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The second virial coefficient, B2 is computed of linear rigid rods composed of m equally spaced sites interacting
with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence
of B2 on a wide range of separation distance between the sites L and m for both types of potential is computed.
Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the
WCA rigid rods in the isotropic phase as a function of rod number density ρ. Simple scaling relationships are
discovered between thermodynamic and other static properties as a function of ρ and m, which extend well into
the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods
complies well with a mean-field random orientation approximation from low density well into the semidilute
regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high
rod density, scales better with the number of sites density rather than the rod number density.
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I. INTRODUCTION

In recent years there has been growing interest in the
development of novel materials derived from rod-shaped
macromolecular structures such as carbon nanotubes and
cellulose nanofibers. Potential applications are wide ranging,
from their use as rheology modifiers, through to aerogels (with
diverse properties) and high-performance structural materials.
Understanding the dynamics and behavior of nanometer-
scale structures in suspension forms a critical step in the
development of many of these applications. The challenge
links to objects, which are small enough to be strongly
influenced by interacting, covariant, quantum fluctuations
(vacuum energy, the suspending media and neighboring rods),
which lead to an energy landscape of complex topology.
Simulations of this environment at a fundamental level are
for the moment computationally impractical, resulting in
the need to address these challenges using some form of
representative renormalization technique. Considerable effort
is required if we are to understand how these rods behave
and assemble in suspension under different conditions (for
example, rod number density, aspect ratio, charge distribution,
and ionic concentration of the suspension). A work program
to resolve this should lead to a better understanding of how
to control different phases (isotropic, chiral nematic, smectic,
and nematic) and how these different phases can be utilised
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for different applications. For example, an isotropic phase is
a precursor to the creation of disordered scale-free networks
required to form insulating materials, while nematic alignment
makes more sense for the creation of high-strength structures.
A further additional benefit that could accrue from such work
should be a better understanding of how macromolecular
rodlike structures, such as cellulose, assemble within a plant
cell wall. The goal represents a complex challenge requiring a
stepwise development program. The current paper represents
a first stage, addressing rod-shaped structures in the isotropic
phase.

Rod-shaped particles even at relatively low volume frac-
tions compared to spheres can have a pronounced effect on
the viscosity of a colloidal liquids [1] and the strength of solid
composites. Dispersions of nanocellulose rods have proved
a useful model system for such investigations [2]. Despite
the reduced symmetry of the particle, some aspects of its
behavior can be accounted for remarkably well by simple
mean-field theories, even at high concentrations. For example,
the packing fraction of randomly deposited rod assemblies
composed of long rods can be expressed to a high degree of
accuracy in terms of the excluded volume of the rod and the
mean coordination number [3–5]. Solutions of rods show an
increased slope of the dependence of viscosity with density
at a so-called dilute to semidilute transition. In the dilute
regime the rotational motion of the rods can be considered
to a good approximation to be independent of that of other
rods. In the semidilute regime the rod’s end-over-end motion
is restricted by interaction with the other rods, which one
might refer to as entanglement in analogy with the behavior of
flexible polymer solutions. Both dilute and semidilute density
ranges are known as isotropic phases because averaged over
time there is no preferential direction for the rods to align.
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If the aspect ratio of the rod (the length of the rod in units
of the width) is a, for long rods, i.e., (a � 1), the dilute to
semidilute transition rod number density, ρ∗, is where there
is about one rod on average in a volume of ∼a3 [6,7]. When
the rod number density is much less than ∼a−3 the interaction
part of the equation of state can be expressed well in terms
of the second virial coefficient, whereas for densities much
greater than ∼a−2 the rods are strongly entangled, and the
isotropic-to-nematic transition occurs for a number density
of ∼a−1, i.e., when there are about a2 rods per a3 [8]. It
is well known that rod-shaped particles form various liquid
crystallinelike phases at high concentration, which have been
been widely studied by experiment, theory, and molecular
simulation [9–13]).

The fused rod systems considered here fall within the
category of discrete site molecular systems, which have been
treated by a number of theoretical methods that have been
applied to high-density systems. These include the reference
interaction site model (RISM) of Chandler and Andersen [14],
which is an extension of the Ornstein-Zernike equations to a
many-interaction center representation of a molecule. Recent
extensions of this technique to more properly take account of
excluded volume effects (i.e., 3D-RISM [15]) are reviewed
in Sec. 9 of Ref. [16]. Of relevance to this work, RISM has
been applied recently to tetrahedral colloidal particles, [17],
homonuclear hard dumbbells [18], and m-interaction center
fused rods [19]. Fundamental measure density functional
(FMDFT) theory is another approach, which has been used
to model elongated particles in the bulk [20–24], and confine-
ment [25]. FMDFT has been tested for nonconvex bodies,
in particular, hard dumbbells [26], which as this work is
concerned with fused sphere rods is relevant to the present
study. Dorosz and Schilling performed molecular dynamics
simulations of crystallization of glassy suspensions of hard
ellipsoids [27]. The focus here is mainly on rod assemblies at
much lower concentrations, where the second virial coefficient
could be considered to dominate the system thermodynamics.

There are still some qualitative and quantitative aspects
of dilute rod systems, which require further elucidation. For
example, over what concentration range can the second virial
coefficient (B2) term be deemed representative of the equation
of state, and how does this depend on the aspect ratio? Can this
information be used to provide a more objective definition of
what is actually meant in terms of the system’s microstructure
by the terms, dilute, and semidilute regimes? This basic
information is a useful foundation on which to develop more
rigorous thermodynamic and rheological equations of state of
rod-containing systems, as well as providing another starting
point for theories of liquid crystals.

The cylinder and spherocylinder (a cylinder capped by
hemispheres at both ends) representations of rods have been
widely used in statistical mechanical theory and related sim-
ulations of rod-shaped particle assemblies. However, because
these inter-rod interactions are discontinuous (like the hard
sphere itself), certain properties are not trivial to compute
numerically. Also such a discontinuous potential cannot
distinguish between different types of chemical system, which
requires a tunable continuous force field. A tunable anisotropic
potential for high aspect ratio rods has been developed based
on the Lennard-Jones (LJ) potential but it appears not to be

in a suitable form for carrying out molecular simulation [28].
Representing the rod by a line of interaction sites is one way
of implementing continuous interactions, although for high
aspect ratio near parallel rods, side-side interactions can be
computationally demanding. Nevertheless in the absence of
any more optimum procedure the multisite representation of
the rod is the approach adopted here. There have been many
statistical, mechanical, and simulation studies of linear rods
composed of m equally spaced hard-sphere interaction sites
of diameter, σ (fused hard spheres) separated by distance L.
The aspect ratio of the rod in the fused sphere representation
is approximately, (m − 1) if the separation between the sites
is equal to σ , the diameter of the sphere centered on each site.
In the more general case, the aspect ratio is, a � L(m − 1) for
m � 1.

The second virial coefficient of fused hard spheres has
been computed for L/σ = 0.5 and 1 (the so-called tangent
sphere case) for rods containing up to ten sites [29]. Values
of B2 for a wider range of L, as low as 0.05 and up to 2,
are reported here. The second virial coefficient values for
fused rods composed of sites that interact with the continuous
Weeks-Chandler-Andersen (WCA) potential [30] are also
presented here as a function of the m and L values used for the
hard-sphere site case. The purely repulsive WCA potential is,
φ(r) = 4ε[(σ/r)12 − (σ/r)6] + ε for r � 21/6σ , and φ(r) = 0
for r > 21/6σ , where r is the distance between the sites (the
potential and force are zero at r = 21/6σ ). Molecular dynamics
(MD) simulations have been used to calculate the equation of
state in the isotropic part of the phase diagram, to compare
with the virial coefficient expansion.

The percolation properties of the rods are also computed,
following from the pioneering study of Balberg [31]. Per-
colation, the formation of an infinite cluster, has previously
been studied extensively in relation to thermal and electrical
conductivity, and elastic or other mechanical transitions of
rods [32]. At the percolation threshold (the concentration
at which percolation first occurs) changes in certain phys-
ical properties can occur. Percolation can give rise to an
insulator-conductor transition [31], a change in the density
dependence of the viscosity of a suspension, or even perhaps
higher-order thermodynamic phase transitions [33]. Theory
and Monte Carlo simulation have been used to investigate
the percolation properties of nonspherical particles, such as
rods [34–36], overlapping ellipsoids [37,38], prisms [39],
and platelets [40]. These have been extended recently to the
percolation characteristics of monodisperse and polydisperse
rods [41,42], which have shown that the percolation threshold
exhibits an almost inverse dependence for aspect ratios even as
small as 2–3. This study investigates the percolation properties
of the WCA rod model outlined above.

In Sec. II the theory associated with the computed quantities
is summarized, and results discussed in Sec. III. Conclusions
are made in Sec. IV.

II. THEORY

A. Second virial coefficient

The ratio of the distance between the sites to the effective
diameter of the sphere centered on the site, L, can be used
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to control the smoothness of the rod, and for L � 1 and for
large enough m the rod represented by m interaction sites
approaches the spherocylinder limit [43] (in keeping with
previous literature, m is used for the number of sites in the
rod, and should not be confused with the mass). For L > 1
the effective spheres do not overlap and for L > 2 hard-sphere
rods can pass through the gaps between the spheres in a line
along the rod. The second virial coefficient, B2, for arbitrary
m and L is defined by the integral [44]

B2 = 1

2

(
1

4π

)2∫∫∫
{1− exp[−β�(R,	1,	2)]} dR d	1 d	2

= 1

8π

∫∫∫
{1 − exp[−β�(R,	12)]} dR d	12

= 1

8π

∫
sin θ dθ

∫
dφ

∫
dR {1 − exp[−β�(R,	12)]},

(1)

where R is the vector between the centers of mass of the
two rods, dR is the corresponding volume element, 	1 and
	2 are the solid angles defining the orientation of each
rod, and β = 1/kBT (kB is Boltzmann’s constant and T

is the temperature). The solid angle 	12 is made up of
the spherical polar coordinate system angles θ and φ. For
	12 = 	1 − 	2, the potential energy between two rods is
�(R,	12) = ∑

α

∑
γ φ(rαγ ), where α and γ are the site

indices on the two rods 1 and 2, respectively, and φ(r) is
the site-site pair potential. The spatial or R integration was
performed on a cartesian grid with R defined randomly within
each voxel to reduce any systematic bias in the integration
from the use of a grid. For the hard-sphere case, the term
1 − exp[−β�(R,	12)] is zero if none of the site-based spheres
overlaps with another from another rod, and is equal to unity
if any of the spheres making up the rod overlaps with a sphere
from another rod.

A Monte Carlo method was also used to compute B2 [45]

B2 = 1
2 〈1 − exp(−β�)〉/Vc, (2)

where 〈· · · 〉 denotes an average over a number of trial
insertions. One of the rods is fixed in space and orientation and
the other rod’s center of mass is inserted at a random position
and orientation [46] within the volume Vc, which is arbitrary
but must be large enough and shaped appropriately to include
all possible (nonzero) interactions between the sites of the two
rods in an arbitrary relative orientation. While convergence
with Eq. (2) is initially more rapid than Eq. (1), the first method
mentioned above ultimately gave a more precise result within a
reasonable computational time. As with previous studies of B2

of fused hard-sphere rods [29] the second virial coefficient is
expressed in reduced form, B∗

2 = B2/VR , where the volume of
the rod VR = πσ 3[1 + (m − 1)(3L/2 − L3/2)]/6 for L � 1
and VR = mπσ 3/6 for L > 1 [29]. In the WCA potential
case σ , used in VR , is the distance parameter in the potential
definition.

B. Molecular dynamics simulations

Molecular dynamics (MD) simulations were carried out on
linear rigid rods each composed of m evenly spaced WCA

interaction sites or beads along the length of the rod. There
are N rods in a cubic simulation cell of volume V and the
number density of rods is ρ = N/V . The purely repulsive
WCA potential was used between the sites on different rods to
incorporate excluded volume effects. The phase behavior of the
related short linear rigid LJ chain molecules of length m = 3
and 5 has been determined [47], although the absence of a
net attractive feature in the WCA potential excludes a critical
point or liquid region; so the phase behavior of the WCA
rods will be quite different to the LJ rods (perhaps apart from
the high-density nematic and smectic regions where excluded
volume effects will dominate). The effective hard-sphere
diameter, σHS of a WCA particle at T ∗ = kBT /ε is given by
the formula, σHS/σ = 21/6/(1 + √

T ∗)1/6 [48]. At the reduced
temperature used in the simulations, T ∗ = 1 (the asterisk
being omitted in subsequent discussion) then σHS = σ . The
fused tangent hard-sphere case has been studied extensively
for rigid rods composed of hard-sphere beads [29]. The
simultaneous translational and rotational equations of motion
were integrated using algorithms invented by Fincham [49–52]
in the 1980s. Simulations were carried out at constant energy
(NVE) and using velocity rescaling constant temperature
conditions [53] giving statistically the same values for the
properties reported. Production simulations were carried out
on 1000 rods, typically for 107 time steps of 0.001 reduced
time units.

The pressure tensor, P , was calculated using the molecular
definition [54]

PV =
N∑

i=1

p
i
p

i

mi

+ 1

2

N∑
i=1

N∑
j �=i

r ijF ij , (3)

where p
i

and mi are the momentum and mass of rod i. The
vectors, rij and F ij are for the relative position and force
respectively between the centers of mass of rods i and j . This
obviates the need to incorporate the implicit constraint force,
which would be needed if the atomic definition of the pressure
tensor were used [54]. For the case of rigid rods (indeed
any perfectly rigid structure representation of a molecule) the
molecular pressure tensor formula is the only independent
one, and there is no practical reason to use the atomic form of
the pressure tensor for rigid objects, which would require the
intrarod site-site forces to be determined. That bond constraints
need to be included in the atomistic description of the pressure
tensor was also noted in Refs. [55,56].

C. Percolation

As mentioned in the Introduction, when rods form an in-
finitely connected network (i.e., percolate), transitions in phys-
ical properties can occur in practical systems. Some aspects
of the percolation behavior of the WCA rods are computed
by MD simulation carried out in this study. The percolation
characteristics of spheres have been reported extensively in the
literature, which acts as a useful starting point on which to base
the percolation behavior of rods. The continuum or off-lattice
percolation of spheres of excluded volume diameter σ (hard
core) inside a permeable shell of diameter σp was considered
by Balberg and Binenbaum [57] and more recently in Ref. [58].
A particle is deemed to be part of a cluster if the distance from
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its center to at least one other particle already in the cluster
is less than or equal to σp. At low density the expressions
for permeable spheres are accurate [58]. If excluded volume
interactions are ignored between the rods and assuming
random relative orientations, the relationship between the
percolation distance and rod number density at percolation,
ρp can be expressed in terms of the average coordination
number per particle (historically referred to as Bc), in the
form Vaρp = 2.74, where Bc = 2.74. The available volume
for the presence of another molecule Va is Va = 4πσ 3

p/3 in
the large system size, ideal gas or perfectly permeable sphere
limit; therefore σp = (2.74 × 3/4πρp)1/3 = (0.654/ρp)1/3.

At higher densities where excluded volume interactions
become important there are deviations from this simple
limiting treatment, which are conveniently explored using MD
simulation. For spheres near the freezing transition the average
coordination number decreases to 1.5 (see, for example,
Ref. [58] and references quoted therein) as the sphere’s
excluded volume takes up more of the volume, which would
otherwise be available to the centers of other spheres, limiting
the average number it can be in contact with. Related but
inevitably more complicated considerations apply to rods at
high packing fraction.

The percolation threshold distance between sites on the rods
(rather than between the centers of mass) is also considered
here. This is perhaps a more useful percolation definition
for practical applications. It has been found previously for
spheres that the percolation thresholds are relatively insensitive
to system size (e.g., see Ref. [58]). Many system sizes are
required to determine the percolation exponents, but these are
not considered here. The percolation threshold is determined
in the molecular dynamics simulations by varying the value of
σp iteratively until on average 50% of the time steps exhibit
a percolation cluster. For a relatively small periodic system
the probability that a given time step exhibits a percolating
cluster p(ρ) has a point of inflection at a density which almost
coincides with the position of the step function transition for
a system of infinite size [59].

III. RESULTS AND DISCUSSION

Figure 1 shows the dependence of the (rod volume reduced)
second virial coefficient B∗

2 for fused hard spheres as a function
of rod length or m for nearest-neighbor separations within the
same rod in the range 0.05 � L � 2, where L is in units of σ ,
the site-sphere diameter. This data is summarized in Table I.
For L = 0.5 and 1 the values of B∗

2 in Table I agree within a
fraction of a percent with previous literature values [29]. The
reduced second virial coefficient can be seen to vary linearly
with m to a very good approximation, which is consistent with
the large m limit of the analytic formula given in Eq. (19) of
Refs. [60–62]. The numerical data is also consistent with a
B∗

2 value of 4 for m = 1, which is the analytic hard-sphere
result [63]. The slope of B∗

2 (m) increases with the reduced
bond length, L. The intercept (i.e., the m = 0 value of the
linear regression of the data in Fig. 1) and slopes are plotted as
a function of L in Fig. 2, with low-order polynomial fits to these
data (the continuous curves on the figure) given in the figure
caption. The fit formulas are given in the caption of Fig. 2.
In the limit of L → 0 and the aspect ratio, Le = L(m − 1)

b2
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FIG. 1. (Color online) B∗
2 of the fused hard sphere as a function of

the number of sites in the rod, m, for a range of site-site separations,
L. The solid lines are linear regressions fits, B∗

2 (L,m) = I2(L) +
S2(L)m, where I2(L) and S2(L) are given in the caption to Fig. 2. The
red line denoted by b2 on the figure is for L = 1 fused hard-sphere
rods using the formula of Williamson et al. [62]: B∗

2 = [(11m −
3) + 3.53390π (m − 1)2/4]/2m, which is based on mutual isotropic
averaging of the orientations of the rods. This is not distinguishable
from the linear fit line to the numerical data of this work, which is
shown in blue. The brown line is the B∗

2 spherocylinder formula given
in Eq. (4), and the large brown filled in circles (labeled SC) are from
numerical calculations of B∗

2 using L = 0.25 carried out in this work.
In this case, mL rather than m values are given along the abscissa,
taking m up to 40.

is a constant, that is, when the rod becomes smooth, it is
expected that the computed second virial coefficient will tend
to the spherocylinder limiting analytic form of Onsager, B2 =
π (2σ 3/3 + Leσ

2 + L2
eσ/4) [9,43]. Substituting the definition

of Le and dividing by the volume of the rod,

B∗
2 = 4 + 6(m − 1)L + 3(m − 1)2L2/2

1 + 3(m − 1)L/2
, (4)

which is the volume-reduced Onsager definition of the
second virial coefficient of hard spheres cast in terms of
the line-of-beads approximation used in this study. From
a practical point of view L should not be too small as a
computationally infeasible number m of beads would be
required to attain rods of reasonably large aspect ratio to test the
analytic expression adequately. A suitable compromise value
of L = 1/4 was used. In Fig. 1 a comparison is made between
B2 from Eq. (4) and numerical calculations of the second virial
coefficient using L = 1/4 and m up to 40 are seen to agree
very well. The line denoted by b2 on the figure is the fused
tangent hard-sphere formula of Williamson et al. [62]: B∗

2 =
[(11m − 3) + 3.53390π (m − 1)2/4]/2m, assuming that the
L = 1 rods are isotropically averaged. On Fig. 1, this curve
is indistinguishable from that fitted to the numerical values of
the reduced second virial coefficient computed in this study.

Figures 3 and 4, respectively, present the corresponding
quantities for the WCA rods, which show the same trends
with variation in the rod geometry parameters. For the same
m and L the WCA second virial coefficients are larger than
the hard-sphere ones. The percentage difference between the

042134-4



SECOND VIRIAL COEFFICIENT OF ROD-SHAPED . . . PHYSICAL REVIEW E 91, 042134 (2015)

TABLE I. Second virial coefficient B∗
2 of fused hard-sphere rods. The nearest-neighbor distance L is given along the top line. The number

of interaction sites in the rod, m, is given in the first column. The standard error is about 1 in the last digit.

m L: 0.05 0.10 0.25 0.50 0.75 0.90 1.0 1.25 1.50 1.75 2.0

2 4.00 4.01 4.07 4.32 4.75 5.12 5.44 6.27 7.01 7.54 7.78
3 4.01 4.04 4.24 4.77 5.60 6.27 6.84 8.44 9.86 11.04 11.59
4 4.03 4.09 4.44 5.27 6.46 7.44 8.26 10.52 12.68 14.36 15.16
5 4.05 4.15 4.64 5.76 7.31 8.57 9.60 12.59 15.38 17.61 18.46
6 4.07 4.22 4.87 6.28 8.19 9.73 11.01 14.64 18.17 20.95 22.26
7 4.09 4.29 5.09 6.82 9.09 10.94 12.47 16.79 21.10 24.52 25.86
8 4.12 4.37 5.33 7.34 9.96 12.05 13.80 18.79 23.72 27.63 29.51
9 4.15 4.44 5.57 7.87 10.84 13.23 15.20 20.83 26.45 30.92 33.25
10 4.18 4.52 5.80 8.39 11.72 14.39 16.62 22.98 29.27 34.32 36.76

two values is largest for the shortest aspect ratio rods. For
example, for m = 2 and L = 0.05, B∗

2 is 4.00 and 4.48, for the
hard-sphere and WCA rod types, respectively, and for m = 10
and L = 0.05, B∗

2 values are 4.18 and 4.78, respectively. For
m = 2 and L = 2.0, the B∗

2 is 7.78 and 8.17 and for m =
10 and L = 2.0, B∗

2 is 36.76 and 38.24, respectively. So for
the m and L range covered, as L → 0 there is about a 15%
difference, and for L = 2.0 this becomes approximately 5%.
That the second virial coefficient increases with softness for
these systems is consistent with the behavior of soft sphere or
∼r−n particles, where B2(n) = 4(1 − 3/n) > B2(HS) = 4.
One might expect that as the rods become longer the exact
details of the excluded volume term (i.e., whether hard sphere
or soft sphere, for not too small n) should be less significant (as
is found). This is because the configurations where the axes of
two rods are near perpendicular (and therefore site-site contact
is minimal) will dominate the excluded volume and hence the
value of B2.

In the definition of B∗
2 , both the numerator and denominator

depend on L, which obscures the L dependence of B2 itself,
and therefore a comparison between the density dependence

intercept
slope

Fused Hard SphereFused Hard Sphere

L

21.81.61.41.210.80.60.40.20

4

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 2. (Color online) The slopes and intercepts from Fig. 1
as a function L, and their parameterized fits. For the slopes,
S2 = a + bL + cL2 + dL3 + eL4, where a = 0.0, b = 0.965982,
c = −0.750771, d = 1.803303, and e = −0.608734. For the inter-
cepts (i.e., at m = 0), I2 = A + BL + CL2 + DL3 + EL4, where,
A = 4.0, B = −2.340471, C = 2.980322, D = −2.692036, and
E = 0.679671.

of the pressure from MD and the second virial coefficient
is of interest. The virial expansion of the compressibility
factor Z = P/ρkBT = ∑

i=1 biρ
i−1, where b1 = 1 is a natural

basis to represent the thermodynamic properties of the rod
systems [29]. The configurational or interaction part of the
pressure is therefore Pc = kBT b2ρ

2 + . . ., which can also
be computed directly in the simulations from the molecular
definition of the pressure tensor given in Eq. (3), using P =
(Pxx + Pyy + Pzz)/3 and Pc = P − ρkBT . Figure 5 presents
Pc as a function of the number density of rods ρ for
m = 2,4, and 8. The vertical arrows indicate the dilute to
semidilute transition rod number density ρ∗. The lines are
the corresponding equation of state from the second virial
coefficient (the appropriate L = 1 data from Table II are
used). The figure shows that the MD values for Pc at low
ρ agree well with the B2 prediction computed independently.
The directly computed pressure eventually exceeds the B2

prediction, indicating the increasing relative importance of
three rod or b3 and higher-order terms. This is at densities
somewhat higher than the ρ∗ = 1/m3 value, which indicates
that the second virial coefficient term is a good representation
of the equation of state even in the semidilute region.

Figure 6 shows the projection of the rod end-to-end
lines on one of the faces of the MD cell m = 8 close
to ρ∗. The rods are instantaneously clearly not uniformly
distributed but tend to cluster together in bundles, even in
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FIG. 3. (Color online) As for Fig. 1 except that the WCA rods are
considered. The WCA system is considered for this and all subsequent
figures.
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intercept
slope

Fused WCA Sphere
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1.5

1

0.5

0

FIG. 4. (Color online) As for Fig. 2, except the WCA rods
are considered. For the slopes the parameters are, a = 0.0, b =
1.083934, c = −1.026035, d = 2.035387, and e = −0.661250. For
the intercepts the parameters are, a = 4.654921, b = −4.999508,
c = 7.504303, d = −5.674569, and e = 1.340088.

the absence of attractions. Despite the volume fraction being
very low, reorientational hindrances can therefore cause the
centers of mass to congregate into clusters, and therefore the
isotropic phase is not instantaneously translationally uniform
in certain regions. Locally in space and time the rods can
be orientationally ordered. These are presumably temporary
associations, and their effects on the equation of state after
time averaging, are minimal however, as evident in Fig. 5.
The cluster aggregation observed in Fig. 6 closely resembles
the early stage formation of a percolative network, typical
of a hydrogel (a precursor to the production of an aerogel).
It is also indicative of the assembly of cellulose nanofibrils
typically reported in the primary wall of a xylem cell found in
woody plants [64].

The single rod orientational velocity C1(t) = 〈e(0).e(t)〉
and angular velocity Cω(t) = 〈ė(0).ė(t)〉 autocorrelation func-
tions were computed, where e is the unit vector along the
rod and t is time (〈· · · 〉 represents a molecule, time origin,
and time average) [65]. Figure 7 shows these two functions in
normalized form for two rod number densities of 1/m3 (the
dilute-to-semidilute transition) and 1/m2 (the semidilute-to-
concentrated transition) for m = 8. Time is in units of the free
rotator reorientational time τr = (I/kBT )1/2, where I is the

8
4
2

8 4 2

configurational part of the pressure

ρ

P
c

110−110−210−310−4

102

10

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7

FIG. 5. (Color online) The configurational or interaction part of
the pressure, Pc, as a function of the number density of rods, ρ, for
m = 2,4, and 8, obtained by MD simulation are shown as symbols.
The intersite separation in the rod is L = 1. The vertical arrows
indicate the ρ∗ for each type of rod, and from right to left going
through m = 2,4, and 8. The lines are calculated from the equation
of state up to the second virial coefficient term.

moment of inertia of the rod. The negative or recoil regions
for both functions at t∼2τr indicate that there is a gradual
increase with density of the extent of entanglement of the
rods. The direction changes more slowly than the angular
rotational velocity, all more or less on a time scale slightly
larger than τr [65]. This translational-rotational coupling is
a subject that has been investigated by molecular dynamics
simulation before (e.g., see Ref. [66]).

Can the equation of state of the isotropic phase be
represented by an alternative formulation that is potentially
more closely related to the geometry and smoothness of the
rod? Figure 8 shows that the configurational part of the pressure
Pc scales quite well with ∼m1.6. There is a reasonably good
collapse of the Pc data for m = 2,4, and 8 for an extensive
density range, well above the dilute to semidilute crossover
value (ρ∗). This might suggest that at low densities certain
geometrical arrangements of the two rods (such as where
the rods are essentially perpendicular) dominate the excluded
volume, and hence B2. In fact, Rickayzen and coworkers, [67]
developed simple models for liquid crystals based on a set of

TABLE II. As for Table I except that the second virial coefficient B∗
2 of fused WCA rods are given.

m L: 0.05 0.10 0.25 0.50 0.75 0.90 1.0 1.25 1.50 1.75 2.0

2 4.48 4.37 4.33 4.53 4.95 5.34 5.66 6.54 7.31 7.891 8.17
3 4.55 4.44 4.50 4.99 5.80 6.48 7.07 8.71 10.17 11.35 12.01
4 4.59 4.50 4.73 5.51 6.69 7.67 8.51 10.84 13.06 14.83 15.77
5 4.61 4.57 4.94 6.01 7.57 8.85 9.94 13.04 16.02 18.34 19.68
6 4.65 4.65 5.17 6.53 8.44 10.00 11.32 15.10 18.79 21.81 23.43
7 4.69 4.74 5.42 7.08 9.35 11.21 12.76 17.19 21.66 25.27 27.08
8 4.72 4.82 5.67 7.61 10.27 12.41 14.20 19.32 24.43 28.62 30.87
9 4.75 4.91 5.92 8.15 11.17 13.60 15.64 21.42 27.41 32.34 34.73
10 4.78 5.00 6.18 8.70 12.03 14.73 16.99 23.52 30.00 35.35 38.24
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FIG. 6. (Color online) Projection of the rod end-to-end lines on
one of the faces of the MD cell for a rod parameter, m = 8 and
ρ = 0.002 � ρ∗. The intersite separation in the rod is L = 1.

a few dominant relative orientations of the long molecules, an
approximation, which may therefore be useful in describing
the isotropic phase. Figure 9 shows the potential energy per
site, us , which also shows good scaling with respect to a
fractional power of m, in this case as m1.45. Figures 10
and 11 show the corresponding mean square force, and torque
on a rod, respectively, scaled by powers of m to collapse
the different rod length data onto a single curve, to a good
approximation at low density.

Figure 12 presents the atom-atom (AA) and center of mass
(COM) to center of mass (RR) radial distribution functions
g(r) for m = 8 rods at two values of ρ. Two ρ values are
considered, ρ = 0.013 in the bottom frame, and 0.063 in
the top frame. For this m the crossover density ρ∗ = 0.0019.

1/m2
1/m3

1/m3

1/m2

1/m3

1/m2

e

de/dt

1/m3

1/m2

1/m3

1/m2

e

de/dt

t/τr

1001010.10.01

2.5

2

1.5

1

0.5

0

-0.5

FIG. 7. (Color online) Single rod orientational, C1(t) =
〈e(0).e(t)〉 and angular velocity Cω(t) = 〈ė(0).ė(t)〉 autocorrelation
functions are shown for two rod number densities, 1/m3

(dilute-to-semidilute) and 1/m2 (semidilute-to-concentrated
transition), where m = 8. Time is in units of the free rotator
reorientational time τr . The rod number densities, ρ = ρ∗ = 1/m3

and 1/m2. Cω is shifted upwards by 1.2 to enable the two functions
to be distinguished.
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P
c
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FIG. 8. (Color online) Pc/m1.6, where Pc is the configurational or
interaction part of the pressure, as a function of the number density of
rods, ρ for m = 2,4, and 8. The vertical arrows indicate the crossover
density ρ∗ for each type of rod.

The two states are therefore 7 and 33 times larger than ρ∗ (the
latter is just below the estimated isotropic-nematic transition of
ρIN � m−2 = 0.016). At the lower density both types of g(r)
ascend quite slowly on the length scale of the rod. At the higher
density site-site excluded volume interactions dominate, as
both g(r) superimpose for the smaller r part of the first peak,
indicating significant alignment of the rods.

Figure 13 shows the percolation distance, σp, between
the centers of mass of rods as a function of ρ for L = 1,
computed in the MD simulations, as the symbols on the
graph. The solid line A on the figure is the low-density
permeable sphere approximation (PSA) σp = (0.654/ρ)1/3.
The continuous line labeled B on the figure includes more
exact excluded volume corrections using the semiempirical
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FIG. 9. (Color online) As for Fig. 8 except that the potential
energy per bead, ub/m1.45 is shown as a function of the number
density of rods, ρ for m = 2,4, and 8. The vertical arrows indicate ρ∗

for each type of rod.
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FIG. 10. (Color online) As for Fig. 9 except the mean square
force on the center of mass, F 2 is plotted divided by m3/2.

formula in Eq. (9) substituted in Eq. (6) for σp given in
Ref. [58]. The center-of-mass percolation data presented in
the figure is mainly for 1000 rods. Some points for 216 rods,
also given on the figure, are seen to be indistinguishable from
the N = 1000 data.

This curve only departs from the low-density hard-sphere
approximation in the bottom right-hand corner of the figure
for rod number densities in excess of about 0.1. The figure
demonstrates that PSA accounts very well for the percolation
distance between the COM of the rods far into the semidilute
regime. This excellent agreement, better than might reasonably
have been expected, indicates the averaging out of orientational
correlation effects between different rods, while the centers of
mass points conform to a dilute gas statistical distribution. This
approximation is at the center of other mean-field theories of
randomly assembled rod assemblies [5].

Figure 14 presents the corresponding atom-atom percola-
tion distance σp versus ρm. The σp data for the three rod
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Mean square torque
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Mean square torque
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110−110−210−310−410−5
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FIG. 11. (Color online) As for Fig. 10 except the mean square
torque on each rod, 〈T 2

q 〉/m4 is plotted.
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0

FIG. 12. (Color online) Radial distribution function, g(r), be-
tween the beads or atoms along the m = 8 rod (AA), neglecting
the intramolecular terms, and between the centers of mass of the rods
(RR). Two ρ values are considered; bottom frame ρ = 0.013 and
top frame, ρ = 0.063, where ρ∗ ≡ m−3 = 0.00195. The g(r) for the
higher density are shifted upwards by 1 for clarity.

lengths collapse reasonably well onto a single curve, at least at
high density, better using the number density of sites (i.e., ρm)
rather than that of the rods. This is perhaps not unexpected as

D
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8 B
4 B
2 B
8 A
4 A
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1

percolation distance

8 4 2

COM-COM

percolation distance

8 4 2
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percolation distance
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ρ
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FIG. 13. (Color online) The percolation distance between the
centers of mass of rods containing two, four, and eight sites plotted
as a function of ρ. Most of the points are for N = 1000 rods (A)
and a few (the larger symbols) are for N = 216 (B). Key: The solid
line, C, on the figure is the low-density approximation, which gives,
σp/σ = (0.654/ρp)1/3, where ρp is the number density of rods or
percolation threshold for the connectivity distance, σp , and line,
D, is a development of A, including excluded volume corrections
as described in Ref. [58]. The formula in Eq. (9) in that work is
substituted in Eq. (6) of the same work, using the definition for the
permeable sphere packing fraction, ζ ≡ πρp/6. The vertical arrows
on the figure indicate ρ∗ for the three m values. Note the log-log
scale.
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FIG. 14. (Color online) The percolation distance between the
atoms of rods containing two, four, and eight sites plotted as a function
of the site number density mρ. The vertical arrows indicate the ρ∗.

the dominant length scale in this rod density regime will be the
intersite distance rather than the length of the rod (analogous
to some extent with the importance for some properties of
the distance between entanglements rather than the polymer
chain length in polymer melts). There is convergence of the
atom-atom σp towards unity in the high-density excluded
volume dominated limit, which can be lower than σ because of
the softness of the WCA potential. At low average site number
density ρm, the percolation distance is larger for the longer
rods because the distribution of sites is less uniform in space
when parcelled into compact units of m.

IV. CONCLUSIONS

To summarize, a number of gaps in the existing literature
of fused sphere rods are filled in the present study. A
wider range of bond lengths is considered than in previous
studies, for rods containing up to ten interaction sites. Hard
sphere and soft fused sphere rods, in the form of the
Weeks-Chandler-Andersen (WCA) continuous interaction are
explored and compared. The second virial coefficients in rod

volume reduced form B∗
2 as a function of the number sites

in the rod m and bond length L are calculated and fitted to
simple polynomial expressions. The differences (in percentage
terms) in the B∗

2 values between the two potential forms
are most pronounced for small L and m, with the WCA
quantity being always larger. The second virial coefficient
in the WCA case is a good representation of the equation
of state well into the semidilute regime. The appearance
of deviations from this behavior might serve as a more
physically meaningful crossover density into a domain in
which three-body interactions and caging effects make a
significant contribution to the physical properties. This is
below the isotropic-nematic transition density. The percolation
distance between the centers of mass of the rods was found
to follow the permeable sphere mean-field model well into
the semidilute regime. This indicates that for this static
property at least, the orientational degrees of freedom couple
weakly to the translational ones in the isotropic region of
the phase diagram. As a more theoretically transparent and
computationally efficient model in future studies there may be
advantages in adopting a single site pair potential between the
rods, e.g., as for square well rods [68].

As stated at the outset, this work represents a first step
in a program to consider the phase behavior of rod-shaped
macromolecules in suspension. A considerable amount of
additional work is needed to support our understanding of
the more complex isotropic-nematic transition. This will
require the inclusion of an extended range of variables into
simulations such as higher rod number density ranges, ionic
concentration of the suspending media, and charge density
and its distribution on a rod. Such a program will need to
go hand in hand with experimental work to fine tune and
validate the models. The objective is to fill important gaps
in our understanding of empirically observed phenomena at
the nanometer scale, offering new insights into the conditions
required to manipulate and control the assembly of rod-shaped
macromolecules used in the manufacture of materials. It is
hoped that it may also offer new insights into the mechanisms
used by plants to control cellulose nanofiber assembly to create
the diverse array of structures observed.
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