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We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density
of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport
between two predefined sites of a random network of two-level systems. Starting from a generalization of the
chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical
prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior
of characteristic statistical properties with the size of the network. We show that these analytical predictions
compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble.
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I. INTRODUCTION

The impact of quantum interference effects on transport
phenomena defines a multi-facetted area of research, with
a wide range of incarnations in condensed [1] and soft
matter [2], mesoscopic physics [3], quantum chaos [4,5],
quantum computing [6,7], light-matter interaction [8–14],
and, rather recently, photobiology [15–20]. However, the
deterministic control of quantum interference contributions to
transport is rightfully considered a subtle problem which turns
ever more difficult with an increasing density of states, since
this implies that more and more relative phases need to be
carefully controlled. Any uncontrolled perturbation of these
then has potentially very detrimental effects on the control
target (much as in a misaligned Fabry-Pérot cavity) [21].
This is why quantum engineers traditionally dislike noise and
disorder, generally invoking strong symmetry properties (such
as the translational invariance of a lattice) to guarantee that
the desired quantum effects prevail. Of course, as the system
size is scaled up, and almost unavoidably so its complexity,
perturbations of such symmetries get ever more likely.

On the other hand, it has long been known in solid
state and statistical physics that quantum interference effects
can actually induce very strong signatures on the statistics
of characteristic transport coefficients, even in the presence
of strong disorder, Anderson localization arguably being
the most prominent example [13,22,23]. More recently, it
therefore emerges in diverse areas that disorder may actually
be conceived as a robust handle of (statistical rather than deter-
ministic) quantum control [5,18,24–27], in particular on scales
which preclude deterministic control on a microscopic level.

One possible, specific scenario for such statistical quantum
control is motivated by the ever more consolidating experimen-
tal evidence for nontrivial, long-lasting quantum coherence in
the strongly optimised excitation transport in photosynthetic
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light harvesting complexes of plants and bacteria [15–17].
These supramolecular and hierarchically structured objects
come in rather variable architectures for different biological
species, but all share the functional purpose of transporting
energy to some reaction center where the plant chemistry is ini-
tiated. Ideally, this energy transport should occur with minimal
loss, and that might be an evolutionary incentive for also rapid
transport. Yet, irrespective of their specific, coarse-grained
architectures, all these complexes are garnished by some
level of disorder, i.e., their different realizations in the same
biological organism exhibit modifications on the microscopic
level, simply as a consequence of the enormous complexity of
the larger biological structure they are part of. Therefore, the
experimentally documented efficiency (close to 100%) of the
excitation transport unavoidably implies a disorder average,
〈e−itH 〉disorder (where H is the Hamiltonian), and tells us that
nature found a way to guarantee near-to-deterministic delivery
despite the presence of uncontrolled structural variations on a
microscopic level. This stands against a common practice in
the literature [28,29], where one uses published Hamiltonian
data, e.g., Ref. [30], to describe the coherent backbone
dynamics in these molecular complexes: Since these data
in general result from (typically spectroscopic) experiments
on solutions of such complexes, fluctuations cannot be re-
solved and an implicit disorder average in the reconstructed
Hamiltonian, 〈H 〉disorder, is always present. The dynamics,
however, is not self-averaging, 〈e−itH 〉disorder �= e−it〈H 〉disorder ,
and therefore using such average Hamiltonians will typically
fail to capture all the relevant physics. The philosophy of
our present contribution is exactly to emphasize the potential
of disorder-induced statistical effects to optimize relevant
transport observables, such as the transfer efficiency, in the
presence of quantum interference. Ultimately, such approach
may help to identify experimentally implementable methods
to certify the quantum or rather classical origin of the observed
transfer efficiencies.

We did argue earlier [18,24,31,32] that one possible, and
strictly quantum, candidate mechanism leading to large and
exceptionally rapid excitation transfer in photosynthetic light
harvesting units is constructive multipath quantum interfer-
ence of the many transmission amplitudes from input to
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output: Reducing the macromolecular complex to a random
network, the molecular subunits which constitute the complex
are localized at the network’s nodes and considered as identical
two-level systems with two distinct electronic states, coupled
by dipole-dipole interactions. In such strongly simplifying
model, the randomness of the network’s sites’ positions
substitutes for the realization-dependent changes of the local
environment of the molecular network’s constituents and
accounts for the uncertainties in the matrix representations
of the effective Hamiltonians which can be found in the
literature [30]. Even though minimalistic, we argue that this
description proves to be qualitatively sufficient in capturing
the essential physics which arises due to disorder. Clearly, this
approach is inspired by the fundamental idea of random matrix
theory (RMT) [33], and strong, quantum interference-induced
fluctuations of characteristic transport coefficients are to be
expected when sampling over different network realizations.
We could show [18] that the statistics of these fluctuations can
be efficiently controlled by imposing just two constraints on the
otherwise random structure of the network: centrosymmetry
and the presence of a dominant doublet in the network’s
spectrum. With these ingredients, it is indeed possible to make
the distribution of transfer efficiencies collapse on a narrow
interval very close to unity, and to guarantee rather rapid
transfer times, without the need to control the microscopic
hardwiring of the network: a clear incident of the above
statistical quantum control.

It is the purpose of the present article to spell out the
details of the underlying theory, and to scrutinise the scaling
properties of the thus “engineered” statistical distributions with
the network size, i.e., the number of its elementary molecular
sites. Given the generality of the random graph model which
we are building on, as well as the ubiquity of disorder or
structural perturbations in large networks, we trust that the
results here presented do not only provide a fresh perspective
for the discussion of quantum effects in photosynthetic light
harvesting, but equally much on excitation transport in cold
Rydberg gases [34], as well as on quantum walks on random
graphs or on robust, quantum walk-based quantum computing
design [35–37].

II. THE MODEL

Consider a single excitation propagating on a disordered
network of N sites. To each site i we associate a quantum
state |i〉 which represents the state where the excitation
is fully localized at this very site. These states span the
single-excitation Hilbert space of our model. The goal is
to transport the excitation from an input site |in〉 to an
output site |out〉 [38]. To mimic disorder, we describe the
interaction among the sites by a N × N Hamiltonian H

chosen from the Gaussian Orthogonal Ensemble (GOE)
[33], with the additional constraint that the Hamiltonian
be centrosymmetric with respect to |in〉 and |out〉. This
symmetry is defined by JH = HJ and |in〉 = J |out〉, where
J is the exchange matrix, Ji,j = δi,N−j+1 [39]. This design
principle is motivated by previous results [32,40] suggesting
that centrosymmetric Hamiltonians deduced from dipoles
randomly distributed within a sphere are statistically more
likely to mediate efficient transport than unconstrained random
Hamiltonians.

In technical terms, the GOE is characterized by the
parameter ξ , which describes the density of states as half the
radius of Wigner’s semicircle [41]. More explicitly, we define
our ensemble of interest in terms of a probability distribution
on matrix elements given by

Hij ∼
{
N
(
0,

2ξ 2

N

)
if i = j or i = N − j + 1

N
(
0,

ξ 2

N

)
else

, (1)

where N denotes the normal distribution with its mean
and variance as first and second argument, respectively. The
centrosymmetry constraint practically implies that Hi,j =
Hi,N−j+1 = HN−i+1,j = HN−i+1,N−j+1 (i.e., the matrix rep-
resentation of H is invariant under mirroring with respect to
the matrix’ center), which also guarantees that E = Hin,in =
Hout,out. The choice of a variance ξ 2/N is closely related to
the behavior of the spectral density. The specific scaling with
N guarantees that the ensemble-averaged density of states
is independent of N and is always given by a semicircular
distribution of radius 2ξ [41].

Within this ensemble, the input and output sites (and
therefore also the associated states) are defined as those that
couple the weakest, with coupling V = mini |Hi,N−i+1|. This
definition originates from the idea that the input and output
are “farthest apart” [what is a suggestive assumption, e.g.,
when considering the paradigmatic Fenna Matthews Olson
(FMO) light harvesting complex as a macromolecular, 3D
“wire” which connects the antenna complex to the reaction
center] [30]. To avoid the necessity to distinguish between
Hin,out and V , we will always consider Hin,out to be positive.
This boils down to multiplying the full Hamiltonian by −1
if Hin,out is negative for some sampled Hamiltonian. It can
be easily verified that this will not cause any problems in
the following derivations, yet makes the notation somewhat
lighter.

Each of the thus defined Hamiltonians generates a time evo-
lution |φ(t)〉 = exp(−itH )|φ(0)〉 (we set � ≡ 1) of the initial
state |φ(0)〉 = |in〉. Focusing on the excitation transfer from
|in〉 to |out〉, a possible measure of the transfer efficiency is

PH = max
t∈[0,TR )

|〈out,φ(t)〉|2, (2)

where TR is the Rabi time, given by TR = π/2V [24,31,42] .
This is the time needed for an excitation to be fully transferred
from input to output when all sites except for |in〉 and |out〉 are
discarded. Therefore, transport can be considered “efficient”
if the intermediate sites of the network accelerate the transfer
process as compared to the direct coupling between |in〉 and
|out〉. We thus set out to identify necessary and/or sufficient
conditions for H to be efficient and to render the transport as
fast as possible.

A. Centrosymmetry

We start with a closer scrutiny of the properties of
centrosymmetric matrices and emphasize those aspects which
are relevant in the context of quantum transport theory. We will
explain why centrosymmetry is an important design principle
to enhance the excitation transfer and also indicate why this
symmetry alone is insufficient to guarantee efficiency in the
above sense.
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Given the definition (2) of PH , we are interested in
the behavior of |〈out,φ(t)〉|2. To relate transport properties
to the spectral properties of the underlying Hamiltonian,
we use the spectral decomposition

|〈out,φ(t)〉|2 =
∣∣∣∣∣

N∑
i=1

e−itEi 〈out,ηi〉〈ηi,in〉
∣∣∣∣∣
2

, (3)

where ηi and Ei denote the eigenvectors and eigenvalues of
the Hamiltonian H, respectively. This expression highlights
the eigenvectors’ very crucial role for the transport: They
determine which sites can be reached from a given input site.
If there were no eigenvectors that are significantly localised
on both, |in〉 and |out〉, transport would not be possible. The
eigenvalues determine the timescale at which transport occurs.

Centrosymmetry mainly impacts the eigenvectors of the
Hamiltonian: It is shown in Ref. [39] that a centrosymmetric
matrix also has centrosymmetric eigenvectors. This implies
that J |ηi〉 = ±|ηi〉, where J is the symmetry operator as de-
fined at the beginning of Sec. II. Since we define the Hamilto-
nian to be centrosymmetric with respect to input and output, we
know that, by construction, J |out〉 = |in〉. With the centrosym-
metry of the eigenvectors, it follows that 〈out,ηi〉〈ηi,in〉 =
±|〈in,ηi〉|2 = ±|〈out,ηi〉|2. Consequently, there is a relation
between the probability to have transport from in to out
and the return probability. Since we know that, due to
weak localization effects, there is always an enhanced return
probability [24,43], we expect to find a corresponding effect
for the transfer from in to out.

Due to its centrosymmetry, H can be cast, through an
orthogonal transformation, into the following block diagonal
representation [39] in the eigenbasis of the exchange matrix
J :

H =
(

H+ 0
0 H−

)
. (4)

Both, H+ and H−, are N/2 × N/2 matrices from the GOE.
This is a consequence of the block diagonalization [39],
combined with the fact that the sum of normally distributed
variables is itself a normally distributed variable.

Two eigenvectors of J have the form

|±〉 = 1√
2

(|in〉 ± |out〉). (5)

Using |+〉 and |−〉 to express |in〉 and |out〉 allows us to
rewrite (2) as

PH = max
t∈[0,TR )

1

4
|〈e−itH+〉+ − 〈e−itH−〉−|2. (6)

The two terms in this expression are statistically independent.
Hence, we need to understand the evolution of |+〉 and |−〉
under the unitaries generated by H+ and H−. In order to do
so, we express PH in terms of the eigenvectors |η±

i 〉 and of the
eigenvalues E±

i of H±:

PH = max
t∈[0,TR )

1

4

∣∣∣∣∣
∑

i

e−itE+
i |〈η+

i ,+〉|2 −
∑

i

e−itE−
i |〈η−

i ,−〉|2
∣∣∣∣∣
2

.

(7)

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

t/TR

i,
φ
(t

)
2

FIG. 1. Population dynamics of a near-to-optimal network con-
formation of coupled dipoles, from [46]. Mainly input (dashed black)
and output (solid black) sites are populated during the dynamics,
contrary to the bulk sites (gray), which exhibit weak populations
never larger than approximately 30%. Exactly this feature lies at the
fundament of the dominant doublet design principle (see text).

Equation (7) is our final result for the transfer efficiency when
only assuming centrosymmetry. Since eigenvectors |η±

i 〉 and
eigenvalues E±

i are stochastic variables described by random
matrix statistics, PH will typically exhibit strong interference
effects. While centrosymmetry tends to enhance the transfer
efficiency via a mechanism related to weak localization [43],
it still does not prevent the excitation to spread essentially
uniformly over the network, as can be seen from the time
averaged output site population:

pH = lim
T →∞

1

T

∫ T

0
dt |〈out,φ(t)〉|2 =

N∑
i=1

|〈out,ηi〉〈ηi,in〉|2.
(8)

Due to centrosymmetry, this can be rewritten as pH =∑N
i=1|〈in,ηi〉|4, a quantity closely related to the participation

ratio [44]. From Ref. [45], one obtains for its ensemble average

pH = 3

2 + N
. (9)

This implies that, on average, at least N/3 eigenvectors
(with their associated eigenvalues) contribute to PH . While
pH and PH are not trivially connected, it follows from (7)
and (9) that optimal PH can be accomplished only for optimal
tuning of all these contributions, which is not guaranteed by
centrosymmetry for individual realizations.

B. Dominant doublet

We therefore need to identify an additional design principle
which turns an enhanced probability of efficient transport, as
provided by centrosymmetry, into an almost certain event.
Inspection of the structures of optimal Hamiltonians generated
by a genetic algorithm [46] does not provide any obvious
hint, but so does the time evolution of the populations of
|in〉 and |out〉, and of the bulk sites (see Fig. 1) which these
Hamiltonians generate: Those of |in〉 and |out〉 are strongly
indicative of the tunneling dynamics in an effective double
well potential, while the bulk sites exhibit comparably small,

042137-3



WALSCHAERS, MULET, WELLENS, AND BUCHLEITNER PHYSICAL REVIEW E 91, 042137 (2015)

yet nonvanishing populations, with the same characteristic
symmetry on the time axis.

This observation implies that random graphs with optimal
transport properties exhibit a spectral property which we have
labeled dominant doublet [18]: |+〉 and |−〉, as in (5), need
to be close, in a sense to be quantified a bit further down, to
eigenvectors |+̃〉 and |−̃〉 of H+ and H−, respectively. Under
this condition, the Hamiltonian (4) acquires the following,
additional substructure:

H =

⎛
⎜⎜⎜⎝

E + V 〈V+|
|V+〉 H+

sub

E − V 〈V−|
|V−〉 H−

sub

⎞
⎟⎟⎟⎠, (10)

with 〈±|H |±〉 = E ± V , and |V±〉 the couplings of the states
|±〉 to the remainder of the system. The dominant doublet
assumption further implies that ‖V±‖ be sufficiently small.

Let us now exploit the dominant doublet property for a
further simplification of (7). The dominant doublet’s charac-
teristic property being its dominant weight in the local density
of states of the initial condition, i.e.,

|〈±̃,±〉|2 > α ≈ 1, (11)

implies that each of the two sums in (7) is dominated by a
single term, thus

PH ≈ max
t∈[0,TR )

1

4
|e−itE+|〈+̃,+〉|2 − e−itE−|〈−̃,−〉|2|2

� max
t∈[0.TR )

2α − 1

4
|e−itE+ − e−itE−|2, (12)

where E± in (12) is the eigenvalue associated with |±̃〉.
The energy difference |E+ − E−| of the dominant doublet
states, which is reduced or enhanced with respect to the direct
coupling V by the collective impact of the bulk sites, now acts
as an effective tunneling rate that couples |in〉 and |out〉. At

t0 = π

|E+ − E−| , (13)

the transfer probability is bounded from below by 2α − 1,
and therefore large, since α ≈ 1. If, on top, t0 < TR , then the
excitation transfer is efficient in the sense defined above. We
therefore need a quantitative prediction for |E+ − E−|.

Under the dominant doublet assumption perturbation theory
is a valid tool to study the problem. Perturbative techniques
teach us that

1 − |〈±̃,±〉|2 ≈
N/2−1∑

i=1

|〈V±,ψ±
i 〉|2

(E ± V − e±
i )2

, (14)

with |ψ±
i 〉 and e±

i the eigenvectors and eigenvalues of H±
sub,

respectively. Therefore, the requirement (11) implies a relation
between α, |〈V±,ψ±

i 〉|2, and (E ± V − e±
i )2. Furthermore,

E ± V each is an eigenvalue up to an energy shift s±. This
latter quantity can be obtained from standard perturbation
theory, as

s± =
∑

i

|〈V±,ψ±
i 〉|2

E ± V − e±
i

, such that E± = E ± V + s±. (15)

Notice that, for simplicity, we here present the expression that
is obtained from nondegenerate perturbation theory. In the
regime where (E ± V − e±

i ) ≈ 0, we will need to consider a
more complicated expression [see (30) in Sec. III C].

With 	s = s+ − s−, it is clear that the effective tunneling
rate |E+ − E−| between |in〉 and |out〉 can be written as

|E+ − E−| = |2V + 	s|, (16)

where the direct (Rabi-like) coupling term is now “renormal-
ized” by the shift 	s imparted by the cumulative effect of the
randomly placed bulk sites of the graph. Large fluctuations
thereof will induce large fluctuations of the transfer efficiency.
Since the statistics of 	s is inherited from the statistics of H±,
we will be able to infer the statistics of the transfer efficiency,
in the next chapter.

Before doing so, let us briefly comment qualitatively on
which is the implication of the dominant doublet assumption
for the excitation dynamics on the random graph: Imposing this
mechanism, we greatly limited the freedom of the excitation to
spread over the network, which quantum mechanically causes
the typical delocalization over the different network sites as
discussed at the end of the previous subsection. As apparent
from a comparison of the spectral decompositions (7) and (12),
the eigenvectors of the Hamiltonian tell the excitation where
it is allowed to go, and the dominant doublet imposes a strong
incentive for the excitation to go directly from input to output
(or the other way round). Yet the time scale of the transport
is set by the associated doublet eigenvalues, and these may be
strongly affected by the remainder of the spectrum, via (15),
as we will see hereafter.

III. STATISTICS OF TRANSFER TIME SCALES

We have so far reformulated our initial transport problem
in terms of a spectral doublet structure which is amended
by the perturbative coupling to some bulk states described
by random matrices. This is a general scenario which
is well known under the name chaos assisted tunnelling
(CAT) [47] in the area of quantum chaos [5] and also
reminiscent of transport problems in mesoscopic physics [3].
The fundamental idea is that the dynamical and/or transport
properties in some predefined degree of freedom can be
dramatically modified by the nonlinear coupling to some
other degrees of freedom, incarnated, e.g., by a classical
driving field [48–51], or by further coordinates of configuration
space [47,52,53]. In the specific context of photosynthetic
light harvesting, ideal candidates for such additional degrees
of freedom are provided by those of the protein scaffold,
which fix the boundary conditions for the electronic dynamics
and excitations [17,26,54]. If these additional degrees of
freedom themselves exhibit sufficiently complex dynamics,
their coupling to the transporting degree of freedom will induce
strong fluctuations in the transport properties of interest. We
now import the random matrix theory (RMT) of CAT to derive
analytical predictions for the statistics of the transfer efficien-
cies (12) and times (13), and in particular discuss the necessary
amendments of the available theory to match the details of our
model.
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A. How to obtain the distribution of transfer times

The distribution of s± is already known in terms of
CAT, with E,V = 0, and we will therefore strongly rely on
the results of Refs. [51,55]. Note, however, that Ref. [56]
has already argued under very general assumptions that the
distribution of this type of quantity should always be a Cauchy
distribution, irrespective of whether the e±

i strictly derive from
GOE or from some other type of random Hamiltonian. This is
important in our present context, since the biological functional
units which inspire the present study are unlikely to realize
GOE statistics in the strict sense. Moreover, Refs. [51,55]
provide us with clear insight in the parameters determining
the Cauchy distribution, for a setup which is close to ours.
Adopting the mathematical language of Refs. [51,55], we
obtain that, when E = V = 0, the distribution of s± is given
by

P (s±) = 1

π

σ±

(σ±)2 + (s± − s±
0 )2

= Cauchy(s±
0 ,σ±),

with σ± = π
|〈V±,ψ±

i 〉|2
	

, s±
0 = 0 , (17)

where we assume that |〈V±,ψ±
i 〉|2 = ‖V±‖2(N/2 − 1)−1/2,

with ‖V±‖2 a measure for the average interaction strength
between |±〉 (and, thus, also |in〉 and |out〉) and the bulk
states. The parameter 	 expresses the mean level spacing in
the vicinity of 0 [51,55].

In contrast to E = V = 0 in Refs. [51,55], we need to
accommodate for E ± V �= 0. This can be accomplished using
the results of Ref. [57] and realizing that the curvatures
presented in Eq. (5) of Ref. [57] are closely related to
the energy shifts. Indeed, the shifts’ distribution is given
by Eq. (49) of Ref. [57], with σ 2

2 , σ 2 and λ in Ref. [57]
substituted by ‖V±‖2, 2ξ 2, and E ± V , respectively, in our
present nomenclature.

Note that, in Ref. [57], ρ(λ) is the density of states, given
by Wigner’s semicircle [41] in the GOE. In the standard GOE
scenario, the mean level spacing is known to change only
slightly throughout the bulk of the spectrum, and it can be
estimated by the radius of the semicircle [41]. In our present
context, this would imply that we can use ξ as a parameter
just as well as 	. Note, however, that the matrices H±

sub
of our model are in general not GOE matrices, since they
are obtained by postselection of that matrix subensemble of
structure (4) which exhibits a dominant doublet as defined
by (11). This means that the postselected ensemble does
not obey Wigner-Dyson statistics, and thus ρ(λ) is typically
not the semicircle distribution. As essential consequence, the
relation between the radius of the semicircle and the local
mean level spacing no longer holds; we can no longer relate
the global quantity ξ to the local parameter 	! Moreover, it
turns out, as extensively discussed in Sec. III C below, that 	

can vary strongly throughout the spectrum. In our derivation,
the relevant quantity is the mean level spacing in the vicinity
of E ± V , which we will refer to as 	loc.

Given (13) and (16), we need to infer the distribution of
	s = s+ − s−. To do so, we can use simple properties of the
Cauchy distribution. The fact that s+ ∼ Cauchy(s+

0 ,σ+) and

s− ∼ Cauchy(s−
0 ,σ−) implies that s+ − s− ∼ Cauchy(s+

0 −
s−

0 ,σ+ + σ−), which follows from the Cauchy distribution
being a stable distribution [58]. In order to simplify notation,
we define s0 = s+

0 − s−
0 and σ = σ+ + σ−, to obtain

P (	s) = 1

π

σ

σ 2 + (	s − s0)2
,

with s0 = 2V
‖V±‖2

2ξ 2
,

and σ = 2π
‖V±‖2

(N/2 − 1)	loc
, (18)

where we used that ‖V+‖2 = ‖V−‖2 = ‖V‖2. This follows
from ‖V+‖2 and ‖V−‖2 being independent stochastic variables
which are identically distributed, a property which they
inherit from H+ and H− being independent and identically
distributed, and hence have the same expectation value.

The distribution of 	s is but a first step to derive the
distribution of TR/t . The expressions for t0 and TR , using (13)
and (16), imply that

TR

t
=
∣∣∣∣1 − 	s

2V

∣∣∣∣. (19)

Since E and V are still considered to be fixed, we again use
that the Cauchy distribution is stable [58]: This implies that, if
	s ∼ Cauchy(s0,σ ), then

1 − 	s

2V
∼ Cauchy

(
1 − s0

2V
,

σ

2V

)
. (20)

The distribution of the absolute value |1 − 	s
2V

| thus reads

P

(∣∣∣∣1 − 	s

2V

∣∣∣∣ = x

)
= 1

π

[
γ

γ 2 + (1 + x0 + x)2

+ γ

γ 2 + (1 + x0 − x)2

]
,

with x0 = ‖V±‖2

2ξ 2
,

and γ = 1

V

π‖V‖2

(N/2 − 1)	loc
. (21)

We finally need to account for the fact that E and V

are themselves stochastic variables, and we therefore need
to average over their respective distributions. However, as
shown in Sec. III D below, the probability distribution of V

is strongly peaked and, therefore, dominated by its mean value
V . Given this dominant behavior of the mean, it is usually
a reasonable approximation to replace V by V rather than
exactly performing the integration. This approximation is what
is called an annealed approximation [59] and leads to

γ ≈ 1

V

‖V‖2

(N/2 − 1)	loc
, (22)

where 	loc,the local mean level-spacing of energy levels in the
vicinity of the energy E ± V , and the value V still are to be
determined.

Since the dominant doublet constraint modifies the local
properties of the H±

sub ensemble around E ± V , we cannot
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simply import the results available for GOE. We will therefore
present a derivation of 	loc in Sec. III C hereafter and already
warn the reader that this section will be rather technical and
not extremely elegant, however, with the useful result

	loc ≈ 2πξ√
N/2 − 1

. (23)

Section III D below will provide the derivation of the parameter
V , which is mainly based on a Laplace approximation for the
integration, and yields

V ≈ 2πξ

eN
√

N/2 − 1
. (24)

With the explicit expressions (23) and (24) in (22), we
ultimately obtain from (21)

P

(
TR

t
= x

)
= 1

π

[
s0

s0
2 + (1 + x0 + x)2

+ s0

s0
2 + (1 + x0 − x)2

]
,

with s0 = ‖V‖2Ne

4πξ 2
,

and x0 = ‖V‖2

2ξ 2
. (25)

This is our final result for the distribution of the excitation
transfer times generated by centrosymmetric Hamiltonians
of the form (10) with dominant doublet strength α. The
relationship between α, which is not explicit in (25), and ‖V‖2

will be derived in Sec. III C below; see (38).

B. Scaling properties of characteristic transfer times

From the thus obtained Cauchy distribution for TR/t we can
obtain a good understanding of the probability of finding PH

close to one. According to (12), it is clear that PH � 2α − 1
close to one if t = π/|2V + 	s| < TR . Therefore, we can infer
the probability that TR/t is larger than one by straightforward
integration over the corresponding range in (25). The result
reads

P

(
TR

t
> 1

)
= 1 − 1

π
arctan

[
4πξ 2

‖V‖2Ne

(
1 − ‖V‖2

2ξ 2

)]
.

(26)

It follows that the probability for fast and efficient transport
increases with the size N of the network. As N grows very
large, we obtain

P

(
TR

t
> 1

)
≈ 1 − 4ξ 2

‖V‖2Ne
. (27)

In other words, the tail of the distribution in Eq. (25) grows
heavier with increasing N and therefore more and more
realizations enhance the transport. The origin of this scaling
can be traced back to the direct (in-out) coupling V , since
N enters through V . The coupling is the smallest number in
absolute value of a set of N/2 normally distributed variables,
and, as explained in Sec. III D below, for a fixed density of
states its expectation value decreases ∝N−3/2, in leading order.

In large systems, the direct tunneling from input to output will
be negligible, and the intermediate sites provide a considerable
boost to the transport (much in the spirit of CAT [47]). Thus,
if we compare the time scale of the direct coupling, TR , to
the effective transport time t , we should find t < TR with
high probability. This intuition perfectly matches the result
displayed in Fig. 5 below.

Alternatively, when studying systems where the direct
coupling is fixed to a value V ∗ for all realizations of the
networks’ conformation, a very different scaling is obtained
[by suitable integration of Eq. (21), rather than of (25), due to
the explicit dependence on V in (21)]:

P

(
TR

t
> 1

)

= 1 − 1

π
arctan

[
2V ∗ξ

√
N/2 − 1

‖V‖2

(
1 − ‖V‖2

2ξ 2

)]
. (28)

Now we find that, in the limit of large N , this expression scales
as

P

(
TR

t
> 1

)
≈ 1

2
+ ‖V‖2

πV ∗ξ
√

2N
, (29)

i.e., the relative weight of conformations which enhance the
transport decreases with N, though remains bounded from
below by 50%. Since, in this regime, the direct tunneling
from |in〉 to |out〉 always has the same strength, we can thus
conclude that increasing the system size in this postselected
ensemble has a negative impact on the chaos-assisted tunneling
contribution to the transport; the peak around TR/t = 1 in the
Cauchy distribution (21) is enhanced at the expense of the tail.

The two asymptotic scaling laws (27) and (29) can be
given a more physical interpretation: If, as in the molecular
networks at the heart of photosynthetic light-harvesting (which
inspired our model), coupling strength is synonymous to
spatial separation, then increasing N at fixed spatial density,
and thus literally increasing the spatial size of the network,
leads to (27). Alternatively, keeping the spatial size of the
network fixed and increasing the packing density by increasing
N leads to (29).

In closing this part of our discussion, let us also emphasize
that the probability given in (26) is only a lower bound of
the probability to obtain PH > 2α − 1. In order to understand
this, let us reconsider Eq. (12): The time t = π/|2V + 	s|
is the point in time when | exp(−itE+) − exp(−itE−)|2/4
reaches its largest possible value. Nevertheless, for a spe-
cific realization of the disorder, we may find other (and
in particular earlier) moments in time at which already
| exp(−itE+) − exp(−itE−)|2/4 > 2α − 1. These realiza-
tions are not included in (26) [which was derived by using the
relation (13) and (16)], althoughPH > 2α − 1. As an example,
Fig. 2 shows a realization of the time dependence of the output
population for which TR/t = 0.970874 and indicates the value
2α − 1 by a dashed line. Since t > TR , we do not account for
this in our estimate (26) of efficient realizations, even though
it clearly exhibits PH > 2α − 1.

As a final remark in this section, and as an important
intermediate result, let us emphasize that the desired transport
properties of the network as described above do not depend on
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FIG. 2. Probability |〈out,φ(t)〉|2 to find the excitation at the output
site, for a single realization of the network Hamiltonian (10). The
value 2α − 1 is indicated by a dashed line. Even though the transfer
time t = 1.03TR for this realization, PH > 2α − 1.

the details of the individual networks’ structures. Indeed, only
course-grained and somewhat easily controllable quantities,
the spectral density ξ of the bulk states, and the average
coupling strength ‖V‖2 of the input and output site to the
bulk, fully determine the distribution (25).

C. The mean level spacing �loc in the vicinity of E ± V

Now that a global picture has been established, we need
to understand the technical details required to obtain an
expression for 	loc, the mean level spacing near the energy
E ± V which entered (25) through (21) and (22). It was
already indicated in Sec. II that the dominant doublet constraint
is somewhat more subtle than the mechanism of chaos
assisted tunneling, where this mean level spacing is known
a priori. The dominant doublet in our model can be seen as a
strong demand of eigenvector localization (11). Since, in our
present work, we sample centrosymmetric Hamiltonians and
postselect realizations where a dominant doublet is present, a
strong modification of the local mean level spacing around the
energy E ± V can be induced. This effect is also apparent from
the density of states, shown in Fig. 3: Wigner’s semicircle, to
be expected from RMT [41], is garnished by a cusp, centered
around E + V (in the figure fixed at E + V = 1). The key

− − −

(
)

FIG. 3. Density of states of H+
sub, for N = 10 and ξ = 2, with

fixed E + V = 1 (arrow) to highlight the effect of a dominant doublet
in the vicinity of this energy level. In contrast to the Wigner semicircle
(dashed line), valid for the GOE ensemble with N → ∞, the density
of states exhibits a cusp at λ = E + V .

approach to deriving an estimate for 	loc is the assumption
that it is essentially the same quantity as the width of the cusp,
which we now set out to determine.

To reach a quantitative understanding of the cusp effect,
we must be able to treat the eigenvalues e±

i of H± which are
close to E ± V . Here, we find strong repulsion between the
energy levels, causing the cusp. For an exact description of the
effect, we must include the possibility of (near-)degeneracy
between E ± V and one of the e±

i and thus use degenerate
perturbation theory. Therefore, we first consider the degenerate
variant of (14):

1 − |〈±̃,±〉|2 ≈ 1

2

N/2−1∑
i=1

⎧⎨
⎩1 −

[
1+4

|〈V±,ψ±
i 〉|2

(E ± V − e±
i )2

]−1/2
⎫⎬
⎭.

(30)

All special effects caused by the dominant doublet originate
from this expression, via (11). The requirement that the left-
hand side of (30) be smaller than 1 − α imposes constraints
on the possible values which

D := min
i

|E ± V − e±
i | (31)

can take. As the quantity D is directly related to the cusp in
Fig. 3, it will form the cornerstone to our estimate of 	loc.

First, we observe that there are three parameters in (30)
which must be controlled to fulfill the dominant doublet
constraint: D, ‖V‖2, and α. Of these, only the last one is
controlled directly in our setup. Looking at the right-hand side
of (30), one sees that the dominant doublet regime is reached
for ‖V‖/D sufficiently small, such that this right-hand side
of the equation vanishes and 1 − |〈±̃,±〉|2 is close to zero.
While ‖V‖2 can be measured rather straightforwardly in our
simulations, we require an estimate of D in terms of the other
known parameters: α, ξ, and ‖V‖2.

To obtain such an estimate, we focus on two limiting cases,
which we both expect to encounter in the same ensemble of
postselected Hamiltonians. Moreover, each of these cases will
impose constraints on the possible range of the parameters
‖V‖ and D. As mentioned, the dominant doublet implies that
‖V‖/D should be small, which implies that ‖V‖ is sufficiently
small, or that D is sufficiently large. The two limiting cases
exactly boil down to these scenarios: In the first limiting
case, we will consider Hamiltonians where all eigenvalues
e±
i are outside of the cusp region of Fig. 3. In this regime,

the dominant doublet imposes constraints on ‖V‖. In the other
limiting case, we investigate what happens when one of the
e±
i lingers inside the cusp region of Fig. 3, which leads to

constraints on D. Throughout these calculations, even though
mathematically somewhat unsound, we assume that ‖V‖ and
D are two independent statistical quantities. Finally, once the
two limiting scenarios have been considered, we combine the
two constraints, as they should both hold for the complete
ensemble, and formulate an estimate for the width of the cusp.

The first limiting case is given by network realizations
where all eigenvalues e±

i exhibit a considerable distance from
E ± V , far from the observed cusp in Fig. 3. Therefore, all
terms in the sum (30) contribute equally. This leads to the
approximation that the expectation value of a single one of
these terms is (1 − α)/(N/2 − 1). Rather than (30), we can
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then use (14), i.e.,

1 − |〈±̃,±〉|2 ≈
N/2−1∑

i=1

|〈V±,ψ±
i 〉|2

(E ± V − e±
i )2

. (32)

On the level of averages, the dominant doublet condition tells
us thus that

1 − α

N/2 − 1
≈
[

|〈V±,ψ±
i 〉|2

(E ± V − e±
i )2

]
. (33)

Here we assume that, since the e±
i stay far away from the

cusp, and therefore do not feel the “repulsion” from E ± V , E
and V can be approximately treated as independent variables.
The variance of V, as its statistics is described by extreme
value theory [60], see Sec. III D below, is neglected as
the distribution of V is strongly peaked around V . Further-
more, we approximate the distribution of the ei (locally) by a
semicircle law. The crude approximation that each term in (14)
provides a similar contribution leads to√

1 − |〈±̃,±〉|2
N/2 − 1

≈ |〈V±,ψ±
i 〉|

|E ± V − e±
i | , for all i. (34)

Comparing (33) to (34), we get 1 − |〈±̃,±〉|2 ≈ 1 − α. If we
now assume that 〈V±,ψ±

i 〉 is normally distributed, with zero
mean and variance ‖V‖2/(N/2 − 1), and that the ei obey a
semicircle law, as one expects from RMT [55], we find

√
1 − α ≈

√
2‖V‖2

πξ 2
. (35)

We validate this result by numerical data (see Sec. IV) and
approximate

α ≈ 1 − C
‖V‖2

ξ 2
, (36)

with C as a fit parameter. The numerical dataset is obtained
by scanning α from 0.99 to 0.8, for fixed ξ = 2 and N = 14.
For each value of α we extract ‖V‖2. We also inspected data
with α ∈ [0.94,0.99], ξ = 20, and N = 10. Figure 4 suggests
a linear dependence as in (36). However, since the ansatz (36)

 0.8

 0.84

 0.88

 0.92

 0.96

 0  0.05  0.1  0.15  0.2  0.25  0.3
<||V||2>/ 2

N=14, =2
N=10, =20

Conjec.   ~ 1
Fit

FIG. 4. Dependence of α on ‖V‖2/ξ 2, for different network
realizations. In order to extract the constant C in (36) and (37), a
fit is performed. The conjectured curve for α ≈ 1, where C = 2/π ,
is given by the solid line.

results from perturbation theory, it appears reasonable to add
a term quadratic in ‖V‖2/ξ 2, for α ≈ 0.8. We thus fit the data
to the form

α ≈ 1 − C
‖V‖2

ξ 2
− b

(
‖V‖2

ξ 2

)2

(37)

and obtain the following result:

Estimate Standard Error
C 0.636789 0.00218418
b 0.111501 0.00933118

By definition (11), the dominant doublet is found where α ≈ 1
and thus ‖V‖2/ξ 2 is small. Therefore we can finally ignore
the second order term in Eq. (37) and obtain that α ≈ 1 −
0.636789 × ‖V‖2/ξ 2. As the estimate C ≈ 2/π falls into the
error margin of our numerically generated data, we conclude
that

1 − α ≈ 2‖V‖2

πξ 2
. (38)

Since this limiting case was defined above as the one where
the eigenvalues e±

i are far away from the cusp and thus do not
experience the repulsion which must be felt as they approach
E ± V (this exactly causes the cusp seen in Fig. 3), we will
consider a second limiting scenario in order to probe the
smallest possible value of D as given by (31).

The second limiting case is when one eigenvalue e±
i

approaches E ± V at a minimum distance Dmin (where the
minimum is taken over the entire ensemble) such that we find
the dominant doublet with probability one, with 〈ψ±

i ,V±〉 still
a normally distributed stochastic variable. This implies that the
sum in (30) be dominated by a single term. Ultimately our goal
is to determine Dmin, and to do so we study the statistics of a
single term τ in (30), leaving the resonance denominator, (31),
as a free parameter. This term is a stochastic quantity, and we
can obtain its probability density as

PD(τ ) =
∫
R

dvN(v)δ

{
τ − 1

2

[
1 −

(
1 + 4

v2

D2

)−1/2
]}

.

(39)

v = 〈V±,ψ±
i 〉 is again normally distributed, with zero mean

and variance ‖V‖2/(N/2 − 1), and we denote the Gaussian
probability density function by N (v).

The integration can be performed straightforwardly using
properties of the Dirac delta function. As the dominant doublet
arises in a regime where 1 − α ≈ 0, we obtain from (30) that
also τ must me close to zero; hence we can focus on the leading
scaling behavior in τ → 0, from which we obtain

PD(τ ) ≈ D
√

N − 2

4
√

π‖V‖2τ

. (40)

Remember that the dominant doublet was imposed as a strict
constraint (11), which implies that |〈±̃,±〉|2 is always larger
than α. Since we are now studying the case where one term
τ dominates the sum in (30), τ must always be smaller than
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1 − α. This condition translates to

Prob(τ � 1 − α) =
∫ (1−α)

0
dtPD(τ ) = 1, (41)

and, with (40), defines an equation which can be solved to
obtain the smallest possible value for D, which is denoted by
Dmin:

Dmin =
√

2π‖V‖2

√
(1 − α)(N/2 − 1)

. (42)

Dmin gives the closest allowed distance between E ± V and
an eigenvalue ei of H±

sub to ensure |〈±̃,±〉|2 > α.
Combining the constraints (35) and (42), which connect the

parameters α, ‖V‖2, ξ and Dmin, we can express Dmin as

Dmin = πξ√
N/2 − 1

. (43)

With (43), we obtain the following strong conjecture for 	loc:

	loc ≈ 2πξ√
N/2 − 1

, (23)

where we used that Dmin is the minimal distance between
E ± V and an eigenvalue e±

i which can establish a dominant
doublet. Since we are interested in the distance between two
eigenvalues e±

i and e±
j , which we approximate by the width

of the cusp in Fig. 3, we acquire an extra factor two, leading
to 	loc ≈ 2Dmin (much as in the elementary theory of level
repulsion at degeneracy).

D. The expectation value of the direct coupling

The last parameter which remains to be estimated, is the
expectation value of the direct in-out coupling, V . Rather than
obeying Gaussian statistics such as the coupling between any
other two sites of the network, V is governed by so-called
extreme value statistics [60]. This is implicitly imposed by
construction, since we defined V = mini |Hi,N−i+1|, which is
the smallest number, in absolute value, of a sample of N/2
normally distributed stochastic variables (the Hamiltonian
components Hi,N−i+1). To calculate V , we start by introducing
a method to obtain the distribution of V , which we introduce
in a general framework and subsequently apply to our specific
problem.

To begin with, let X1, . . . ,Xn be a sample of n independent,
identically distributed stochastic variables, and denote m =
mink∈{1,...n} Xk . We are now interested in the probability
density Pm(x) = P (m = x). To obtain this function, we
consider the cumulative distribution function (CDF) of m,
Fm(x) = P (m � x). Since m is the minimum

Fm(x) = P (m � x) = 1 −
n∏

k=1

P (Xk > x)

= 1 −
n∏

k=1

[1 − P (Xk � x)]

= 1 − (1 − F (x))n,

(44)

where F (x) is the CDF of Xk . Now the probability density
Pm(x) can be obtained as

Pm(x) = dFm(x)

dx
= 1 − d

dx
[1 − F (x)]n, (45)

which is seen to strongly depend on the sample size n.
In the present case we are dealing with Xk = |Hk,N−k+1|

and Hk,N−k+1 ∼ N (0,
2ξ 2

N
) [recall (1)], what implies that

|Hk,N−k+1| is a half-normal distribution [61], therefore the
CDF is given by

F|Hk,N−k+1|(x) = 2√
π

∫ x

0
d|Hk,N−k+1|e−(

√
N |Hi,N−i+1 |

2ξ
)
2

= erf

(√
Nx

2ξ

)
,

(46)

where erf(x) denotes the error function [62]. By using
this result and n = N

2 in (44) and (45), we obtain that
the probability density of the minimal coupling V is
given by

P (V ) =
e
− NV 2

4ξ2 N3/2
[
erfc

(√
NV
2ξ

)] N
2 −1

2
√

πξ
, (47)

with erfc(x) the complementary error function, which is given
by erfc(x) = 1 − erf(x) [62].

From these results, V is now inferred as

V =
∫ ∞

0
dV P (V )V

=
∫ ∞

0
dV

e
− NV 2

4ξ2 N3/2
[
erfc

(√
NV
2ξ

)] N
2 −1

2
√

πξ
V. (48)

With the change of variable

V ′ =
√

NV

2ξ
, (49)

the right-hand side of (48) turns into

2ξ
√

N√
π

∫ ∞

0
dV ′ e−V ′2

[erfc(V ′)]
N
2 −1

V ′. (50)

Since we are interested in the behavior for large N , we have
N/2 − 1 ≈ N/2. We now apply Laplace’s method [63] and
thus need to define a function f such that∫ ∞

0
dV ′ e−V ′2

[erfc(V ′)]
N
2 −1

V ′ =
∫ ∞

0
dV ′ exp[Nf (V ′)].

(51)

It is straightforward to check that

f (V ′) = −V ′2

N
+
(

1

2
− 1

N

)
log[erfc(V ′)] + 1

N
log V ′

(52)

is a suitable choice. In order to apply Laplace’s method, we
need to find that V0 for which f is extremal, hence f ′(V0) = 0.
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By straightforward calculation of the derivative of (52) we find

f ′(V ′) = 1

NV ′ − 2V ′

N
−
(

1 − 2

N

)
e−V ′2

√
πerfc(V ′)

, (53)

which allows only for an implicit expression for V0. We can,
however, get an explicit result by the following approximation:
As the maximum of f (V ′) is achieved for V0 � 1, we can
expand e−V ′2

and erfc(V’) around V ′ ≈ 0, in order to obtain a
tractable approximation for f (V ′). This expansion yields

e−V ′2

√
πerfc(V ′)

= 1 − V ′2 + 1
2V ′4 − · · ·√

π
(
1 − 2V ′ + 2

3V ′3 + · · · ) ≈ 1√
π

. (54)

Even though this is a rough approximation, the corrections
due to higher orders are negligible for large N, numerical
evaluation of (48) shows that, even for N = 10, the exact
results are very well approximated by (54).

With the low order approximation of (54), f ′(V0) = 0 is
satisfied for

V0 ≈
√

N2 + 8π − N

4
√

π
≈

√
π

N

(
1 + 2

N

)
, (55)

and Laplace’s method now tells us that∫ ∞

0
dV ′ exp[Nf (V ′)] ≈ eNf (V0)

√
2π

N |f ′′(V0)| , (56)

leading to the final result,

V ≈ 2πξ

eN
√

N/2 − 1
, (24)

which we already anticipated in Sec. III A, to obtain the
transfer time distribution (25).

IV. SIMULATIONS FOR RANDOM HAMILTONIANS

Having completed the derivation of the analytical predic-
tions of our constrained (by centrosymmetry and dominant
doublet assumption) RMT model for efficient transport on
random graphs, we now test these predictions against numer-
ical simulations. We sample random Hamiltonians from the
GOE, with centrosymmetry imposed as an extra constraint.
After diagonalization of each of these Hamiltonians, we
postselect those which exhibit a dominant doublet with weight
α, as defined in (11). Then, from the thus constructed RMT-
ensemble, we numerically derive PH , with t the earliest point
in time for which |〈out,φ(t)〉|2 = PH .

To start, Fig. 5 shows the transfer time distribution for
different network sizes N, at fixed spatial density [remember
our discussion of (27) and (29) above], with a comparison
between numerical data (thin solid line) and the analytical pre-
diction (25) (thick solid line). There are no fitting parameters;
the average coupling strength ‖V‖2 is directly extracted from
the statistical sample, whereas the dominant doublet strength
α = 0.95 and spectral density ξ = 2 (in units of mean level
spacing) are fixed a priori for all realizations.

The overall comparison of numerical data and analytical
prediction is very satisfactory. In particular, the distribution
also exhibits the trend predicted by (25) and (27) for increasing
N : As N grows, the height of the maximum of the distribution
at TR/t ≈ 1, controlled by s0 [see (25)] decreases, and the
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FIG. 5. Histograms of the simulated inverse transfer time TR/t (thin solid lines) across fully connected random networks of variable size
N , and of |E+ − E−|/2V (dashed lines), together with the theoretical distribution (25) (thick solid line). The parameters ξ = 2 and α = 0.95
are fixed for every realization. The value ‖V‖2 ≈ 0.31 is extracted from the simulations for each value of N . The simulations consider only a
time window [0,1.7TR], therefore the minimum value of the inverse transfer time is given by TR/t = (1.7)−1. The inset stresses the agreement
between the theoretically predicted algebraic tail (thick solid line) and the |E+ − E−|/2V histogram (dashed line). The histogram for TR/t

(thin solid line) slightly deviates from the other two curves because the quasiperiodicity of the dynamics suppresses the tail of the distribution
(see text).
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FIG. 6. Probability |〈out,φ(t)〉|2 to find the excitation at the
output site, for a single realization of the Hamiltonian (10). There
are multiple strong localizations at the output site within [0,TR).
High-frequency oscillations show that the dynamics is quasiperiodic
rather than periodic.

algebraic tail with TR/t � 1 grows fatter, as anticipated
by (27). Indeed, the numerical data confirm the predicted
scaling of s0 and P (TR/t > 1) with N−1, as spelled out by
Fig. 8.

However, closer scrutiny of the displayed distributions for
larger values of TR/t (see the insets of Fig. 5) suggests
an apparent discrepancy between numerics and analytical
prediction: The numerical data appear to drop faster with
increasing TR/t than expected from (25), which was derived
from the statistics of the first passage time (13). It turns out
that this is an effect caused by the quasiperiodic oscillation
between the input and the output site. If, e.g., TR/t > 3, the
excitation will localize on the output site three times during the
benchmark time interval [0,TR). Since, however, the dynamics

is in general quasiperiodic, rather than periodic (note that this
is a consequence of the transient population of the bulk sites,
which is neglected in the approximate expression (13) for
the transfer time in terms of the dominant doublet splitting),
the largest value of |〈out,φ(t)〉|2 within the considered time
window may only be achieved after multiple periods. Even
though the theoretical value of t is relatively small, the
simulation may pick up a later point in time, thus giving a
smaller weight to large values of TR/t in the histograms of
Fig. 5. One incident of this scenario is shown in Fig. 6.

Indeed, direct comparison of the time scale (13) given by
the numerically sampled doublet splitting (16) (rather than of
t as inferred from direct propagation of the associated unitary
generated by H ) leads to perfect agreement in particular of
the asymptotic behavior of the distribution with the analytical
prediction, as evident from comparison of the dotted and full
curves in Fig. 5. The dominant doublet mechanism is thus
impressively confirmed, with an asymptotic behavior inherited
from the statistics of the level shifts 	s, induced by the
interaction with the network’s bulk sites.

Having achieved an excellent understanding of the transfer
time distribution of centrosymmetric random graphs with
dominant doublet, we still need to verify that they indeed
also generate large transfer probabilities PH � 2α − 1 ≈ 0.9,
for the chosen dominant doublet strength α = 0.95. This is
done in Fig. 7, for the same model parameters as in Fig. 5,
and in comparison to the efficiency distribution of uncon-
strained or just centrosymmetric random graphs (obeying GOE
statistics). For different values of N , the figure provides an
impressive illustration of the here suggested design principles:
centrosymmetry alone already induces a very tangible shift of
the average value of the transfer efficiency to much enhanced
values though fails to concentrate the distribution to values
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FIG. 7. Distribution of the transfer efficiency PH , eq. (2), for variable network size N and three Hamiltonian ensembles: GOE, GOE with
centrosymmetry, and GOE with centrosymmetry and dominant doublet. PH = 2α − 1 is indicated by the arrow. The control parameters in (1)
and (11) are set to ξ = 2 and α = 0.95.
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FIG. 8. Density P (PH > 2α − 1) of efficient network realiza-
tions, as a function of the network size N , for three different ensembles
(GOE, GOE with centrosymmetry, GOE with centrosymmetry and
dominant doublet). The theoretical curve for P (t < TR) (solid line),
Eq. (26), forms a lower bound to the dominant doublet ensemble, as
expected (see text). The GOE curve is cut off at N = 12, since it takes
too long to sample a sufficient amount of data for larger values of N .
The control parameters in (1) and (11) are α = 0.95 and ξ = 2.

close to one. This is unambiguously achieved by the dominant
doublet constraint (a generalization of the CAT mechanism)
and in perfect agreement with our predictions.

As for those incidents in Fig. 7 where PH < 2α − 1,
despite the presence of a dominant doublet, these typically
are due to network conformations where TR < t , i.e., where
the transport is too slow to be efficient. On the other hand,
there are also some realizations (such as shown in Fig. 2)
where PH > 2α − 1 even though TR < t . As a matter of
fact, there is no obvious one-to-one relation between the first
passage time distribution and the efficiency distribution what,
however, leaves our overall picture of the transport mechanism
fully intact. Also, as N is increased, it might seem that more
structure emerges in the region PH < 2α − 1. This, however,
is just statistical noise: Because of the postselection, together
with the strongly decreasing density of dominant doublets in
the ensemble (Appendix B), it is difficult to acquire a lot of
statistics for N = 14.

Let us finally extract from Fig. 7 the probability to achieve
transfer efficiencies PH > 2α − 1, which is simply done by
integrating over the corresponding interval of the histograms,
for the different ensembles considered. The result displayed
in Fig. 8 is yet another impressive demonstration of the
effectiveness of centrosymmetry and dominant doublet as
robust design principles. Also note that the result for the
dominant doublet ensemble confirms the estimate (26): Since
TR/t > 1 guarantees PH > 2α − 1, while the inverse is not
true (remember Fig. 2), (26) defines a lower bound for
P (PH > 2α − 1), as nicely spelled out by the comparison
in Fig. 8.

V. DISCUSSION AND CONCLUSIONS

We described a general mechanism that gives rise to fast
and efficient quantum transport on finite, disordered networks.
The mechanism rests on two crucial ingredients: The first
is the centrosymmetry of the underlying Hamiltonian, which

renders the Hamiltonian block-diagonal in the eigenbasis of
the exchange matrix, the symmetry operator. The second
ingredient is a dominant doublet, that ensures a firm control
of the transport properties’ statistics, under the coupling to
random (or chaotic; recall the original motivation of the
CAT mechanism [47]) states which assist the transport. The
statistics of the transfer efficiencies and times as shown in
Figs. 5 and 7 depend only on the intermediate network sites’
density of states ξ , and on the average coupling strength
‖V‖2 of the in- and output sites to the network. These
are macroscopically controllable parameters. On the one
hand, this means that coherence effects survive simply by
stabilising these properties of the ensemble. On the other
hand, if such stabilization is possible, one could also imagine
controlling transport properties according to the specific needs,
simply by controlling these ensemble properties such as the
density of states and the typical coupling to the intermediate
sites.

The key point of our contribution is to treat near-optimal
transport in a context of disorder physics, where we do not
strive to avoid disorder altogether, but rather incorporate it in
a constructive way. By no means do we wish to control as
many degrees of freedom as possible, as hardwired small-
scale structures are unavoidably perturbed by omnipresent
fluctuations. Rather we provide a framework that optimally
controls few coarse grained quantities, only constrained by
the above design principles, whereas microscopic details may
remain subject to disorder or fluctuations. Our handle of
control tunes the statistical properties of the transfer efficiency
in the sense that it controls the shape of the distributions in
Figs. 5 and 7. Moreover, the transfer time distribution, Fig. 5,
is a Cauchy distribution, which, as its possibly most important
feature, has an algebraic (fat) tail, guaranteeing that transfer
times which are shorter than the Rabi time occur in a relatively
large fraction of network realizations. In particular, there is
a non-negligible probability for dramatic speed-up (by more
than an order of magnitude) of the excitation transfer.

Recently other works concerning ensemble approaches to
efficient transport in complex quantum systems have been
presented [27,64], where, by randomly sampling networks of
dipoles, realizations leading to efficient transfer are identified.
When analyzing these networks, one mainly encounters
centrosymmetric structures [64]. As these efficient realizations
are further investigated, Refs. [27,64] find that typically only
a subset of the network sites are significantly populated
during the transport, which is a consequence of Hamiltonian
eigenvector localization on these network sites. Although
Refs. [27,64] encounter different possible backbone structures,
typically containing four sites or more, these results are
strongly reminiscent of our dominant doublet. In other words,
one might say that the dominant doublet is a specific, and
(see above) analytically tractable, type of backbone structure.
We expect that the more complex backbones of [27,64] can
be incorporated into a framework similar to the one which
is presented in our present contribution, by adopting models
comparable to what is known as resonance-assisted tunnelling
in the quantum chaos literature [65,66].

Finally, even though our work is originally inspired by
recent developments in photobiology, as we stressed in detail
in Refs. [18,32], one might think of various other fields
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where ensemble approaches to quantum transport are rapidly
gaining relevance. More specifically, the realm of quantum
computation harbours several ideas that relate computational
problems to quantum walks [6,36,67], thus relating quantum
computation to complex networks. On the other hand, random
matrix models have been successfully applied in the study
of adiabatic quantum computation [68]. More recently, in the
broad discussion on quantum effects in D-Wave Two [69], it
became clear that random fluctuations and disorder effects
must be incorporated in the study of quantum effects in such
real systems [70]. We trust that a model as ours, in all its
generality, may also enrich this field.
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APPENDIX A: BLOCK DIAGONALIZATION OF H

The procedure to obtain the block diagonal form is the same
as in Ref. [39]. We consider H ∈ CN×N to be a symmetric and
centrosymmetric matrix. We now represent H in terms of four
matrices A,B,C,D ∈ CN/2×N/2, such that

H =
(

A B

C D

)
. (A1)

This can of course be done for any matrix. Symmetry and
centrosymmetry now imply that

B = J ′CJ ′ and D = J ′AJ ′. (A2)

Here J ′ is an N/2 × N/2 matrix such that the exchange
operator J is given by

J =
(

0 J ′
J ′ 0

)
. (A3)

Next, a transformation K is defined such that K ∈ CN×N is
orthogonal and given by

K = 1√
2

(
1 N

2
−J ′

1 N
2

J ′

)
. (A4)

Therefore it follows from a simple calculation that

KHKT =
(

A − J ′C 0
0 A + J ′C

)
. (A5)

From this result it is now easy to identify H± = A ± J ′C
in terms of random matrix quantities: Consider that, since
Aij ,(J ′C)ij ∼ N (0,

ξ 2

N
), if i �= j , it follows from basic proba-

bility theory that

(A + J ′C)ij = Aij + J ′Cij ∼ N
(

0,
2ξ 2

N

)
, i �= j. (A6)

Likewise we have

(A + J ′C)ii = Aii + J ′Cii ∼ N
(

0,
4ξ 2

N

)
. (A7)

Since the sum of two symmetric matrices is again symmetric,
and since the components are sampled from a Gaussian
distribution, these matrices belong to the GOE. In the case
of A − J ′C, there is an extra subtlety because of the minus
sign. Here we explicitly use that a Gaussian distribution is sym-
metric, such that, if (J ′C)ij ∼ N (0,ξ 2/N ), also −(J ′C)ij ∼
N (0,ξ 2/N ), which implies

(A − J ′C)ij ∼
{
N
(
0,

2ξ 2

N

)
, if i �= j.

N
(
0,

4ξ 2

N

)
, if i = j.

(A8)

Consequently, also A − J ′C is an N/2 × N/2 GOE matrix.

APPENDIX B: FINDING DOMINANT DOUBLETS

In Sec. II, we introduced the dominant doublet as a
constraint. From a theoretical point of view, it is also interesting
to have an idea of the probability that this constraint holds for
any GOE matrix with the centrosymmetry constraint.

At first we quote an interesting result from Ref. [44], which
concerns eigenvectors. We consider an N × N matrix in the
GOE. Without loss of generality, the eigenvectors of a GOE
matrix can be taken to be real. Since an eigenvector |η〉 can be
mapped onto any other real vector by an orthogonal transfor-
mation, every eigenvector occurs with the same probability.
The only property that needs to be fixed is the norm. This
implies that

PGOE(|η〉) = C δ

(
1 −

N∑
i=1

η2
i

)
. (B1)

Here C is a normalization factor. After determining C and
integrating out N − 1 components, we obtain the distribution
for y = η2

j , where ηj is just some component of the eigenvector
|η〉. The result is given by

PGOE(y) =
∫
RN

N∏
j=1

dηi δ
(
y − η2

1

)
PGOE(|η〉)

= 1√
π

�
(

N
2

)
�
(

N−1
2

) (1 − y)
N−3

2

√
y

.

= 1

B
(

1
2 ,N

2 − 1
2

)y1/2−1(1 − y)N/2−1/2−1.

(B2)

The last step rewrites this function such that B(a,b) denotes
a Beta function [62]. This implies that the y follow a Beta
distribution,

y ∼ Beta

(
1

2
,
N

2
− 1

2

)
. (B3)

The quantity of interest is the probability that |+〉 and |−〉
from (5) form a dominant doublet. In mathematical terms, this
is the probability that for both, H+ and H− from (4), there
exists and eigenvector, denoted |+̃〉 and |−̃〉, respectively, such
that

|〈±̃,±〉|2 > α. (B4)
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This quantity is equivalent to defining

y = min
(

max
i

|〈ηi,+〉|2, max
i

|〈ηi,−〉|2) , (B5)

where {|ηi〉} denotes the set of eigenvectors of H . Eventually,
〈ηi,+〉 and 〈ηi,−〉 in (B5) are just components of the
eigenvector in the eigenbasis of J . Remembering (B3), we
know that for GOE matrices, these components are distributed
according to a Beta distribution. As currently we consider
Hamiltonians of the form (4), we have to treat H+ and
H− as two independent GOE matrices. This implies that
the probability that a component yi is smaller than α is
given by

P (|〈ηi,±〉|2 � α) = Iα

(
1

2
,
N

4
− 1

2

)
, (B6)

where Iα denotes the regularized Beta function [62]. Since
our interest lies in the maximum of |〈ηi,+〉|2, we can simply
follow an approach similar to the one presented in Sec. III D,

to obtain

P
(

max
i

|〈ηi,±〉|2 > α
) = 1 −

∏
i

P (|〈ηi,±〉|2i � α)

= 1 −
[
Iα

(
1

2
,
N

4
− 1

2

)]N/2

. (B7)

Now that we know the probability for both maxi |〈ηi,+〉|2 >

α and maxi |〈ηi,−〉|2 > α, the next step is obtaining the
probability that y = min(maxi |〈ηi,+〉|2, maxi |〈ηi,−〉|2) > α.
In other words, we need the probability that maxi |〈ηi,+〉|2 and
maxi |〈ηi,−〉|2 are simultaneously larger than α. We obtain this
probability as

P (y > α) = P
(

max
i

|〈ηi,+〉|2 > α
)
P
(

max
i

|〈ηi,−〉|2 > α
)

=
{

1 −
[
Iα

(
1

2
,
N

4
− 1

2

)]N/2
}2

. (B8)

The resulting distribution (B8) suggests that the probability of
finding a dominant doublet Hamiltonian H in the centrosym-
metric GOE strongly decreases with the system size N .
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