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Evidence for nonuniversal scaling in dimension-four Ising spin glasses
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(Received 11 November 2014; published 17 April 2015)

The critical behavior of the Binder cumulant for Ising spin glasses in dimension four is studied through
simulation measurements. Data for the bimodal interaction model are compared with those for the Laplacian
interaction model. Special attention is paid to scaling corrections. The limiting infinite size value at criticality for
this dimensionless variable is a parameter characteristic of a universality class. This critical limit is estimated to
be equal to 0.523(3) in the bimodal model and to 0.473(3) in the Laplacian model.
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I. INTRODUCTION

For standard second order transitions, renormalization
group theory (RGT) provides an elegant and detailed explana-
tion of universality. Thus in the family of simple ferromagnets,
within a universality class of models having space dimension
d and spin dimensionality n, all models have identical critical
properties corresponding to an isolated fixed point in the
renormalization group flow. The only documented exceptions
all appear to be cases of specific spin models in dimension
two (discussed, for instance, in Ref. [1]); for these models the
critical behavior is more complicated, with critical exponents
varying continuously when a control parameter is modified.
The corresponding renormalization group scenario consists of
a line of fixed points rather than an isolated fixed point, with
motion along the line produced by a marginal operator.

The Ising spin glasses (ISGs) which we will consider
have symmetric (positive and negative) random near neighbor
interactions rather than the regular interactions with fixed sign
of a simple ferromagnet; the theoretical situation for critical
behavior in ISGs is far less advanced than for the standard
models. The ISG upper critical dimension is known to be
six, but it was found 30 years ago that the ε expansions in
ISGs are not fully predictive since the first few orders have a
nonconvergent behavior and higher orders are not known [2].
This can be taken as an indication that a fundamentally
different theoretical approach is required for RGT at spin glass
transitions, and indeed, “classical tools of RGT analysis are not
suitable for spin glasses” [3–5], although no explicit theoretical
predictions have been made so far concerning the important
question of universality in these systems.

Claims of universality in ISGs have been made repeatedly
based on numerical data [6–10]. Here, from a detailed analysis
of numerical simulation measurements on ISGs in dimension
four we come to the empirical conclusion that, on the contrary,
the critical properties of these systems depend on the form of
the interaction distribution. A breakdown of universality at a
continuous spin glass transition for a dimension well above
two may be a symptom of the need for a novel RGT approach
in this class of models.

The ISG Hamiltonian is

H =−
∑
ij

Jij SiSj , (1)

with the near neighbor symmetric distributions normalized to
〈J 2

ij 〉 = 1. We use the inverse temperature β = 1/T as the
thermal parameter. The Ising spins sit on simple hypercubic
lattices with periodic boundary conditions. The spin overlap
parameter is defined by

q = 1

Ld

∑
i

SA
i SB

i , (2)

where A and B indicate two copies of the same system. We
have studied in dimension four the bimodal model with a
±J interaction distribution and the Laplacian model with a
P (Jij ) ∼ exp(−|Jij |) interaction distribution.

Simulations in ISGs are much more laborious than the
equivalent simulations in simple ferromagnets because equili-
bration is slow and averages must be taken over large numbers
of samples. The simulations were carried out using the
exchange Monte Carlo method [11] for equilibration using so-
called multispin coding. In the bimodal model measurements
were made on 214 individual samples (or Jij realizations)
for 3 � L � 7, on 213 samples for 8 � L � 12, and on 212

samples for L = 13 and L = 14. For the Laplacian model,
measurements were made on 213 samples for 3 � L � 12.
After every sweep an exchange was attempted with a success
rate of at least 30%. At least 40 temperatures were used,
forming a geometric progression reaching down to βmax =
0.55 in the bimodal case and βmax = 0.70 in the Laplacian case.

This ensures that our data span the critical temperature
region which is essential for the finite size scaling (FSS)
fits. Near the critical temperature the β step length was
at most 0.03. The various systems were deemed to have
reached equilibrium when the sample average susceptibility
for the lowest temperature showed no trend between runs. For
example, in the Laplacian case for L = 12 this means about
200 000 sweep-exchange steps.

After equilibration, at least 200 000 measurements were
made for each sample for all sizes, taking place after every
sweep-exchange step. We registered the energy E(β,L); the
correlation length ξ (β,L); the spin overlap moments 〈|q|〉,
〈q2〉, 〈|q|3〉, 〈q4〉; and the corresponding link overlap q�

moments, where the link overlap is defined as

q� = 1

dLd

∑
ij

SA
i SA

j SB
i SB

j . (3)
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In addition, some correlations 〈E(β,L),U (β,L)〉 between the
energy and observables U (β,L) were also registered so that
thermodynamic derivatives could be evaluated using the rela-
tion ∂U (β,L)/∂β = 〈U (β,L),E(β,L)〉 − 〈U (β,L)〉〈E(β,L)〉
(see, e.g., Ref. [12]). Bootstrap analyses of the errors in the
derivatives as well as in the observables U (β,L) themselves
were carried out.

II. TESTING UNIVERSALITY

Jörg and Katzgraber [13] used an elegant scaling display
of raw numerical data to test for universality in ISGs. They
plotted the ratio y(β,L) = g(β,2L)/g(β,L) against x(β,L) =
g(β,L), where

g(β,L) = 1

2

(
3 − [〈q4〉]

[〈q2〉]2

)
(4)

is the Binder cumulant for inverse temperature β and lattice
size L, with q being the spin glass order parameter of Eq. (2)
and [· · · ] denoting the average taken over the samples. They
studied numerically two ISGs in dimension four, one with
a Gaussian interaction distribution and one with a diluted
bimodal distribution. Over the range of temperatures used for
the measurements, which extended well into the ordered phase,
the scaled data points were independent of L and followed the
same curve for the two systems to within the statistics. Jörg
and Katzgraber concluded that these results were evidence of
universality in ISGs.

In Fig. 1 we show the same scaling plot as that of Ref. [13] in
dimension four but using instead standard bimodal interactions
and compare them to Laplacian interactions. The temperatures
span the critical temperatures.

For the Laplacian ISG, our data show scaling with no
correction term to within the statistics; the scaling curves
are almost indistinguishable from those for the models of
Ref. [13]. The bimodal data, on the other hand, show a strong L

FIG. 1. (Color online) Scaling plots for the Binder cumulant
of 4D ISGs, g(β,2L)/g(β,L) vs g(β,L). Red (gray): Laplacian
interactions; black: bimodal interactions. Squares, circles, triangles,
inverted triangles, and diamonds are for L = 3,4,5,6,7, respectively.

FIG. 2. (Color online) The Binder cumulant of the 4D bi-
modal ISG near criticality. Inverse temperatures β = 0.510,

0.5075, 0.505, 0.5025, 0.500, 0.4975 are shown from top to bottom.
Red squares: present data. Black circles: read from Ref. [14]. The two
data sets are consistent. The dashed straight line indicates criticality.

dependence due to large finite size scaling corrections; the scal-
ing curve y(x) moves continuously to the right with increasing
L. With a natural extrapolation the thermodynamic (large L)
limit scaling curve for the bimodal interaction ISG will lie well
to the right of the L-independent Laplacian curve, so the two
models appear not to be in the same universality class.

Standard finite size scaling expressions which include a
single leading conformal correction term lead to a size depen-
dence βc − βcross(L) = AL−(ω+1/ν), where βcross is the cross-
ing point where g(β,2L) = g(β,L) [represented by y(x) = 1
in Fig. 1], where ω is the correction-to-scaling exponent.
In the dimension-four bimodal ISG, ω has been estimated
by simulations to be 1.04(10) [14]. From high temperature
series expansion (HTSE) measurements θ = ων ≈ 1.5 [15],
so ω ≈ 1.3. A natural extrapolation of the present bimodal
data to infinite L assuming ω ≈ 1.2 gives a thermodynamic
limit estimate which is certainly considerably larger than the
Laplacian crossing point limit.

Data near criticality for the bimodal and Laplacian ISGs
are shown in a different form in Figs. 2 and 3, respectively.
Near criticality,

g(β,L) = gc + AL−ω + B(β − βc)L1/ν . (5)

The bimodal data are consistent with βc = 0.505(1), ω ≈ 1.2,
and gc = 0.523(3). The Laplacian data are consistent with
βc = 0.622(1), gc = 0.473(3), and a negligible correction. The
gc values estimated for the Gaussian and dilute bimodal models
in Ref. [10] are 0.470(5) and 0.472(2), which are similar to
the Laplacian value.

The bimodal βc value is confirmed independently by
thermodynamic derivative data on dimensionless observables
U (β,L). The U (β,L) curve becomes steeper and steeper
with increasing L and tends to a step function centered on
βc in the large L limit. Calling the peak in the derivative
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FIG. 3. (Color online) The Binder cumulant of the 4D Lapla-
cian ISG near criticality. Inverse temperatures β = 0.626, 0.624,

0.622, 0.620, 0.618 are shown from top to bottom. The dashed
straight line indicates criticality.

Dm(L) = [∂U (β,L)/∂β]max and its location (the pseudocriti-
cal temperature) βm, the inverse of the derivative peak height
x(L) = 1/Dm(L) and the corresponding inverse temperature
location shift βc − βm both scale as L−1/ν(1 + aL−ω) [12].
So at large L, the points y(L) = βm(L) plotted against x(L)
extrapolate linearly to y(∞) = βc at x(∞) = 0. An example
of this type of plot with the dimensionless observable

Wq(β,L) = 1

π − 2

(
π

[〈|q|〉]2

[〈q2〉] − 2

)
(6)

is shown for the bimodal model in Fig. 4. From such plots
an independent estimate βc = 0.505(1) is obtained for the
bimodal model in four dimensions [16].

FIG. 4. (Color online) Scaling plot for the bimodal model
Wq (β,L) derivative peak location βm against the inverse derivative
peak height 1/Dm(L).

III. CORRECTIONS TO SCALING

For the g(βc,L) bimodal values to extrapolate finally to
a limiting gc value at infinite L consistent with that of the
Laplacian model, putative bimodal ISG data for very large
L (data inaccessible with current numerical resources) would
have to bend back to the left in Fig. 1 or to sharply bend down
in Fig. 2 (in an unlikely looking way), instead of extrapolating
in a natural way to the large L critical limit estimated above. A
necessary condition for this “backbending” is the presence of a
hypothetical further correction term which begins to influence
the data only at L > 14 and so has an extremely small exponent
(and a prefactor A of the opposite sign).

We can search for potential candidate terms for the hypo-
thetical backbending. In addition to the conformal correction,
in principle, there can also be an analytic correction. This
term would have an exponent ωa ≈ 2, as in [17] where
in the site percolation context “the subleading analytical
corrections for most operators go as L−γ /ν ≈ L−2,”so such
an analytic correction cannot play the role of the hypothetical
very small exponent term. Turning back to the conformal
corrections, the first term in the RGT ε expansion for the
ISG leading irrelevant operator exponent is θ (d) = 6 − d

[18,19] (see Ref. [20] for the analogous site percolation ε

expansion). Leading ε-expansion terms in ISGs give useful
qualitative indications for other critical exponents, and it
turns out that the ε-expansion values for θ (d) : θ (5) ∼ 1,
θ (4) ∼ 2, θ (3) ∼ 3 are qualitatively consistent with published
effective θ (d) and ω(d) = θ (d)/ν(d) values from simulations
and from quite independent HTSE results [15,21]. Bimodal
ISG FSS estimates in three dimensions are ω(3) = 1.12(10)
and ν(3) = 2.56(4) [8], so θ (3) = ων ≈ 3. We have seen that
in four dimensions FSS estimates are [14] θ (4) ≈ 1.15 or
θ (4) ≈ 1.35 [16]. From FSS data for different 5d ISG models
ω(5) ≈ 1 and ν(5) ≈ 0.75 [16], so θ (5) ≈ 1. HTSE estimates
in 4D ISG models are θ (4) ≈ 1.4 [15] and in 5d ISG models
are θ (5) ≈ 1.0 [15,21].

These estimates are all broadly compatible with θ (d) ≈
6 − d. Even though it is hard to pin down an exact value for
ω(4), consistency definitively excludes a hypothetical leading
conformal correction term in the 4D bimodal ISG with an
exponent ωb(4) much smaller than 1. A correction term with
ω ≈ 1.2 for the bimodal ISG can be confidently identified with
the leading conformal correction. By definition, no conformal
correction term with a smaller exponent exists. It can be
concluded that there is no backbending correction and that
the natural extrapolations of the bimodal model data to the
large L limit with ω ≈ 1.2 are valid.

IV. CONCLUSIONS

Systems in the same universality class must have identical
values for the infinite size critical limit of a dimensionless
parameter such as the Binder cumulant gc. The observation
of a critical limit for the bimodal ISG which is very different
from those of the other three models disproves universality in
these 4D ISGs.

From the existing data there appear to be two possible
scenarios: two classes of ISGs (such as models with contin-
uous distributions and those with discrete distributions) or,
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alternatively, ISG exponents which vary continuously with a
parameter such as the kurtosis of the interaction distribution. It
would be of interest for statistical physics in general to obtain
further information on the question. Claims of universality for
ISGs in other dimensions should be reexamined critically.
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