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Scale-free surfaces, such as cones, remain unchanged under a simultaneous expansion of all coordinates by
the same factor. Probability density of a particle diffusing near such absorbing surface at large time approaches
a simple form that incorporates power-law dependencies on time and distance from a special point, such as apex
of the cone, which are characterized by a single exponent η. The same exponent is used to describe the number
of spatial conformations of long ideal polymer attached to the special point of a repulsive surface of the same
geometry and can be used in calculation of entropic forces between such polymers and surfaces. We use the
solution of diffusion equation near such surfaces to find the numerical values of η, as well as to provide some
insight into the behavior of ideal polymers near such surfaces.
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I. INTRODUCTION

Diffusion in the presence of absorbing boundaries is a well-
explored problem [1,2]. It remains an active field of research
due to its importance to numerous fields in physics, chemistry,
biology, and economy [3–6]. In particular, it is related to
the problem of first-passage processes [2,7–9]. In this work,
we consider the diffusion of a particle near scale-free (SF)
surfaces, such as cones of different cross-sections [Figs. 1(a)–
1(c)] or a combination of a cone and a plane [Fig. 1(d)].
(Additional examples of SF shapes can be seen in Fig. 1 in
Ref. [10].) Such surfaces have no characteristic length scale,
i.e., their shape is not modified under rescaling by an arbitrary
factor λ; i.e., �r → λ�r . Generally, such scale transformation
changes the position of the surface. We will always choose the
origin of coordinates as special point on the surfaces, such as
apex of the cone, ensuring that the position does not change
either. This point will also play an important role in the physical
problem: in diffusion problem the particle will be released in
the neighborhood of that point, while in the polymer problem
one end of the polymer will be held in that vicinity.

The absence of a geometric length scale leads to a rather
interesting behavior of the solutions of the diffusion problem,
as we explain in Sec. II. In general, the diffusion problem
can be related to statistical mechanics of ideal polymers
in which self-interactions can be neglected [11–13]. In the
case of SF surfaces the solutions of diffusion equations
can be used to infer the prefactor in force-distance relation
characterizing interactions between ideal polymers and the
surfaces [10,14,15]. Section III explains the relation between
the diffusion and ideal polymer problems, as well as discusses
some general features of polymers near surfaces. In this work
we employ a simple numerical approach to the problem
and demonstrate its usefulness to the quantitative solution
of polymer-surface interaction. In Sec. IV we describe our
numerical approach, and in Sec. V we use such solutions to
gain intuitive insights into the behavior of ideal polymers near
repulsive surfaces that have no azimuthal symmetry.

II. DIFFUSION NEAR SCALE-FREE SURFACES

In its most elementary form the diffusion process is
described by the probability density P (�r,�r0,t) of finding a

diffusing particle at a position �r at time t , if at t = 0 it was
located at �r0. Such probability satisfies the diffusion equation

∂P

∂t
= D∇2P, (1)

which must be supplemented by the initial condition
P (�r,�r0,t = 0) = δ(�r − �r0), as well as by the boundary con-
ditions. In the presence of absorbing boundaries it is required
that P vanishes when �r is on the boundary. Equation (1)
corresponds to diffuser in continuous space performing in-
finitesimal steps. For a random walker on a d-dimensional
periodic (e.g., hypercubic) lattice with lattice constant a, with
dimensionless time measuring the number of discrete steps, the
Laplacian in Eq. (1) is replaced by its discrete version, while
the time derivative of P becomes a difference in probabilities
at (dimensionless) times t + 1 and t . In this case the diffusion
constant becomes D = a2/2d. (The theory presented here is
valid at arbitrary d, but the numerical examples will focus on
simulations performed on a three-dimensional cubic lattice.) In
the presence of absorbing boundaries, the survival probability
S(�r0,t) = ∫

P (�r,�r0,t)ddr of a particle that at time t = 0 was
at point �r0 decays with time. The function S also satisfies [16]
diffusion Eq. (1) with spatial derivatives taken with respect to
variable �r0, but its initial condition is S(�r0,t = 0) = 1 inside the
permitted volume while vanishing (at any t) on the absorbing
boundary.

The trace of a particle diffusing on a lattice for time t = N

can be viewed as a configuration of an ideal polymeric chain
with N + 1 monomers [11–13]. In the absence of confining
surfaces the number of different configurations starting at
a specific lattice site �r0 is N (�r0,N ) = zN , where z is the
coordination number of a lattice. If repulsive boundaries are
present, the configurations that cross the boundary must be
excluded. This is accounted for by considering a random
walk (RW) problem with absorbing boundary conditions,
and N (�r0,N ) = zNS(�r0,N ). Thus, solution of the diffusion
problem provides a handle on counting the configurations of
ideal polymers. The latter determines the free energy of the
polymers and can be used to find forces between the polymers
and confining surfaces [14,15].

Solution of diffusion Eq. (1) in a finite space surrounded
by absorbing surfaces can be presented in the form [17]
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FIG. 1. Examples of scale-free surfaces: cones with (a) circular,
(b) star-shaped, and (c) square cross-sections, and (d) a circular cone
touching a plane. All shapes are infinite, with gray surfaces indicating
truncation for graphic purposes.

P (�r,�r0,t) = ∑
i Ai�i(�r)e−t/τi , where �i and 1/τi are the

eigenfunctions and eigenvalues of the equation ∇2�i =
−�i/τi , while the prefactors Ai depend on the initial position
�r0 of the particle. Similarly, the survival probability S(�r0,t) =∑

i Bi�i(�r0)e−t/τi [17]. For long times the behavior of both
functions will be dominated by the smallest eigenvalue 1/τ1,
i.e., P ∝ �1(�r)e−t/τ1 , and S ∝ �1(�r0)e−t/τ1 . Typically, the
value of the largest time τ1 ∼ �2/D, where � is the largest linear
dimension of the confining volume. If the confining volume
is not finite the solution never reaches the state of exponential
decay. In this work, we consider the diffusion of a particle
near SF surfaces. Since both the equation, and the boundary
and initial conditions imposed on S(�r0,t) are SF, S can only
depend on the scaled (dimensionless) variable �w = �r0/

√
Dt .

Moreover, for w � 1 the Eq. (1) reduces to ∇2
�wS = 0, where

the derivatives of the Laplacian are taken with respect to �w. In
this limit we expect a simple power law solution [8]

S = wηg({θi}) = (r0/
√

Dt)ηg({θi}), (2)

where g is a function of d − 1 angular variables {θi} [10],
which solves the eigenvalue equation


Sd−1g = η(2 − d − η)g, (3)

where 
Sd−1 is the spherical Laplacian [18]. Angular variables
represent position on a unit sphere and we expect a discrete
spectrum of values of η = ηi . We are interested in large t (small
w) limit, and therefore choose η to be the smallest eigenvalue
of Eq. (3). Since the probability density must be positive, the
eigenfunction corresponding to that η is a function that does
not change sign [8]. We note that Eqs. (2) and (3), as well as the
equations that will be derived from them in Sec. IV, are valid
for any SF surfaces and do not require additional symmetries,
such as azimuthal symmetry.

III. DIFFUSION AS A POLYMER PROBLEM

Many properties of polymers in free space [11] and near
limiting surfaces [19–21] can be deduced from the theory
of critical phenomena. In particular, some behaviors are
characterized by critical exponents that are independent of
microscopic details of the Hamiltonian. Such universality
enables usage of simplified models, such as RWs on lattices
representing ideal polymers, or self-avoiding walks (SAWs)
representing polymers in good solvent [11,22]. On a regular
lattice, the number of conformations of a polymer in free space
is N ∝ zNNγ−1, where z is the lattice coordination number
in the case of a RW, and an effective coordination number

in the case of SAW. Critical exponent γ is universal [11].
This exponent is related by Fisher’s identity [23] to corre-
lation length exponent ν and the exponent η characterizing
the anomalous decay of density correlations: γ = (2 − η)ν.
Values of the exponents γ , ν, and η differ between RWs and
SAWs. In this paper we deal only with ideal polymers model
for which ν = 1/2 [22].

Presence of scale-invariant boundaries modifies the be-
havior of polymers. In the expression for the number of
configurations N ∝ zNNγ−1, the leading nonuniversal part
zN remains unchanged! Similarly, there is no change in the
correlation length exponent ν [19–21]. However, the exponent
γ characterizing the subleadingN -dependence of N changes
its value. (For flat surfaces it is frequently denoted γ1 [19],
while for wedges with opening angle α it is sometimes denoted
γ2(α) [24].) As their free-space counterparts, these exponents
do not depend on the microscopic details of the Hamiltonian,
but their values do depend on the type of the limiting surface.
Exponent η describing the behavior of the correlation functions
is also affected by the presence of the surface. However,
Fisher’s relation, which is a consequence of the fact that the
total number of states is an integral of the correlation function,
remains valid even in those modified circumstances; e.g., for
a flat surface γ1 = (2 − η⊥)ν, where η⊥ describes the power-
law dependence of the correlation function in any direction
except parallel to the surface [24]. This relation persists also
for wedges and cones. In our problem, all the exponents
correspond to specific surfaces under consideration and we
omit the various subscripts used in the literature. Since we
are considering only ideal polymers, Fisher’s relation for our
surface-specific exponents reduces to γ − 1 = −η/2 leading
to N ∝ zNN−η/2. By comparing this expression with Eq. (2)
with t = N we see that this is the same exponent η as was
defined in the diffusion problem for the same type of surface.

Our goal is to establish numerical value of the exponent
η in a variety of geometries for ideal polymers. In simple
geometries [such as circular cones (in d = 3) or wedges
(in d = 2)] this exponent is known analytically [8,10,14,15].
(In some cases, η is known even for polymers in good
solvents [22], where it is found by studying numerically SAWs
in d = 3 for flat surfaces [19,20,25] and for circular cones or
cone-plane geometries [14,15].)

Polymers can mediate forces between two surfaces. Con-
sider a polymer attached by one end to a special point of one
SF surface that is brought close (distance h) from a special
point of another SF surface. As an example, we may consider
a polymer attached to an apex of a cone that is being brought
into the vicinity of a plane. This resembles measurements done
by means of an atomic force microscope (AFM) [26,27], where
a long molecule is attached to the sharp tip of a probe and the
probe is brought into the vicinity of a flat stage. (However, in a
typical experimental situation the other end of the polymer is
also attached to the stage.) The loss of polymer entropy leads
to entropic force between the two objects [14,15]:

F = AkBT

h
, (4)

where A is a dimensionless prefactor. This relation is true only
for h much smaller than the root-mean-squared end-to-end
distance of the polymer. (In the absence of any additional
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length scales, this is the only possible dimensionally correct
expression for the force.) The change in free energy of the
polymer when bringing one object into contact with the second
one is due to the change in entropy S = kB lnN . Both the
initial and final states of the system (but not the intermediate
ones) are SF and can be characterized using the exponents
η. The difference in the entropy (and free energy) of the two
states must be equal to the work performed by the force. Since
the leading exponential part of the number of states zN , which
corresponds to the leading extensive part of the entropy and free
energy, is identical in both SF situations, the difference in the
free energies is proportional to the difference of the subleading
terms (γinitial − γfinal) ln N . Comparison of this relation with the
integral of the force in Eq. (4) over the separation h between a
microscopic distance a and the maximal interaction distance
∼aNν fixes the value of the prefactor [14,15]:

A = ηfinal − ηinitial. (5)

Thus, the force between two surfaces, mediated by the
polymer, depends solely on the geometry of the surfaces
through the exponents η corresponding to the initial and the
final states. Equations (4) and (5) have been derived [14,15] by
assuming equilibrium conditions. Long equilibration times of
polymers [11] make the equilibrium measurements of force-
position relations a difficult task. For slightly nonequilibrium
energy-dominated experimental situations Crooks fluctuation
theorem [28] can be used to recover some equilibrium
properties from nonequilibrium experiments [29].

IV. THE METHOD

Since calculation of the force constant has been reduced
to finding η in SF geometries, our aim is to consider simple
methods for accomplishing this task. For ideal polymers in
high symmetry systems, such as three-dimensional problem
of a circular cone [Fig. 1(a)], including its particular cases
of plane or semiinfinite line, or a circular cone attached to
a plane perpendicular to its axis [Fig. 1(d)], it is possible to
solve Eq. (3) analytically (see, e.g., Refs. [8,14,15]). (Such
solutions can also be obtained in arbitrary d.) However, even
in simple figures such as cones with square or star-shaped
cross-section, the solution of the eigenvalue equation becomes
rather cumbersome. Fortunately, there is another, rather simple
numerical approach to the problem described in the following
paragraphs.

Consider solving the time-dependent Eq. (1), beginning
with the δ(�r − �r0) initial condition for P and evolving the
equation in time. At very short times P will resemble free
space solution uninfluenced by the boundaries. If the starting
point is at some distance r0 from an apex of the cone, then
at time t ∼ τ ≡ r2

0 /D the influence of the boundaries will
be strongly felt, and for t � τ the initial conditions will be
forgotten. The solution of the problem will approach [10]

P (�r,t) = At−η−d/2rη exp

{
− r2

4Dt

}
g({θi}), (6)

where only the prefactor A will depend on �r0. It is possible
to verify directly that this expression solves the differential
Eq. (1) exactly, provided g and η are solutions of Eq. (3). This
solution, however, does not satisfy the exact initial conditions

FIG. 2. (Color online) Vertical cross section of P (�r,t) of particle
diffusing inside circular cone with apex angle α = π/10 and
absorbing boundaries. At t = 0 the particle is located a few lattice
constants away from the apex. Probability density is shown at (a)
t1 = 2000 and (b) t2 = 5000. The shape of the function does not
change with time: by expanding (a) by a factor

√
t2/t1 it will coincide

with (b).

and can be used only for sufficiently long times. In the absence
of geometric length scale, the distance r from the apex in
Eq. (6) can be only compared with

√
Dt . Thus, the shape of the

function does not change over time except for being stretched.
Figure 2 depicts the numerical solution for a diffusing particle
inside a circular cone with absorbing boundaries calculated
on a cubic lattice. The simulation begins with the particle
situated on a lattice site close to the apex of the cone and
the probability is then evolved by using discrete diffusion
equation, i.e., the probability at a particular lattice site (inside
the permitted space) at time t + 1 is equal to the mean of the
probabilities at the neighboring sites at time t . The absorbing
boundary conditions are implemented by keeping probability
0 outside the permitted space. Due to the absorption, the total
survival probability decreases. The color-coding in this and
other pictures depicting the density was chosen to be a linear
scale ranging from dark blue (=0) to dark red (=maximum),
thus removing the effect of overall decrease of the function.
Figures 2(a) and 2(b) depict the probability at two different
times. Both functions seem to have the same shape spread over
distances much larger than the few lattice constants that the
initial position �r0 was separated from the apex of the cone. This
persistence of the shape confirms the claim that the position of
the starting point has been “forgotten.”

As expected, the integral of Eq. (6) over the space produces
S ∝ t−η/2, which can be used to determine the exponent
η [30,31]. Numerically, this can be accomplished by simply
summing up all the probabilities at several times t and
extrapolating the slope of the graph (on a logarithmic scale)
to large times. The method presented below offers a slightly
more convenient alternative into measuring η.

We notice that the exponential term in Eq. (6) is exactly
the same as it would be in the absence of boundaries. The
absorbing boundaries generate the time-dependent (power
law) prefactor, as well as term rη. While the probability density
in Eq. (6) is not normalized due to absorbtion, we may calculate
the mean-squared distance R2 of a surviving particle from
the apex R2 = ∫

r2P (�r,t)ddr/
∫

P (�r,t)ddr . In this ratio of
integrals, the prefactors and the angular integrals cancel out,
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FIG. 3. (Color online) Dependence of the effective exponent η(t)
on simulation time t up to t = 5000 for a cone with star-shaped
cross-section [see Fig. 1(b)] with inner apex angle α = π/4, and the
apex angle of the outer point equal π/

√
2. The residual t-dependence

is evident. By fitting the data by quadratic polynomial in 1/
√

t (solid
line) we obtain the extrapolated value η = 5.35.

and we are left with the ratio of two simple integrals leading
to

R2 = 2Dt(η + d). (7)

Note, that in the absence of boundaries η = 0, and the
above result reduces to the well-known free-space expression
R2 = 2dDt . For large time, R2 coincides with mean-squared
traveled distance by the walker, or mean-squared end-to-end
distance of an ideal N -step polymer for N = t . Since the
numerical evolution of the diffusion equation is a very simple
task, we can use Eq. (7) to calculate exponent η, by finding
the large t limit of (R2/2Dt) − d. Of course, for finite
times we expect corrections due to discreteness of the lattice,
presence of ragged boundaries on a lattice, and due to the
fact that the walker begins its path few lattice constants away
from the apex. Each of these problems has a typical length
scale of the order of lattice constant a, and their influence
will disappear when the dimensionless ratio a/R ∼ 1/

√
t �

1. Naturally, we expect the t-dependent effective exponent
η(t) = η + c1/

√
t + c2/t + · · · , where the first term is the

anticipated actual value of the exponent. Figure 3 depicts the
time-dependence of η(t) for a cone of star-shaped cross-section
measured up to t = 5000. Last calculated point is only few
percent away from the intercept (“t → ∞”) with the vertical
axis at η = 5.35, which was obtained by extrapolating the
numerical values using a quadratic polynomial in 1/

√
t . Our

method requires solution of the diffusion equation, i.e., its
numerical complexity does not differ from the calculation
relying on the measurement of the power-law dependence of
the survival probability mentioned in the previous paragraph.
However, we believe that it provides a slightly more convenient
alternative.

Exponent η for an ideal polymer attached to a contact point
between a plane and a cone perpendicular to that plane, as
depicted in Fig. 1(d), can be found analytically [14,15]. In
this three-dimensional geometry with azimuthal symmetry
the eigenvalue Eq. (3) becomes Legendre equation, and the
eigenfunction g(θ ) can be expressed as a linear combination
of regular Legendre functions of degree η. The value of
η in this cone-plane geometry depends on the apex angle
α of the cone and is determined as the (smallest) value
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20

30

α/π

η
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FIG. 4. (Color online) Exponent η as function of apex angle α

for cone-plane geometry depicted in Fig. 1(d). Our numerical results
(circles) are compared with the known analytical values [15] (solid
line).

for which the absorbing boundary condition (g(θ = α) = 0)
is satisfied [15]. Figure 4 depicts the results of numerical
evaluation of the exponent compared with the known analytical
values. Excellent correspondence of the results validates our
numerical procedure. As the apex angle increases, the number
of polymer configurations trapped between the cone and the
plane that it touches decreases as can be seen in the increasing
value of η. For α → π/2 the exponent η diverges, as expected.
As α increases, so does the numerical difficulty to obtain
accurate estimate of η, requiring larger times t .

V. EXPONENT η FOR GEOMETRIES
WITHOUT AZIMUTHAL SYMMETRY

While analytical values of η could be found for the cone
perpendicular to the plane considered in the previous section,
tilting the cone axis by angle β with respect to the normal to
the plane (see sketch in Fig. 5) breaks the azimuthal symmetry
and prevents a simple analytical solution. We therefore find
values of η as function of β numerically, for α = π/5, π/10,
and π/20, as depicted in Fig. 5. The tilts are, of course, limited
by the inequality β � (π/2) − α. The maximal value of η for
any α is achieved for an upright cone, and the values decrease
with increasing tilting. For a polymer attached to a planar
surface, i.e., in the case of completely absent cone, η = 1.
The cone with α = π/20 almost reaches that value when it is
tilted to the maximal extent. The other two cases also exhibit

FIG. 5. (Color online) Exponent η as function of tilt angle β

for a tilted circular cone touching a plane for three apex angles
(top to bottom) α = π/5 (square), α = π/10 (circle), and α = π/20
(diamond). The solid lines interpolate between numerical results.
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FIG. 6. (Color online) Probability density P for diffusing par-
ticle in the vicinity of cone touching a plane. Cross-sections
perpendicular to the plane contacted by the cone include the axes of
the cones. Two apex angles (a) α = π/10 and (b) π/5 are considered.
Panels (c) and (d) show cross-sections parallel to the plane contacted
by the cone for those apex angles. This section is made at height
30 lattice constants at time t = 4000. This is the level where P is
close to its maximum value. The left column shows upright cone
(β = 0), while the center and right columns show tilts of β = 0.05π

and 0.15π , respectively.

a significant decrease with increasing β. This means that an
upright cone causes the maximal constriction of the space
available to the polymer, while the tilt significantly decreases
that effect. Figure 6 depicts the cross-sections probability
density in planes parallel and perpendicular to the plane that is
touched by the cone for two apex angles α. We can clearly see
that even for small tilts the polymer “escapes” to the more open
part of the space, where its configurations somewhat resemble
the behavior of a polymer in half-space in the absence of a
cone.

Finally, we consider diffusing particles inside cones with
circular, square, and four-point star cross-sections [Figs. 1(a)–
1(c)]. Figure 7(a) depicts the dependence of the exponent η for
several cross-section shapes as a function of an opening angle,
while Figs. 7(b)–7(d) show transverse cross-sections of P (�r,t)
for the three different shapes. An interesting feature is seen in
Fig. 7(d), where P (�r,t) inside the star-shaped cone resembles
that of diffusion inside the square-shaped cone, rotated by
45◦. This implies that the surviving(!) diffusing particle is less

FIG. 7. (Color online) (a) Exponent η as function of apex angle
α of a circular cone and for cones of square- and star-shaped
cross-section circumscribed around the circular cone as depicted in
Figs. 1(a)–1(c), as well as in the embedded sketch. The outer radius
of the star-shaped cone is 23/2 times larger than its inner radius.
Symbols indicate the numerical values, while the continuous lines
interpolate between the calculated values. Bottom part of the figure
depicts transverse cross-sections of P (�r,t) for inside (b) circular,
(c) square-shaped, and (d) star-shaped cones. All sections were
performed 100 lattice constants away from the apex for t = 4000
and α of a circular cone equal to π/10.

likely to be found deep inside the star’s wings and can be
found in the center of the star with much higher probability.
This feature is also seen in Fig. 7(a), where the values of ηs
are similar, though not identical, in the two geometries.

VI. DISCUSSION

In this paper we examined the long-time solutions of the
diffusion equation in the presence of SF-absorbing boundaries
and found the probability density function of a diffusing
particle. Unlike finite spaces that are characterized by finite
absorption times and exponential decay of survival probability,
SF-absorbing shapes generate survival functions that decay as
power law t−η/2. The same exponent appears in the spatial
part of the probability density of a diffusing particle and
can be calculated from the measurement of mean-squared
distance traveled by surviving particle. Our results provide
information regarding the behavior of ideal polymers. In high
space dimension the solid angle describing the cone plays a
major role in determining the value of η, while specificities
of the shape are not very important [9,31]. Our results with
tilted cones, as seen in Fig. 5, or with cones with various
cross-sections demonstrate the sensitivity of the values of η on
the shape details in d = 3 for a fixed solid angle.

In real experiments we are more likely to encounter poly-
mers described by different statistics. In particular, polymers in
good solvents are better described by self-avoiding walks [11].
For ideal polymers the simple relation between R2 and the
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exponent η as shown in Eq. (7) was a specific consequence of
long-time solution in Eq. (6), which is a product of a power law
and a Gaussian with respect to variable r . Polymers in good
solvents have a slightly different functional dependence on r ,
which does not permit a simple identification of η from the
probability distribution of their end-point for a single value of
N . Nevertheless, the general expression for the force constant
in Eqs. (4) and (5) remains valid, while the values of the
exponents η maintain similar shape dependencies and are
surprisingly close numerically to the values of ηs for ideal

polymers [14,15,32]. Therefore, our results, besides providing
some intuition regarding the polymers in good solvents, also
provide reasonable guesses for the numerical values of the
exponents in such solvents.
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