gradually increase their portions
by replacing inferior ones, as is mathematically formulated as
follows:

∂

∂t
P (x; t) = [π (x; t) − 〈π〉]P (x; t), (22)

where π (x; t) means the payoff gained by strategy x at
time t and 〈π〉 ≡ ∫

π (x)P (x)dx is the average payoff of
the population. For brevity, we will suppress the dependence
on t henceforth. The evolutionary process as in Eq. (22) is
called the replicator dynamics [10,11]. Even on a continuous
strategy space, the replicator dynamics is well defined with
no modification [17]. The initial population P (x; t = 0) is
nonzero everywhere in the unit interval [0,1]. As mentioned
above, we only consider a situation where f (�x) is sharp
enough to be approximated as the Heaviside step function (11)
for mathematical tractability.

When u = v = 0, the expected payoff for player A by
playing xA is equivalent to the average of Eq. (1) over P (xB),
P (xC), and P (xD), which we will denote by πA(xA). It is
convenient to define

c(x) ≡
∫ 1

0
dx ′P (x ′)f (x − x ′) =

∫ x

0
dx ′P (x ′) (23)

and some algebra with integration by parts leads to

πA(xA) = 2
∫ 1

0
dxBP (xB)fAB

×
∫ 1

0
dxC

[
P (xC)fCA

∫ 1

0
dxDP (xD)fCD

]

= 2c(xA)
∫ 1

xA

dxP (x)c(x)

= c(xA)[1 − c2(xA)], (24)

where fij ≡ f (xi − xj ). Note that P (x) = ∂
∂x

c(x) with c(0) =
0 and c(1) = 1. One can also readily calculate the population
average as

〈πA〉 =
∫ 1

0
dx c(x)[1 − c2(x)]P (x) = 1

4
(25)

by an integration by parts again. The fact that 〈πA〉 = 1
4 is a

natural result of the symmetry among the four players, i.e.,
equal probability to win on average. Therefore, the replicator
dynamics reduces to

∂

∂t
P (x) =

[
c(x) − c3(x) − 1

4

]
P (x). (26)

Equivalently, we may rewrite it as

∂

∂x

(
∂c

∂t

)
= ∂

∂x

(
1

2
c2 − 1

4
c4 − 1

4
c

)
, (27)
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FIG. 2. (Color online) Replicator dynamics for (a) u = v = 0
and (b) u = v = 1. (a) Among the three fixed points where ∂c

∂t
= 0,

the middle one (the open circle) at c = ϕ−1 is unstable, whereas
the other two (the closed circles) are stable. In the middle row, c is
shown as a function of x (the thick red line) for a uniform strategy
distribution (the thin blue line). It decreases to zero for x < ϕ−1,
while it increases to one for x > ϕ−1, resulting in a step function
jumping at x = ϕ−1 as shown in the bottom row. Hence, P (x) has a
sharp peak at x = ϕ−1 in the steady state. (b) The only stable fixed
point is at c = ϕ−2. The cumulative probability c decreases if it is
larger than ϕ−2 and increases when it is smaller than ϕ−2 resulting in
the c(x) configuration in the bottom row: It is zero at x = 0, one at
x = 1, and c = ϕ−2 elsewhere, regardless of the initial configuration.
Hence, in the steady state, P (x) has two peaks, one at x = 0 and the
other at x = 1.

which means that

∂c

∂t
= 1

2
c2 − 1

4
c4 − 1

4
c + ξ (t), (28)

where ξ (t) is a function of t only. Because c(x = 0; t) = 0 and
c(x = 1; t) = 1, ξ (t) simply turns out to be 0. Therefore, we
have

∂c

∂t
= −1

4
c(c − 1)(c2 + c − 1). (29)

The RHS vanishes at c1 = 0, c2 = ϕ−1 = (
√

5 − 1)/2 ≈
0.618, and c3 = 1. Plotting Eq. (29) shows that ∂c/∂t is
negative between c1 and c2 and positive between c2 and c3 [see
Fig. 2(a)]. In other words, c2 is an unstable fixed point whereas
the other two are stable. Therefore, if we consider x = x̃ such
that c(x̃) = ϕ−1, the function c(x) converges to zero when
x < x̃, whereas it converges to one when x > x̃, which means
that a sharp peak in P (x) develops at x̃ as t increases. Note
that it is the cumulative probability that determines x̃, so the
peak position x̃ depends on the choice of the initial distribution
P (x; t = 0). In addition, Eq. (29) provides an explicit example
of mapping the replicator dynamics onto a reaction system,
parametrized in terms of c(x) [18,19]. To sum up, the replicator
dynamics selects a single point x̃ characterized by c(x̃) = ϕ−1

as a refined solution among infinitely many possibilities.

B. Loser-pay-all system

It is also straightforward to recast the case of u = v = 1 into
the evolutionary framework. Let LA be player A’s probability
to be last; we denote its average over P (xB), P (xC), and
P (xD) as LA. The gained payoff of A corresponds to the
probability not to be the last; it can be written as πA = 1 − LA.
One can readily check that LA = (1 − c)(2c − c2) and the
corresponding replicator dynamics is given as

∂

∂t
P (x) = −[LA(x) − 〈LA〉]P (x). (30)

The symmetry implies 〈LA〉 = 1
4 again, so Eq. (30) reduces to

the following:

∂c

∂t
= −1

4
c(c − 1)(c2 − 3c + 1). (31)

The RHS vanishes at c = 0,1, or ϕ−2 = 1 − ϕ−1 = (3 −√
5)/2 ≈ 0.382, wherein only c = ϕ−2 is the stable fixed

point [see Fig. 2(b)]. This shows that the replicator dynamics
reproduces the common mixed-strategy Nash equilibrium at
u = v = 1 on the population level.

C. General payoff systems

For general u and v, the same averaging process as above
yields the following equation:

∂c

∂t
= 1

4
c(c − 1)
(c; u,v), (32)

where 
(c; u,v) ≡ (u − v − 1)c2 + (u + 3v − 1)c + (u −
3v + 1). The main questions are the location of c∗ such that

(c∗; u,v) = 0 and its stability. From 1 − u + v �= 0, it is
straightforward to find

c∗
±(u,v) = −(1 − u − 3v) ± √

D(u,v)

2(1 − u + v)
, (33)

with D(u,v) ≡ (1 − u − 3v)2 + 4(1 − u + v)(u − 3v + 1).
Note that c∗

+ → ϕ−1 as (u,v) → (0,0), whereas c∗
− → ϕ−2

as (u,v) → (1,1). It is worth mentioning that c∗
+ = 1 if

v = 3u − 1, while c∗
− = 0 if u = 3v − 1, because these two

lines determine the shape of the phase diagram as depicted in
Fig. 1(a). It is interesting that the phase diagram suggests
duality under reflection across u + v = 1 and the replica-
tor equation is actually covariant under the transformation
(u,v,c,t) → (1 − v,1 − u,1 − c, − t).

If v > 3u − 1, which corresponds to region I in Fig. 1(a),
only c∗

+(u,v) in Eq. (33) lies inside the unit interval [0,1] as
an unstable fixed point. On the other hand, in region III where
v > 1

3 (u + 1), only c∗
−(u,v) is found inside the interval and it

is stable. In the rest of the possible region of u � v, neither
of c∗

± is feasible and c = 0 appears as a stable fixed point.
This implies that P (x) evolves to δ(1 − x) in the long run if
the second-place prize is worth enough, which means that all
players do their best in the semifinal to advance to the final in
region II.

Furthermore, let us check the population average of
the strategies in the long-time limit, written as 〈x〉 =∫

dx[xP (x; t → ∞)]. It is simply 1 over region II, where
the distribution is driven to a δ peak at x = 1. In region III, the
average is found to be 1 − c∗

−, which is larger than or equal
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FIG. 3. (Color online) Fraction of population choosing a pure
strategy x at time t , obtained by numerical integration of the replicator
equation with spatial and temporal step sizes dx = 10−3 and dt =
10−2. The initial distribution is assumed uniform so that each x has
probability P (x; t = 0)dx = 10−3. (a) The distribution converges
toward x = ϕ−1 (the dotted vertical line) in the winner-take-all
case (u = v = 0). (b) Two peaks emerge at x = 0 with weight ϕ−2

and x = 1 with weight ϕ−1 in the loser-pay-all case (u = v = 1).
Although the simulation is a discretized version of the replicator
equation due to the nature of numerical simulation, the results nicely
confirm the analytic solutions for continuous strategy space.

to ϕ−1, where the equality holds at (u,v) = (1,1). In region I,
〈x〉 is dependent on the initial condition in general. However,
if we start from a uniform distribution P (x,t = 0) = 1, we see
that 〈x〉 = c∗

+, which is again greater than or equal to ϕ−1, and
the equality holds at (u,v) = (0,0).

D. Numerical calculation

To provide an intuitive example, we perform a numerical
simulation of the replicator dynamics for two representative
cases: the winner-take-all (u = v = 0) and loser-pay-all (u =
v = 1) cases with f (�x) given by Eq. (11). Figure 3 shows
the fraction inside the population choosing a pure strategy x at
time t . We assume the initial distribution to be uniform such as
P (x; t = 0)dx = 10−3 because we assume a finite resolution
dx = 10−3 for the simulation. The population converges to
x = ϕ−1 in the winner-take-all case. On the other hand, the
loser-pay-all case shows two peaks, one at x = 0 and the other
at x = 1.

Another important piece of information is how quickly the
Nash equilibrium is approached in this dynamics. To answer
this question, let us linearize Eq. (29) at each fixed point as
follows:

∂c

∂t
≈

⎧⎨
⎩

−(c − c1)/τs at c1 = 0
(c − c2)/τu at c2 = (

√
5 − 1)/2

−(c − c3)/τs at c3 = 1,

(34)

where τs = 4 is a time scale to approach one of the stable fixed
points c1 and c3 and τu = 4/(5 − 2

√
5) ≈ 7.578 is another
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FIG. 4. (Color online) (a) Cumulative c and (b) the correspond-
ing fraction P as a function of x at three different values of t (with u =
v = 0), provided that we start from an initial distribution P (x; t =
0) = e−4x/Z with a normalization constant Z ≡ (1 − e−4)/4. The
curves are obtained by numerical integration of replicator dynamics
in the same way as explained in Fig. 3. The vertical dotted lines
represent x = x̃ ≈ 0.233 and the horizontal one c = ϕ−1 (see the
text).

time scale to get away from the unstable fixed point c2. The
stable fixed points lie at a distance of O(e−1) from c2, so
the overall time scale for convergence can be estimated as
τ ∼ τs + τu ∼ O(10), which is consistent with Fig. 3. This
argument gives the same τ for the loser-pay-all case when it
applies to Eq. (31).

Suppose that we instead take a nonuniform distribution
P (x; t = 0) = e−4x/Z with a normalization constant Z ≡
(1 − e−4)/4 as the initial condition. Based on the discussion
in the last paragraph of Sec. IV A, we find that the cumulative
fraction c equals ϕ−1 at x̃ = ln{2e4/[(3 − √

5)e4 + √
5 −

1)]}/4 ≈ 0.233. This point remains invariant as an unstable
fixed point when t increases, whereas c = 0 and c = 1 are
stable [Fig. 4(a)]. As a consequence, P (x) develops a peak at
x̃ as shown in Fig. 4(b). One can readily generalize this result
to an arbitrary initial distribution whose support is the unit
interval [0,1].

We may also consider a finite population consisting of
N individuals evolving with the Moran process (see, e.g.,
Ref. [20] for a review). In this process, we choose an individual
for reproduction with probability proportional to the payoff,
which is readily calculated from the distribution of strategies.
We then randomly choose an individual for death with equal
probability, regardless of the payoff, and it can be the same
individual that we have chosen for reproduction. The former
individual makes a copy to replace the latter individual chosen
for death and such an update is repeated N times during a
single time step to give an equal chance to everyone. For
computational convenience, we assume that a strategy has
finite resolution dx = 10−3. Figure 5 shows typical results
when initial strategies are sampled from a uniform random
distribution. When the population size is large enough, we
observe convergence with a time scale of t ∼ O(10) time steps
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FIG. 5. (Color online) Cumulative distribution resulting from the
Moran process for a finite population of N individuals. We consider
N = 102 and 104 and assume finite resolution of dx = 10−3 in
defining strategy x. Each curve represents a single run with an
initial condition sampled from a uniform random distribution of x.
(a) In the winner-take-all case (u = v = 0 and t = 10), the cumulative
distribution develops a jump near x ≈ 0.6 for N = 104, implying a
single peak in the strategy distribution around x ≈ 0.6, after O(10)
time steps. (b) For u = v = 1, N = 104, and t = 20, the behavior is
again consistent with the result of replicator dynamics in that we find
a plateau of height ≈ 0.4, when t ∼ O(10) time steps.

for both the winner-take-all and the loser-pay-all cases. The
behavior of a small population is more complicated by the
discreteness and deserves a systematic investigation in a future
study.

V. CONCLUSION

We have proposed a simple example of distributing a finite
amount of resources in competitions. Despite the complexity
of the decision problem among four players, we have found two
important keywords, i.e., balance and concentration, which can
serve as a practical guide to strategic thinking. There are two
representative cases for these keywords, i.e., u = v = 0 and
u = v = 1. The former, in particular, has infinitely many Nash
equilibria, which are characterized by any common strategy for
all the semifinalists. The coordination would be achievable in
the presence of cheap talk, as in the case of a usual coordination
game [21]. In the latter, the situation is similar to the chicken
game, because it is better to give in if your opponent really
goes for broke to win the semifinal, as illustrated by S10.
The mixed-strategy Nash equilibrium is such that you stake
all at the semifinals with probability ϕ−1 ≈ 0.618 and give
up the game with ϕ−2 = 1 − ϕ−1 ≈ 0.382. The emergence
of the golden ratio is fascinating, because it is the most
important ratio of division in mathematics, also known as
the most irrational number due to its slowest convergence
in the continued fraction [22]. We have also shown that
the mixed-strategy Nash equilibrium is the only symmetric
solution when we use the Heaviside step function to determine
the probability of winning.

We have also investigated the problem from an evolutionary
point of view by introducing the replicator dynamics. As
mentioned above, a number of different Nash equilibria exist
for some payoff structures. The replicator dynamics selects
one of them depending on the initial population distribution.
Those Nash equilibria can be accessed via a certain learning
process, i.e., updating the strategy based on its performance.
For the winner-take-all case, the replicator dynamics converges
to a pure strategy characterized by the golden ratio again,
i.e., at position x̃ where the cumulative probability is equal
to ϕ−1. On the other hand, for the loser-pay-all case, two
peaks emerge, one at x = 0 with weight ϕ−2 and the other
at x = 1 with weight ϕ−1. The replicator dynamics result not
only provides an alternative derivation for the Nash equilibria
on the population level, but also sheds light on the duality
behind the (u,v) phase diagram in the limit of small �.

If we take the Sochi 2014 Olympics as an example of (u,v),
the relative price of the raw material to produce a silver medal
compared with that of a gold medal roughly corresponds to
u ≈ 0.6 and that of a bronze medal amounts to v < 1%. This
parameter set belongs to region II, where everyone cares only
about the semifinals in the long term. However, this only proves
that the raw material price is a poor measure of assessing the
true values of the medals, because the finals in the Olympics
have remained thrilling throughout the century.

From a little different viewpoint, our work suggests how to
design an incentive system to affect the behavior of individuals
under structured competition: We can imagine members of an
organization who compete to win a position in the hierarchy
with a limited amount of resources. If only the top position
is rewarded in effect, for example, it will signal to the
members that the organization favors generalists rather than
specialists, making them conservative in investing effort into
specific tasks. They will even experience a social dilemma
when the induced behavioral characteristics contradict the
organization’s goals. As mentioned above, our life is shaped
to a great extent by a series of competitions in an organized
society. In this respect, our tournament model will serve
as a starting point to investigate the effects of structured
competition on our behavior in various contexts.
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APPENDIX A: NASH EQUILIBRIUM FOR u = v = 1

We will prove that a strategy profile Sm =
(mp∗ ,mp∗ ,mp∗ ,mp∗ ) is a Nash equilibrium for u = v = 1,

where mp = pδ(x) + (1 − p)δ(1 − x) and p∗ = 1+h1−
√

1+h2
1

2h1
with h1 ≡ h(1) > 0. Suppose that player A spends x in the
semifinal, while the others have a certain mixed strategy
mp. We define LA(x,mp,mp,mp) as the probability that
A becomes last in the tournament in this situation. It is a
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product of two probabilities L1 and L2: The former is the
probability to lose the semifinal with expending x. The latter
is a conditional probability to lose the third-place playoff
given that A has already lost the first match with expending x.

Let us begin with the semifinal between A and B. Player
B spends all or nothing with probability 1 − p and p, so B’s
probability to defeat A is given as

L1 = pf (−x) + (1 − p)f (1 − x). (A1)

For the third-place playoff, player A has remaining stamina
1 − x. To calculate L2, however, we need to know A’s
opponent’s characteristics, resulting from the other semifi-
nal between C and D. For the semifinal between C and
D, there are three possibilities in their strategic choices:
(i) With probability p2, both use the strategy of x = 0; (ii) with
probability (1 − p)2, both use x = 1; and (iii) with probability
2p(1 − p), one uses x = 0 and the other uses x = 1. For
case (iii), the probability that the one with x = 1 to lose the
semifinal is f (−1). Therefore, the probability that the loser of
the semifinal between C and D has used up its total stamina is
(1 − p)2 + 2p(1 − p)f (−1) ≡ q. In other words, this is the
probability for player A to meet an opponent with no remaining
stamina. The idea is that player A effectively experiences its
opponent’s strategy as mq . That is,

L2 = qf (x − 1) + (1 − q)f (x), (A2)

whereby we obtain LA(x,mp,mp,mp). Some algebra shows
that LA(0,mp,mp,mp) = LA(1,,mp,mp,mp) = 1

4 when p =
p∗. For 0 < x < 1, we plug the explicit expression of p∗ into
LA(x,mp∗ ,mp∗ ,mp∗ ) and find that

4h2
1LA(x,mp∗ ,mp∗ ,mp∗ ) = [h1 + (a + b)G − (a − b)h1]

×[h1 + (a + b)G + (a − b)h1],

(A3)

where G ≡
√

1 + h2
1 − 1, a ≡ h(1 − x), and b ≡ h(x). Noting

that G2 = h2
1 − 2G, we expand the RHS as

[h1 + (a + b)G]2 − [(a − b)h1]2

= h2
1 + 2(a + b)h1G + (a + b)2G2 − (a − b)2h2

1

= h2
1 + 4abh2

1 + 2(a + b)(h1 − a − b)G. (A4)

This expression is invariant under the exchange between a

and b, which allows us to assume that a � b without loss of
generality. As h1 � a = h(1 − x), putting a in place of h1

results in the following inequality:

4h2
1LA(x,mp∗ ,mp∗ ,mp∗ ) � h2

1 + 4abh2
1 − 2(a + b)bG. (A5)

We now replace b by a in the last set of parentheses to get

4h2
1LA(x,mp∗ ,mp∗ ,mp∗ ) � h2

1 + 4abh2
1 − 4abG

= h2
1 + 4ab

(
h2

1 − G
)
. (A6)

Finally, we use the fact that h2
1 − G = 1 + h2

1 −
√

1 + h2
1 > 0

to derive

4h2
1LA(x,mp∗ ,mp∗ ,mp∗ ) > h2

1, (A7)

which implies LA(x,mp∗ ,mp∗ ,mp∗ ) > 1
4 .

Due to the symmetry among the players, it is obvious that
LA(mp∗ ,mp∗ ,mp∗ ,mp∗ ) = 1

4 . Because LA(x,mp∗ ,mp∗ ,mp∗ ) >

LA(mp∗ ,mp∗ ,mp∗ ,mp∗ ) for any x ∈ (0,1), player A has no
reason to choose such x. This argument tells us that A’s best
choice must be a certain mixed strategy mp = pδ(x) + (1 −
p)δ(1 − x). However, we have already seen that this links A’s
payoff to 1

4 irrespective of p, because LA(0,mp∗ ,mp∗ ,mp∗ ) =
LA(1,mp∗ ,mp∗ ,mp∗ ) = 1

4 . For this reason, player A may adopt
mp∗ as well and we conclude that the strategy profile Sm =
(mp∗ ,mp∗ ,mp∗ ,mp∗ ) is a Nash equilibrium.

APPENDIX B: MIXED-STRATEGY NASH EQUILIBRIUM
FOR GENERAL u AND v

We will extend the above conclusion to the interior of
region III by proving that Sm with p∗(u,v) in Eq. (17) is
a Nash equilibrium. It is convenient to define k ≡ 1 − u + v,
l ≡ 1 − u − v, and z ≡

√
k2h2

1 + l2 − 2k2 + 2k. As above, we
also have h1 ≡ h(1), which is assumed to be 0 < h1 � 1

2 .
The interior of region III is described by k + l > 0 and
1 + lh1 < k < 1 [compare with Eq. (14)]. Note also that k

is strictly positive. In terms of these variables, Eq. (17) can be
rewritten as

p∗(u,v) = 1

2
− l + z

2kh1
. (B1)

The outline of the proof is similar to the above one for
u = v = 1: Suppose that player A spends x at the semifinal,
while all the others use mp. The probability for A to defeat B

is

W1 = pf (x) + (1 − p)f (x − 1). (B2)

Regarding the final, we first consider strategies in the semifinal
between C and D and calculate the probability r that A’s
opponent in the final has no remaining stamina. It is given as

r = 2p(1 − p)f (1) + (1 − p)2. (B3)

Therefore, the probability for A to win the final is thus

W2 = rf (1 − x) + (1 − r)f (−x). (B4)

It is straightforward to write down A’s payoff as

πA(x,mp,mp,mp) = W1W2 + uW1(1 − W2) + vL1(1 − L2),
(B5)

where L1 and L2 are as defined above. Due to symmetry, we
see that

πA(mp,mp,mp,mp) = 1
4 (1 + u + v) = 1

4 (2 − l). (B6)

If we require πA(0,mp,mp,mp) = πA(1,mp,mp,mp) = 1
4 (1 +

u + v), it is satisfied only at p∗(u,v).
Now we have to show that

πA(x,mp∗ ,mp∗ ,mp∗ ) < 1
4 (1 + u + v) (B7)

for x ∈ (0,1), from which it follows that mp∗ constitutes a Nash
equilibrium. We obtain an explicit expression of the left-hand
side by inserting p∗(u,v) into Eq. (B5), which is written as

πA(x,mp∗ ,mp∗ ,mp∗ )

= (
4a2h2

1

)−1{
(2 − b)a2h2

1 + 2ω1h(1 − x)[h(1 − x) − h1]

+ 2ω2h(x)[h(x) − h1] + 4ω3h(x)h(1 − x)
}
, (B8)
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where

ω1 ≡ l2(l + z) + (2l + z)k(1 − k) + k2(1 − k)h1,

ω2 ≡ l2(l + z) + (2l + z)k(1 − k) − k2(1 − k)h1,

ω3 ≡ l2(l + z) + (2l + z)k(1 − k) + k2lh2
1.

(B9)

In region III, ω1 and ω2 are positive, whereas ω3 is negative.
Using h1 � h(1 − x), we replace h(1 − x) in the first set of
square brackets of Eq. (B8) by h1. Likewise, because h1 �
h(x), we do the same with h(x) in the second set of square
brackets in Eq. (B8). The result is the following inequality:

πA(x,mp∗ ,mp∗ ,mp∗ )

�
(
4k2h2

1

)−1[
(2 − l)k2h2

1 + 4ω3h(x)h(1 − x)
]
. (B10)

Clearly, the last term in the square brackets of Eq. (B10) is
negative as long as h(x) > 0 for x > 0, which leads us to the
conclusion that

πA(x,mp∗ ,mp∗ ,mp∗ ) �
(
4k2h2

1

)−1
(2 − l)k2h2

1 = 1
4 (2 − l).

APPENDIX C: STRATEGY PROFILE
S10 = (1,0,1,0) AT (u,v) = (1,1)

Let us choose the following sigmoid function:

f (�x) =
{

1 − 1
2e−�x/� for �x > 0,

1
2e�x/� otherwise,

(C1)

where � is a positive parameter to control the width. It will
be shown that S10 = (1,0,1,0) a Nash equilibrium with this
specific choice. Of course, other combinations exchanging
players A and B, or C and D, are equivalent. To prove that S10

is a Nash equilibrium, we consider the following two strategic
configurations from player A’s point of view.

First, suppose that the opponent player B has thrown in
the towel, i.e., the profile is given as (x,0,1,0). We have
to find the value of x that minimizes the probability LA(x)
for player A to be last. For LA(x) = [1 − f (x)][f (−1)f (x −
1) + f (1)f (x)], its derivative is readily written in terms of
f (x) and df

dx
. Note that the function f (x) has the following

property under differentiation:

df (x)

dx
≡ f ′(x) =

{
1

2�
e−x/� = 1−f (x)

�
for x > 0

1
2�

ex/� = f (x)
�

otherwise.
(C2)

Using this property, we find that

dLA

dx
= �−1[1 − f (x)]f (1)[1 − 2f (x)]. (C3)

The above expression cannot be positive because 1
2 � f (x) <

1, which implies that player A is motivated to have xA = 1 to
minimize LA. This choice is reasonable because A must win
this match with strong possibility at any cost.

Second, as an opposite situation, suppose that player B

stakes all on a single throw, i.e., where the profile is given as
(x,1,1,0). If every other player is concentrating all the efforts
on either this round or the next one, player A has no reason
to play by halves because such a strategy would always put
A in a weaker position than the opponent. This statement is
mathematically expressed by d2LA

dx2 � 0, where LA(x) = [1 −
f (x − 1)][f (−1)f (x − 1) + f (1)f (x)] is the probability for
player A to be last. The inequality implies that even if the first
derivative dLA

dx
vanishes, it will be a maximum of LA, so the

minima should be found at the boundary points, i.e., either at
x = 0 or at x = 1. Direct calculation shows that LA(x = 0) −
LA(x = 1) = 1

4 [f (1) − 1][2f (1) − 1]2 < 0 for any possible
f (1) between 1

2 and 1. In short, the minimum of LA appears
at x = 0. This means that player A should prepare for the next
match, avoiding all-out war this time to reduce the probability
to be last.
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