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Unified trade-off optimization for general heat devices with nonisothermal processes
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An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators
with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium
has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat,
the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible
Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific
heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the
efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore,
when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition,
the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed.
This paper may provide practical insight for designing and operating actual heat engines and refrigerators.
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I. INTRODUCTION

Conditioned on energy saving and fuel depletion, the
optimization of real thermodynamic cycles has attracted rising
attention. In classical thermodynamics, Carnot efficiency
ηC and Carnot coefficient of performance (COP) εC have
defined the maximum energy conversion rates for heat engines
and refrigerators operating between two heat reservoirs [1].
However, the realization of ηC and εC leads to vanishing
power extracted for heat engines and zero cooling load rate
for refrigerators, since they are reached only in reversible
cycles where all the processes are quasistatic and the cycle time
durations are infinite. The ideal Carnot cycles must be speeded
up to meet the actual demand. Finite time thermodynamic
analysis has provided a new way for optimizing actual heat
devices [2].

By considering finite time durations of the heat transfer
processes between the heat reservoirs and working fluid,
Curzon and Ahlborn (CA) [3] proposed the concept of an
endoreversible Carnot heat engine, and deduced its efficiency
at maximum power (MP) output. That is the groundbreaking
CA efficiency ηc = 1 − √

Tc/Th, where Th and Tc are the
temperatures of the hot and cold reservoirs, respectively. Based
on the CA model, by allowing for different heat transfer laws
between the working medium and the heat reservoirs and
the internal dissipations, many revisions have been made to
describe the real-life heat engines more accurately, and some
good results at the maximum power output criterion have
been obtained [4–10]. Furthermore, in view of the entropy
generation in isothermal processes, which are treated as the
inversed functions of process duration, Esposito et al. [11]
proposed the low-dissipation model, and obtained the lower
and upper bounds of efficiency at MP criterion under asym-
metric dissipation limits. Later research has been dedicated to
the efficiency and bounds of the low-dissipation heat engines
at MP criterion [12–14]. Besides, the efficiency of linear
irreversible heat engines described by the Onsager relations
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and the extended Onsager relations at MP criterion has been
also studied [15–17].

However, for refrigerators, the minimum power input is
not an appropriate optimization criterion [18], and much
research has been focused on selecting figures of merit for
optimizing refrigerators. By maximizing the per-unit-time
COP, Velasco et al. [19] obtained the upper bound of COP,
εCA = √

εC + 1 − 1, i.e., the CA coefficient of performance,
for endoreversible refrigerators with εC = Tc/(Th − Tc) being
the Carnot COP. Furthermore, under the maximum cooling
power criterion, Apertet et al. [20] studied the endoreversible
and exoreversible refrigerators and claimed that the real-life
working conditions of the refrigerators do not correspond
to a maximum cooling power but rather to a trade-off
between cooling power and cooling efficiency. In addition,
Yan and Chen [21] conducted the optimization with the
objective function εQ̇c where Q̇c is the cooling load rate
of the refrigerators. To go a step further, de Tomas et al.
[22] introduced the unified optimization criterion χ both for
heat engines and refrigerators. By taking χ as the objective
function, based on the low-dissipation model, Wang et al. [18]
proposed that the COP at maximum χ was bounded between
0 and (

√
9 + 8εC − 3)/2. Besides, through the minimally

nonlinear irreversible refrigerator model, Izumida et al. [23]
also obtained the same bounds as those in Ref. [18] under the
tight coupling condition. In addition, Allahverdyan et al. [24]
also investigated quantum refrigerators and obtained some new
bounds of COP under the χ figure of merit. Furthermore, by
considering different heat conductance in the heat exchanging
processes, the COP under the χ figure of merit is still the CA
coefficient of performance [25].

Actual heat engines or refrigerators may not work at their
maximum power output or maximum cooling load rate, but
might work under a compromise between energy benefits and
losses. Hernández et al. [26] proposed a new figure of merit
�, accounting for both the energy benefits and losses. Based
on the � criterion, de Tomas et al. [27] and Long et al. [28]
obtained the COP of refrigerators through the low-dissipation
model and the minimally nonlinear irreversible model. The
COP of low-dissipation refrigerators with irreversibility in
the adiabatic processes was also considered by Hu et al.

1539-3755/2015/91(4)/042127(8) 042127-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.042127


RUI LONG AND WEI LIU PHYSICAL REVIEW E 91, 042127 (2015)

[29] under the � criterion. In addition, by comparing the
bounds and efficiencies of heat engines described by different
models under the EMP criterion and � criterion, Sánchez-
Salas et al. [30] showed the maximum � regime was more
efficient. Furthermore, Apertet et al. [20] declared that the real
refrigerators do not operate under the maximum cooling power
condition but under the trade-off between the cooling power
and the COP.

The main merit of the low-dissipation models and the linear
irreversible and minimally nonlinear irreversible models is
that we do not need to consider the heat transfer law between
the working medium and the heat reservoirs. However, in the
low-dissipation model, the temperature of the working medium
does not change during heat transferring processes. This
model is meant for something microscopic (e.g., a quantum
dot) and in simultaneous contact with both reservoirs. It is
not applicable for a macroscopic system such as the Diesel
cycle, Brayton cycle, Otto cycle, and Atkinson cycle. In the
linear irreversible model, the temperature difference of the hot
and cold reservoirs should be small enough to meet the
requirement of the Onsager relations. For actual heat devices,
in the heat exchanging processes, the temperatures of the
working medium should change continuously to reach the
highest or the lowest temperatures. That is to say, the heat
exchanging processes should not be treated as isothermal.
In this paper, we extend the model proposed in Ref. [31]
to describe both the heat engines and refrigerators. This
model accounts for the temperature changes of the working
substance in heat exchanging processes. Therefore it is more
general and realistic. In Sec. II, we first introduce the general
mathematical model with nonisothermal processes, and then
systemically discuss the efficiency and COP for heat engines
and refrigerators under the figure of merit � in Secs. III and IV,
respectively. The general alternative upper and lower bounds
of the efficiency and COP have been proposed. Under the
situations where the specific heat stays constant during the
cycle, the bounds of the efficiency and COP are found to
be the same as those obtained through the endoreversible
Carnot ones. However, they are independent of the cycle
time durations. In addition, the efficiency and COP bounds
of different kinds of heat engines and refrigerators have also
been analyzed. Finally some concluding remarks are given.

II. GENERAL MATHEMATICAL MODEL

For heat devices, a certain amount of heat Qi is absorbed
from the heat reservoir (Ti), and then Qj is evacuated to the
heat reservoir (Tj ) at the end of a cycle. In this paper, the heat
transfer law between the heat source and the working medium
is assumed to conform to Newton’s law of cooling:

dQ

dt
= cm

dT

dt
= k(Ts − T ), (1)

where c is the specific heat, m is the working substance
mass, T is the working substance temperature, Ts is heat
source temperature, and k is the heat conductance. In the
following analysis, we let i and j represent the heat absorbing
and releasing processes, respectively. In the heat absorbing
process, Ts = Ti . While in the heat releasing process, Ts = Tj .
According to Eq. (1), the working substance temperature (Tiw)

in the heat absorbing process is a function of time t :

Tiw(t) = Ti + (Ti0 − Ti)e
−t/�i , (2)

where �i = cim/ki , which reflects the temperature increase
degree of the working medium in the time absorbing process
and has the dimension of time. ci and ki represent the constant
specific heat of the working fluid and the heat conductance
between the heat reservoir and the working fluid in the heat
absorbing processes, respectively. Ti0 is the initial temperature
of the working fluid in the heat absorbing process. The time
duration is denoted as τi ; thereby the heat absorbed from the
hot reservoir can be calculated as

Qi =
∫ τi

0
ki(Ti − Tiw)dt = cim(Ti − Ti0)(1 − e−τi/�i ). (3)

The relative entropy change of the working substance in the
heat absorbing process is given by

�si =
∫ τi

0

dQi

T
= cim ln

Ti + (Ti0 − Ti)e−τi/�i

Ti0
. (4)

Similarly, the heat evacuated and the entropy change during
the heat releasing process are given by

Qj =
∫ τj

0
kj (Tj − Tjw)dt = cjm(Tj − Tj0)(1 − e−τj /�j ),

(5)

�sj =
∫ τj

0

dQj

T
= cjm ln

Tj − (Tj − Tj0)e−τj /�j

Tj0
, (6)

where �j = cjm/kj , which reflects the temperature increase
degree of the working medium in the time releasing process
and has the dimension of time. cj and kj represent the constant
specific heat of the working fluid and the heat conductance
between the heat reservoir and the working fluid in the heat re-
leasing processes, respectively. Generally, the values of ci and
cj are not the same. Tj0 is the initial temperature of the working
fluid in the heat releasing process. τj is the time duration
of that process. In this paper, we assume that the compressing
and expanding processes are isentropic and the time for
completing those processes is zero. After a cycle, the working
substance returns to its initial state, and the total entropy
change of the working substance should be zero, i.e., �si +
�sj = 0. According to Eqs. (4) and (6), we have[

Tj − (Tj − Tj0)e−τj /�j

Tj0

]cj
[
Ti + (Ti0 − Ti)e−τi/�i

Ti0

]ci

= 1.

(7)

According to Eq. (7), we can we can get the relation of Ti0

and Tj0, so there is only one unknown parameter, provided
the duration of each heat exchanging process is prescribed. As
to heat engines, Ti > Tj . The system absorbs heat from the
hot reservoir, and then releases an amount of heat to the cold
reservoir. The ratio of heat capacities of the working medium
with higher and lower temperatures is γ = ci/cj . And the
efficiency is

η = 1 + Qj

Qi

. (8)
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For refrigerators, Ti < Tj . The system absorbs heat from
the cold reservoir, and then releases some amount of heat to
the hot reservoir. The ratio of heat capacities of the working
medium with higher and lower temperatures is γ = cj /ci , and
the COP (ε) is

ε = Qi

−Qi − Qj

. (9)

III. HEAT ENGINES AND THE � CRITERION

For heat engines, the � criterion is defined as � =
(2η − ηC)Qi [26]. It represents a compromise between energy
benefits and losses for a specific job. This criterion is easy
to implement for any energy converter (either isothermal
or nonisothermal), without the requirement of the explicit
evaluation of the entropy generation and it is independent
of environmental parameters. Then, the objective function
�̇ = (2η − ηC)Q̇i can be expressed as

�̇ = (2 − ηC)Qi + 2Qj

τi + τj

. (10)

In the following analysis of heat engines, to make it more
understandable, we replace the subscripts i and j with h and
c, respectively. In general, the efficiency at the maximum �

criterion can be derived by using Eqs. (8) and maximizing
Eq. (10) with respect to Tc0. In the following, we will
study systematically the efficiency at the maximum trade-off
criterion.

A. Equal heat capacities (γ = 1)

Under the situations where the heat conductance keeps
constant in the cycle, γ = 1. The maximizing equation (10)
with respect to Tc0 yields{

(1 − e−τh/�h )ϕ

1 − e−τh/�h [(1 − e−τc/�c )ϕ + e−τc/�c )]

}2

= 2
(1 − ηC)

(2 − ηC)
,

(11)

where ϕ = Tc/Tc0. The efficiency can be rewritten as

η = 1 − 1 − e−τh/�h [(1 − e−τc/�c )ϕ + e−τc/�c ]

(1 − e−τh/�h )ϕ
(1 − ηC).

(12)

The solution of Eq. (11) gives the optimal ϕ; then substitute
it into Eq. (12), as

ηs
� = 1 −

√
(1 − ηC)(2 − ηC)

2

= 3

4
ηC + 1

32
η2

C + 3

128
η3

C + O
(
η4

C

)
. (13)

It is the same as that obtained through the endoreversible
Carnot model [26]. However, they have different physical
meanings and the optimization spaces are different. In the
endoreversible Carnot model, the efficiency under the �

criterion is obtained with respect to the time durations of the
heat absorbing and releasing processes, while in this model,
it is obtained by maximizing the � function with respect to
the initial temperature of the working medium, and the time
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FIG. 1. (Color online) The T -S diagram of an optimal heat
engine cycle where γ = 0.5,1,2, Th = 600 K, Tc = 300 K, τh/�h =
τc/�c = 1, and ccm = 10 J/K.

durations are treated as constants. Unlike the endoreversible
Carnot heat engines, in this model the temperature of the
working medium in either heat exchanging process does not
keep constant (see Fig. 1 for γ = 1). Therefore it should be
more practical and realistic.

B. Nonequal heat capacities (γ �= 1)

We define τ/� (τh/�h and τc/�c) as the dimensionless
contact time, connoting the equilibrium degree of the temper-
ature between the working medium and heat reservoir. Larger
τ/� means the working medium makes contact longer with
the heat reservoirs, and will lead to higher final temperature in
the heat absorbing process and a lower one in the heat releasing
process. Generally, under the conditions where γ �= 1, Eq. (7)
is transcendental and cannot be solved explicitly. Numerical
calculations are conducted to investigate the impacts of the
parameters on the optimal efficiencies. The T -S diagrams of
the heat engine cycles for different γ are plotted in Fig. 1,
which shows that the value of γ has significant impacts
on the configuration of heat engine cycles. As depicted in
Figs. 2–4, when γ < 1, the optimal efficiency will increase
with increasing τ/� and will achieve its maximum value when
τ/� → ∞. The lower bound is achieved when τ/� → 0,
and is equal to ηs

�, and is independent of the specific heat
ratio. When γ > 1, the optimal efficiency will decrease with
increasing τ/�, and will obtain its minimum value when
τ/� → ∞. The upper bound is achieved when τ/� → 0,
and is equal to ηs

� and is also independent of the specific heat
ratio.

Therefore in the heat engine cycles such as the Diesel
cycle (ch = cp, cc = cv), Brayton cycle (ch = cv = cp), and
Otto cycle (ch = cc = cv),where the specific heat in the heat
absorbing process is not less than that in the heat releasing
process, the upper bound of the efficiency under the � figure
of merit is ηs

�, while in the cycles such as the Atkinson
cycle (ch = cv , cc = cp), where the specific heat in the heat
absorbing process is less than that in the heat releasing process,
ηs

� is the lower bound.
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FIG. 2. (Color online) Optimal efficiencies with dimensionless
contact times in the heat releasing process under different specific
heat ratios (γ = 0.1,0.5,1,5,10), where ηC = 0.5 and τh/�h = 1.

Furthermore, the general upper and lower bounds of the
optimal efficiency can be obtained in the situations where
τ/� → ∞, by applying the asymmetric specific heat limits,
γ → 0 and γ → ∞, respectively. In the following, the
efficiency under the � figure of merit in asymmetric contact
time limits (τ/� → 0) is studied analytically.

Short dimensionless contact time limit; When τ/� → 0,
the heat exchanging processes are so short that the final
temperature of the working substance is almost equal to its
initial temperature after either process. Expanding exp(−τ/�)
to the first order of τ/� and maximizing Eq. (10) with respect
to Tc0, we have

(
ϕ

1 + (1−ϕ)τc/�c

γ τh/�h

)2

= 2
(1 − ηC)

(2 − ηC)
, (14)
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FIG. 3. (Color online) Optimal efficiency with dimensionless
contact times in the heat absorbing process under different specific
heat ratios (γ = 0.1,0.5,1,5,10), where ηC = 0.5 and τc/�c = 1.
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FIG. 4. (Color online) Optimal efficiency with different specific
heat ratios where ηC = 0.5 and τc/�c = τh/�h = 1.

and the efficiency can be written as

η = 1 −
1 + (1−ϕ)τc/�c

γ τh/�h

ϕ
(1 − ηC). (15)

Combining Eqs. (14) and (15), we have the same expression
as Eq. (13). It is independent of the specific heat ratio, which
is in accord with the above analysis. Under the short contact
time limit, the heat absorbing and releasing processes are
nearly isothermal. The specific heats have no impact on the
temperature changes during the heat exchanging processes.
Thereby, the endoreversible Carnot model is recovered, as
shown in Fig. 5(a).

Long dimensionless contact time limit: Under the con-
ditions where τ/� → ∞, the contact time is long enough
that heat exchange between the working substance and heat
reservoirs is sufficient and the final temperature of the working
substance is almost equal to that of the heat reservoir
[see Fig. 5(b)]. The exponential terms exp(−τ/�) can be
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FIG. 5. (Color online) The T -S diagrams of two optimal heat
engine cycles under asymmetric contact time limits: τh/�h =
τc/�c = 0.01 (a); τh/�h = τc/�c = 4 (b), where γ = 0.5, Th =
600 K, Tc = 300 K, τh/�h = τc/�c = 1, and ccm = 10 J/K.
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eliminated; therefore maximizing Eq. (10) with respect to Tc0,
we have

ϕ1/γ+1 = 2
(1 − ηC)

(2 − ηC)
, (16)

and the efficiency can be written as

η = 1 − (1 − ϕ)

γ (ϕ − ϕ1/γ+1)
(1 − ηC). (17)

Combining Eqs. (16) and (17), we have

η� = 1 − 1 − [2(1 − ηC)/(2 − ηC)]
γ

γ+1

γ
{
[22(1 − ηC)/(2 − ηC)]

γ

γ+1 − 22(1 − ηC)/(2 − ηC)
} (1 − ηC). (18)

As mentioned above, the general upper and lower bounds
of the optimal efficiency can be obtained by applying the
asymmetric limits γ → 0 and γ → ∞, so we have

η+
� = 1 +

(2 − ηC)(1 − ηC) ln
( 2−2ηC

2−ηC

)
ηC

= 3

4
ηC + 1

24
η2

C + 1

32
η3

C + O
(
η4

C

)
, (19)

η−
� = 1 + ηC

2 ln
( 2−2ηC

2−ηC

) = 3

4
ηC + 1

48
η2

C + 1

64
η3

C + O
(
η4

C

)
.

(20)

According to above equations, ηs
� ≈ (η+

� + η−
�)/2. In ad-

dition, the lower bound obtained through the low-dissipation
model [27] is ηLD−

� = 3ηC/4, and the upper bound is given by

ηLD+
� = 3 − 2ηC

4 − 3ηC

ηC = 3

4
ηC + 1

16
η2

C + 3

64
η3

C + O
(
η4

C

)
.

(21)

Besides, the efficiencies under the same criterion for the
stochastic heat engine cycle model and the nanothermoelectric
engine mode [32] are

ηSS
� = 3

4
ηC + 1

32
η2

C + 1

64
η3

C + O
(
η4

C

)
(22)

and

η�
ELB = 3

4
ηC + 1

32
η2

C + 19 + csch2(a0/2)

768
η3

C + O
(
η4

C

)
,

(23)

where a0 is the root of the transcendental equation a0 =
2 coth(a0/2) at the first order.

It is clear all the efficiencies under the trade-off criterion
are coincident in the coefficients 3/4 of the linear term and
model-dependent differences appears at second and higher
terms. Furthermore, this coincidence also exists in the low-
dissipation and minimally nonlinear irreversible models under
the symmetric situations [27,28].

IV. REFRIGERATORS AND THE � CRITERION

For refrigerators, the � criterion is defined as � = (2ε −
εmax)W in Ref. [26]. Then, the objective function �̇ = (2ε −
εmax)Ẇ can be expressed as

�̇ = (2 + εC)Qi + εCQj

τi + τj

. (24)

In the following analysis of refrigerators, to make it more
understandable, we replace the subscripts i and j with c and
h, respectively. Generally, the COP under the maximum �

criterion can be derived by Eq. (9) and by maximizing Eq. (24)
with respect to Tc0,which will be discussed in the following
sections.

A. Equal heat capacities (γ = 1)

Under the situations where the heat conductance keeps
constant in the cycle, γ = 1. By maximizing Eq. (24) with
respect to Tc0, we have

[(1 − e−τh/�h )ϕ]2

{1 − e−τh/�h [(1 − e−τc/�c )ϕ + e−τc/�c ]}2 = εC + 2

εC + 1
, (25)

and the COP can be written as

ε = 1
εC+1
εC

(1−e−τh/�h )ϕ
1−e−τh�h [(1−e−τc/�c )ϕ+e−τc/�c ] − 1

. (26)

The solution of Eq. (25) gives the optimal ϕ; then substitute
it into Eq. (26) as

εs
� = εC√

(1 + εC)(2 + εC) − εC

= 2

3

1
1
εC

− 1
12ε2

C

+ 1
8ε3

C

+O
(
1/ε4

C

) . (27)

It is the same as that obtained through the endoreversible
Carnot model [26]. Although for those two models the upper
bounds of the COP are the same, they have different physical
meanings and the optimization spaces are different. In the
endoreversible model, the upper bound of the COP is obtained
by maximizing � with respect to the time durations of the heat
absorbing and releasing processes, respectively, while in this
model, the upper bound is obtained by maximizing � with
respect to the initial temperature of the working medium, and
the time durations are treated as constants. Unlike the Carnot
refrigerators, in this model the temperature of the working
medium in either heat exchanging process does not need to
keep constant (see Fig. 6 for γ = 1). The model studied in
this paper should be more practical and realistic than the
endoreversible refrigerator one.

B. Nonequal heat capacities (γ �= 1)

Generally, under the conditions where γ �= 1, Eq. (7) is
transcendental and cannot be solved explicitly. Numerical
calculations are conducted to investigate the impacts of
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FIG. 6. (Color online) The T -S diagram of an optimal refriger-
ator cycle where γ = 0.5,1,2, Th = 310 K, Tc = 260 K, τh/�h =
τc/�c = 1, and ccm = 10 J/K.

the parameters on the optimal COPs. The T -S diagrams
of the refrigerator cycles for different γ are plotted in
Fig. 6, reflecting that the value of γ profoundly affects the
configuration of refrigerator cycles. As depicted in Figs. 7 –9,
when γ > 1, the optimal COP will increase with increasing
τ/� and will achieve its maximum value when τ/� → ∞.
The lower bound is achieved when τ/� → 0, and is equal
to εs

� and is independent of the specific heat ratio. When
γ < 1, the optimal COP will decrease with increasing τ/�,
and will obtain its minimum value when τ/� → ∞. The
upper bound is achieved when τ/� → 0, and is equal to εs

�

and is independent of the specific heat ratio.
Therefore in the refrigerator cycles such as the reversed

Diesel cycle (cc = cv , ch = cp), reversed Brayton cycle (cc =
ch = cp), and reversed Otto cycle (cc = ch = cv), where the
specific heat in the heat absorbing process is not less than
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FIG. 7. (Color online) Optimal COPs with dimensionless contact
times of the heat releasing process under different specific heat ratios
(γ = 0.1,0.5,1,5,10), where εC = 5.2 and τh/�h = 1.
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FIG. 8. (Color online) Optimal COPs with dimensionless contact
times of the heat absorbing process under different specific heat ratios
(γ = 0.1,0.5,1,5,10), where εC = 5.2 and τc/�c = 1.

that in the heat releasing process, the lower bound of the COP
under the trade-off criterion is εs

�, while in the cycles such
as the reversed Atkinson cycle (cc = cp, ch = cv) where the
specific heat in the heat absorbing process is less than that
in the heat releasing process, εs

� is the upper bound. This
might be of great guidance for designing and operating actual
refrigerators.

Furthermore, the general lower and upper bounds of the
optimal COP can be obtained in the situations where τ/� →
∞, by applying the asymmetric specific heat limits, γ → 0 and
γ → ∞, respectively. In the following, the COP under the �

figure of merit in asymmetric contact time limits (τ/� → 0)
is studied analytically.

Short dimensionless contact time limit: Under the condi-
tions similar to heat engines, we expand exp(−τ/�) to the
first order of τ/�. By maximizing Eq. (24) with respect to
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FIG. 9. (Color online) Optimal COPs with different specific heat
ratios where εC = 5.2 and τc/�c = τh/�h = 1.
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Tc0, we have

[
ϕ

1 − 1
γ

τc/�c(ϕ−1)
τh/�h

]2

= εC + 2

εC + 1
, (28)

and the COP can be written as

ε = 1
εC+1
εC

ϕ

1− Is
γ

τc/�c (ϕ−1)
τh/�h

− 1
. (29)

Combining Eqs. (28) and (29), we have the same expression
as Eq. (27). It is independent of the specific heat ratio and
the heat conductance. Under the short contact time limit, the
heat absorbing and releasing processes are nearly isothermal.

The heat capacities have no impact on the teperature changes
during the heat exchanging processes. Thus the endoreversible
Carnot refirgerator model is recovered.

Long dimensionless contact time limit: Under the con-
ditions where t/� → ∞, similar to heat engines, the ex-
ponential terms exp(−t/�) can be eliminated; therefore by
maximizing Eq. (24) with respect to Tc0, we have

ϕ1/γ+1 = εC + 2

εC + 1
, (30)

and the COP can be written as

ε = ϕ − 1

γ εC+1
εC

(ϕ1/γ+1 − ϕ) − ϕ + 1
. (31)

The solution of Eq. (30) gives the optimal ϕ, then substi-
tuting it into Eq. (31), we have

ε� = [(εC + 2)/(εC + 1)]γ /(1+γ ) − 1

γ εC+1
εC

(εC + 2)/(εC + 1) − (
γ εC+1

εC
+ 1

)
[(εC + 2)/(εC + 1)]γ /(1+γ ) + 1

. (32)

As mentioned above, the general lower and upper bounds
of the COP for general refrigerators under the maximum �

criterion can be obtained by applying the asymmetric limits
γ → 0 and γ → ∞ we have

ε−
� =

εC ln εC+2
εC+1

1 − εC ln εC+2
εC+1

= 2

3

1
1
εC

− 1
18ε2

C

+ 1
8ε3

C

+O
(
1/ε4

C

) , (33)

and

ε+
� = εC

(εC + 1)(εC + 2) ln εC+2
εC+1 − εC

= 2

3

1
1
εC

− 1
9ε2

C

+ 1
6ε3

C

+O
(
1/ε4

C

) . (34)

In addition, the lower bound obtained through the low-
dissipation model [27] is εLD−

� = 2εC/3, and the upper bound
is given by

εLD+
� = 3 + 2εC

4 + 3εC

εC = 2

3

1
4
εC

− 4
6ε2

C

+ 4
4ε3

C

+O
(
1/ε4

C

) . (35)

It is clear all the COPs at maximum trade-off criterion are
equivalent to the second order of 1/εC with the coefficient of
2/3 and model-dependent differences appears at second and
higher terms.

TABLE I. Efficiency and COP bounds under different specific
heat ratios.

Specific heat ratio
Efficiency–COP γ < 1 γ = 1 γ > 1

η� ηs
� < η� < η+

� η� = ηs
� η−

� < η� < ηs
�

ε� ε−
� < ε� < εs

� ε� = εs
� εs

� < ε� < ε+
�

V. CONCLUSIONS

In conclusion, we have conducted as analysis of the
efficiency and COP at maximum trade-off criterion for
general heat engines and refrigerators with nonisothermal
heat exchanging processes. Under the situations where the
specific heat stays constant during the cycle, the bounds
of the efficiency and COP are found to be the same with
those obtained through the endoreversible Carnot ones, and
are independent of the cycle time durations and the heat
conductance. In addition when the dimensionless contact
times approach zero, the endoreversible Carnot models are
recovered. We should mention that, in the endoreversible
model, the upper bound of the efficiency or COP is obtained
by maximizing the objective function with respect to the
time durations of the heat absorbing and releasing processes
respectively. By using the heat transfer law, maximizing the
objective function with respect to the time durations of the heat
absorbing and releasing processes becomes maximizing it with
respect to the temperatures of the isothermal heat absorbing
and releasing processes. That is the inherent correlation for
the two optimization spaces under the short time limits. In
the situations where the dimensionless contact times approach
infinite, the general upper and lower bounds of the efficiency
and COP have been proposed under the asymmetric specific
heat ratio limits.

Furthermore, the efficiency and COP bounds of different
kinds of heat engines (such as Brayton, Otto, Diesel, and
Atkinson cycles) and refrigerators (such as reversed Brayton,
Otto, Diesel, and Atkinson cycles) have been analyzed. More
general results can be seen in Table I.
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