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Far-from-equilibrium growth of magnetic thin films with Blume-Capel impurities
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We investigate the irreversible growth of (2 + 1)-dimensional magnetic thin films. The spin variable can adopt
three states (si = ±1,0), and the system is in contact with a thermal bath of temperature T . The deposition
process depends on the change of the configuration energy, which, by analogy to the Blume-Capel Hamiltonian
in equilibrium systems, depends on Ising-like couplings between neighboring spins (J ) and has a crystal field
(D) term that controls the density of nonmagnetic impurities (si = 0). Once deposited, particles are not allowed
to flip, diffuse, or detach. By means of extensive Monte Carlo simulations, we obtain the phase diagram in
the crystal field vs temperature parameter space. We show clear evidence of the existence of a tricritical point
located at Dt/J = 1.145(10) and kBTt/J = 0.425(10), which separates a first-order transition curve at lower
temperatures from a critical second-order transition curve at higher temperatures, in analogy with the previously
studied equilibrium Blume-Capel model. Furthermore, we show that, along the second-order transition curve,
the critical behavior of the irreversible growth model can be described by means of the critical exponents of
the two-dimensional Ising model under equilibrium conditions. Therefore, our findings provide a link between
well-known theoretical equilibrium models and nonequilibrium growth processes that are of great interest for
many experimental applications, as well as a paradigmatic topic of study in current statistical physics.
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I. INTRODUCTION

Nowadays, thin-film technology is playing an outstanding
role in several areas of basic and applied research, from the
manufacture of optics (reflective and antireflective coatings,
self-cleaning glasses, etc.) to electronics (layers of insulators,
semiconductors, and conductors from integrated circuits) and
packaging (e.g., aluminium-coated PET films). Nanoscale
deposition techniques such as sputtering and molecular beam
epitaxy, which allow a single layer of atoms to be deposited at
a time and therefore grant significant control over the thin-film
growth process, have stimulated the research and development
of novel materials [1–8].

In particular, some of these research efforts have focused
on magnetic thin films such as the L10 phase of Fe/Pt,
which is currently the leading candidate material for ultra-
high-density heat-assisted magnetic recording (HAMR) and
bit-patterned magnetic recording (BPMR) media [9–11]. It is
well known that the properties of such magnetic thin films may
depend strongly on the presence of impurities. Moreover, even
nonmagnetic materials such as CaB6 [12–14] and the semi-
conducting oxide TiO2 [15] may exhibit room-temperature
ferromagnetism, an intriguing phenomenon possibly driven
by the presence of magnetic and/or nonmagnetic impurities.
This kind of phenomena has attracted a great deal of attention
in recent years and has emerged as one important branch in
condensed matter physics and materials science [16–20].

On the theoretical side, a well-known equilibrium mag-
netic system that includes the effect of impurities is the
so-called Blume-Capel model, which has been extensively
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studied using mean-field theory [21], real-space renormal-
ization group calculations [22], ε-expansion renormalization
groups [23], Monte Carlo renormalization-group analysis [24],
high- and low-temperature series calculations [25], Monte
Carlo simulations [26], and finite-size scaling and conformal
invariance [27]. Indeed, the Blume-Capel model has attracted
considerable attention due to its interesting physical behavior
and its broad applications in the theory of fluids and magnetism
(see, e.g., Refs. [28,29]). Some recent theoretical studies of
Blume-Capel systems include short-time dynamics [30] and
Wang-Landau Monte Carlo simulations [31], mixed spin fer-
romagnets on the Bethe lattice [32], dynamic phase transitions
in oscillating external fields [33], bond randomness [34],
random crystal effects [35], and wetting transitions in confined
geometries [36,37], among others.

The Blume-Capel (BC) Hamiltonian, which considers a
three-state spin system (si = ±1,0), has an Ising-like term
proportional to the coupling constant J that takes into account
the interaction between nearest-neighbor spins, as well as
a term proportional to the crystal field D that controls the
density of nonmagnetic impurities (or vacancies, depending
on the interpretation of the model). The phase diagram of the
equilibrium BC model in two dimensions and in the absence
of magnetic fields is very well known. The model exhibits
ordered ferromagnetic and disordered paramagnetic phases
separated by a transition line, which changes from a continuous
phase transition (that belongs to the Ising universality class)
to a first-order transition at the tricritical point. In fact, in
the D → −∞ limit, impurities are excluded and the BC
model reduces to the classical two-state Ising model, while
for sufficiently large crystal fields, the transition becomes first
order and separates the impurity-dominated phase from the
ordered phase dominated by up or down spins. Thus, these
three coexisting phases give rise to a tricritical point located

1539-3755/2015/91(4)/042118(9) 042118-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.042118


MAZZITELLO, CANDIA, AND ALBANO PHYSICAL REVIEW E 91, 042118 (2015)

at kBTt/J = 0.609(5) and Dt/J = 1.965(5), valid for two
dimensions, where kB and J are the Boltzmann constant and
the spin-spin coupling, respectively [30]. This description of
the phase diagram of BC model holds for spin-1 model, while
for higher values of the spin the corresponding phase diagrams
are richer.

In the context of current efforts focused on the effect of
impurities on far-from-equilibrium deposition processes (see,
e.g., Refs. [38–40]), the aim of this work is to investigate the
irreversible growth of magnetic thin films with BC impurities
in (2 + 1)-dimensional strip geometries. Magnetic films grow-
ing under far-from-equilibrium conditions are investigated by
using the magnetic Eden model (MEM) [41,42], an extension
of the classical Eden model [43] in which particles have
an additional degree of freedom (the spin). Earlier studies
have shown that films growing in (d + 1)-dimensional strip
geometries in an homogeneous thermal bath are noncritical for
d = 1, while they undergo order-disorder phase transitions that
take place at kBT hom

c /J = 0.69(1) for d = 2 and spin-1/2 [42].
By means of extensive Monte Carlo simulations, we explore

the behavior of thin-film growth in the crystal field versus
temperature parameter space and obtain the corresponding
phase diagram. In analogy with Ising-like equilibrium systems,
we show clear evidence of the existence of a tricritical point
located at Dt/J = 1.145(10) and kBTt/J = 0.425(10), which
separates a first-order transition curve at lower temperatures
from a critical second-order transition curve at higher tem-
peratures. Since the MEM growth process is irreversible (i.e.,
newly deposited particles are not allowed to flip and thermalize
once they are added to the growing cluster), the observed
behavior resembling equilibrium spin models is intriguing and
nontrivial. Therefore, we believe that our findings provide a
link between the well-studied theoretical equilibrium models
and more realistic nonequilibrium growth processes that are
found in many experimental applications.

The rest of the paper is laid out as follows. In Sec. II, we
introduce the model and describe the Monte Carlo algorithm
used to simulate MEM thin films with Blume-Capel impurities.
In Sec. III, we present our results and a discussion. Finally,
Sec. IV consists of concluding remarks.

II. MODEL AND MONTE CARLO SIMULATION METHOD

The magnetic Eden model with Blume-Capel interactions
(MEM-BC) in (2 + 1) dimensions is studied in the square
lattice by using a rectangular geometry Lx × Ly × Lz, where
Lz � Lx = Ly ≡ L is the growth direction. The location of
each spin on the lattice is specified through its coordinates
(x,y,z) (1 � x,y � L, 1 � z � Lz). The starting seed for
the growing cluster is a plane of L × L parallel-oriented
spins placed at z = 1, and cluster growth takes place along
the positive longitudinal direction (i.e., z � 2). Periodic
boundary conditions are considered along both the x and the
y axis.

Clusters are grown by selectively adding spins (Sxyz = 0,

±1) to perimeter sites, which are defined as the nearest-
neighbor (NN) empty sites of the already occupied ones. The
S = 0 particles can be considered nonmagnetic impurities or,
alternatively, they can be interpreted as vacancies, while the
S = ±1 states can be interpreted as up/down magnetic spins

or as binary mixtures of two different particle species. We
will use a magnetic terminology throughout. Considering a
ferromagnetic interaction of strength J > 0 between NN spins
and a crystal field D to control the density of impurities, the
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FIG. 1. (Color online) (a) Average absolute value of the magne-
tization 〈|m|〉, (b) susceptibility χ , and (c) Binder cumulant U versus
temperature, corresponding to different choices of the crystal field D,
as indicated. Data obtained by using samples of linear size L = 12.
The temperature and the crystal field D are measured in units of J/kB

and J , respectively.
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energy E of a given configuration of particles is given by

E = −J

2

∑
〈xyz,x ′y ′z′〉

SxyzSx ′y ′z′ + D
∑
xyz

S2
xyz, (1)

where the summations are taken over occupied NN sites. The
probability for a perimeter site to be occupied by a particle is
proportional to the Boltzmann factor exp(−�E/kBT ), where
�E is the change of energy involved in the addition of the
particle and T is the temperature of the thermal bath.

At each step, all perimeter sites have to be considered
and the probabilities of adding a new particle (with spin up,
down, or null) to each site must be evaluated. Using the Monte
Carlo simulation method, after all probabilities are computed
and normalized, the growth site and the value for the new
spin are both simultaneously determined by means of one
pseudorandom number. Notice that the MEM’s growth rules
require updating the probabilities at each time step and lead
to very slow algorithms compared with analogous equilibrium
spin models. Also, let us point out again that, although Eq. (1)
resembles the Blume-Capel Hamiltonian, the MEM-BC is a
nonequilibrium model in which new particles are continuously
added, while older spins remain frozen and are not allowed to
flip, detach, or diffuse.

Since the observables of interest (e.g., the mean magnetiza-
tion in transverse x-y planes and its higher moments) require
the growth of samples with a large number of transverse planes

of size L × L, clusters having up to 109 spins have typically
been grown for lattice sizes in the range 12 � L � 128. It
should be mentioned that the advancing growth front leaves
voids behind, which are incorporated to the bulk of the sample
during some transient period. However, since the boundaries
of these voids are also perimeter sites, they ultimately become
filled in at some point during the growth process. Hence, far
behind the active growth interface, the system is compact and
frozen. The observables of interest can thus be measured on
defect-free transverse planes.

Notice that the growth of magnetic Eden aggregates in
(2 + 1)-strip geometries is characterized by an initial transient
length �T ∼ L2 (measured along the growth direction, i.e., the
z axis) followed by a nonequilibrium stationary state that is
independent of the initial configuration [42]. By disregarding
the transient region, all results reported in this paper are
obtained under stationary conditions. Since the strips are
effectively semi-infinite and the substrate length along the
growth direction plays no role, the only characteristic length is
the transverse linear size L. As order parameter, we measured
the absolute magnetization, which is given by

〈|m|〉 =
〈∣∣∣∣∣ 1

L2

∑
xy

Sx,y,z

∣∣∣∣∣
〉

, (2)

where 〈. . .〉 indicates the thermal average taken over par-
allel transverse planes with z > �T . We also computed the
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FIG. 2. (Color online) (a) Average absolute value of the magnetization 〈|m|〉, (b) susceptibility χ , and (c) Binder cumulant U versus crystal
field D. (d) shows in detail the behavior of the cumulant within the relevant temperature interval, namely 0.40 � kBT /J � 0.50. Data obtained
for different choices of the temperature T and by using samples of linear size L = 12.
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fluctuations of the order parameter, which play the role of the
susceptibility χ , i.e.,

χ = L2

T
(〈m2〉 − 〈m〉2), (3)

as well as the Binder cumulant U defined as

U = 1 − 〈m4〉/[3〈m2〉2]. (4)

III. RESULTS AND DISCUSSION

In order to gain some insight on the growth process of
the MEM-BC model, Figs. 1(a)–1(c) show plots of the order
parameter, susceptibility, and Binder cumulant as functions
of the temperature for different values of the crystal field.
Figure 1(a) carries the signature of continuous transitions
between an ordered state of high magnetization and a disor-
dered state where the magnetization tends to vanish (except for
finite-size effects that prevent the absolute magnetization from
becoming strictly zero as T → ∞). This scenario is further
confirmed by the peaks observed in the susceptibility, as well as
by the smoothly decreasing behavior of the Binder cumulant.
Although finite systems can only provide information of
effective, size-dependent pseudocritical temperatures, e.g.,
as given by the location of the peaks of the susceptibility,
or by the transitions evidenced by the magnetization and
cumulant profiles, Figs. 1(a)–1(c) show evidence that these
effective pseudocritical temperatures decrease as the crystal
field increases, as in the case of the equilibrium BC counter-
part [21,36]. In all figures, the errors are of symbol size or
less.

Similarly, Figs. 2(a)–2(c) show plots of the order parameter,
susceptibility, and Binder cumulant versus the crystal field
D, respectively. These measurements, performed at differ-
ent temperatures, show the magnetization crossover from a
smooth order-disorder effective transition observed at higher
temperatures (kBT /J � 0.45) to a much sharper drop at lower
temperatures (kBT /J < 0.40). This behavior is consistent
with the shape of the peaks of the susceptibility that become
narrower when the temperature is decreased [cf. Fig. 1(b)
where the shape of the peaks of χ remains almost unchanged
regardless of the values of D]. Indeed, these abrupt drops of
〈|m|〉 and sharp peaks of χ , as well as the local minima of
U observed in a narrow interval of the crystal field, are all
indicative of first-order effective transitions, as also observed
in the standard BC model under equilibrium conditions. The
onset of hallmark first-order behavior can clearly be observed
in Figs. 2(c)–2(d), where one observes that the characteristic
smooth, monotonically decreasing second-order behavior at
high temperatures develops a local minimum at the effective
first-order transition for lower temperatures.

The scenario emerging from the analysis of Figs. 1 and 2 is
consistent with the effective D vs T phase diagram shown in
Fig. 3. This phase diagram exhibits a line of continuous order-
disorder transitions between ferromagnetic and paramagnetic
phases in the high-T , low-D region, characterized by low
impurity densities. On the other hand, the low-T , high-D
region exhibits a line of sharp transitions with first-order
behavior between the ferromagnetic state and a phase dom-
inated by nonmagnetic impurities. The first- and second-order
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FIG. 3. (Color online) (a) Effective phase diagram of the MEM-
BC model obtained by using samples of linear size L = 12. Circles
and squares indicate lines of second- and first-order effective transi-
tions, respectively, which meet each other at the effective tricritical
point marked with a star. (b) Characteristic snapshots representing
growth regimes dominated by different mixtures of impurities in red
(gray), up spins in black and down spins in green (light gray).

transition lines meet each other at the effective tricritical point
located at kBT eff

tri (L = 12)/J 
 0.425(10), Deff
tri (L = 12)/J 


1.145(10), also indicated in Fig. 3(a). Typical snapshot
configurations representative of different states are shown
in Fig. 3(b). Snapshots I , II , and IV were obtained for
D = 0.8 and different temperatures, decreasing from T = 0.7
to T = 0.3. This trajectory in phase space runs across a
second-order transition, from a disordered paramagnetic phase
(Snapshot I ) to highly ordered ferromagnetic states (Snapshots
II and IV ). On the other hand, Snapshots III and IV

correspond to T = 0.3 and different values of the crystal field
across a first-order transition, as indicated. The concentrations
of up and down spins (black and green, respectively) and
impurities (red) gradually change across the second-order
transition (I → II ), while they sharply change across the
first-order transition (III → IV ), in which a phase dominated
by impurities (III ) evolves into a phase dominated by up or
down spins (IV ). These variations are shown in Fig. 4. For D

fixed, a wide scan of T is needed to observe variations of the
probability distributions of the magnetization and impurities
across the second-order transition line [Figs. 4(a)–4(b)]. In
contrast, for T fixed at a temperature below the tricritical
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FIG. 4. (Color online) Probability distributions of the magnetization PL(m) [(a), (c)] and the density of impurities PL(impurities) for
different values of T and D. (a)–(b) For D/J = 0.8, the effective second-order transition occurs at kBT eff

c /J = 0.60(1). (c)–(d) For kBT /

J = 0.3, the effective first-order transition occurs at Deff
c /J = 1.27(1). Data obtained by using samples of linear size L = 12.

point, a narrow scan of D performed close to the first-order
transition line is enough to observe large variations of the
probability distributions [Figs. 4(c)–4(d)]. Similarly, narrow
scans of T (for D fixed at a crystal field above the tricritical
point) close to the first-order transition lead to large variations
of the probability distributions (not shown here for the sake of
space).

Figure 5(a) confirms that, indeed, for very large values
of D the system is dominated by impurities. Together with
Figs. 5(b) and 5(c), which display fluctuations in the density
of impurities and the corresponding Binder cumulant, respec-
tively, these panels show that the behavior of the impurity
density is consistent with sharp, first-order transitions at low
temperatures and smooth, continuous second-order transitions
at high temperatures.

In order to identify true phase transitions, however, Monte
Carlo simulations must be performed on samples of different
size that enable the subsequent application of finite-size
scaling theory, which allows us to extrapolate results from
finite samples to the thermodynamic (L → ∞) limit. For this
purpose, Figs. 6(a), 6(b), and 6(c) show plots of the average
absolute magnetization 〈|m|〉, the susceptibility χ , and the
Binder cumulant U versus the temperature T for D = 0 and
samples of different size.

By analogy to the case of second-order transitions under
equilibrium conditions [44,45] and according to the experience
gained by studying the critical behavior of the far-from-

equilibrium growth of MEM films [42], we assume that
the characteristic length of MEM-BC clusters is given by a
diverging correlation length (ξ ) that behaves as

ξ ∝ (T − Tc)−ν, (5)

where Tc is the critical temperature and ν is the correlation
length critical exponent. When ξ is of the order of the
sample size, ξ 
 L, finite-size effects are observed, such as
the rounding and shifting of the peaks of the susceptibility
shown in Fig. 6(b). From Eq. (5), it follows that

T eff
c (L) = Tc(L = ∞) + const L−1/ν, (6)

where T eff
c (L) is the size-dependent effective critical temper-

ature, which can be identified, for instance, by the location
of the peak of the susceptibility, while Tc(L = ∞) is the
true critical temperature corresponding to the thermodynamic
limit. The inset of Fig. 6(b) shows the extrapolation performed
by means of Eq. (6), where finite-size, effective critical
temperatures are defined by the location of the peaks of χ ,
i.e., T eff

c (L) ≡ Tχmax . Here, we assume ν = 1 as in the cases of
both the two-dimensional (2D) BC model under equilibrium
conditions, as well as the MEM in (2 + 1) dimensions [42].
More evidence for ν = 1 as an appropriate value for the
MEM-BC correlation length critical exponent is provided
below via finite-size scaling data collapse (see Fig. 7 and
discussion below). From the best fit of the data, we obtained
kBTc/J = 0.647(15) for D = 0.
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FIG. 5. (Color online) (a) Average density of impurities, (b) fluctuations in the impurity density (i.e., susceptibility for impurities, χimpurity),
and (c) Binder cumulant of impurities, Uimpurity, as functions of the crystal field, D. Data obtained for different values of the temperature T and
by using samples of linear size L = 12.

Finite-size scaling theory for critical phenomena, originally
developed for systems under equilibrium [44,45] but later also
successfully applied to far-from-equilibrium systems [46] and
to irreversible phase transitions [47], establishes that the order
parameter scales as

〈|m|〉 ∝ L−β/νm∗{|T − Tc|L1/ν}, (7)

where β is the order parameter critical exponent and m∗ is a
suitable scaling function. Figure 7(a) shows that the data from
Fig. 6(a) can be fully collapsed by finite-size scaling [Eq. (7)]
by taking ν = 1 and β = 1/8, i.e., the critical exponents
of the 2D BC model in equilibrium, which also hold true,
within error bars, for the far-from equilibrium MEM in (2 + 1)
dimensions [42]. On the other hand, the scaling behavior of
the Binder cumulant, given by

U ∝ U ∗{|T − Tc|L1/ν} , (8)

where U ∗ is a suitable scaling function, is also nicely satisfied
by the collapse of the data from Fig. 6(c), as shown in
Fig. 7(b).

Summing up, our results for the second-order transition of
the MEM-BC growth model in (2 + 1) dimensions obtained
for D = 0, as well a set of results analyzed with a similar
procedure but performed for different values of the crystal
field (not shown here for the sake of space), confirms that
the transition belongs to the same universality class than the
2D Ising model under equilibrium conditions. Additionally, in

previous papers [42] we have shown that the MEM in (2 + 1)
dimensions, which corresponds to the MEM-BC model for
D = −∞, also belongs to the same universality class. There-
fore, all results are consistent with the presence of a line
of second-order transitions in the Ising universality class,
as in the case of the 2D BC model under equilibrium [48].
Indeed, this finding supports early conjectures [49,50] pointing
out that the universality class of growth models in (d + 1)
dimensions under far-from-equilibrium conditions is the same
than that of their corresponding equilibrium counterparts but in
d dimensions. In particular, here we provide robust evidence
for the case d = 2, while, of course, d = 1 models are not
critical in either case (equilibrium and far from it).

Besides this analysis of continuous second-order transi-
tions, we have performed a systematic study of the occurrence
of first-order transitions, as, e.g., shown in Figs. 2 and 5 (as well
as in sets of results not shown here for the sake of space) in
order to draw the complete phase diagram of the MEM-BC
growth model shown in Fig. 8. We observe that lines of
second- and first-order effective transitions meet each other
at an effective tricritical point whose position is essentially
independent of the lattice size, as displayed in greater detail
in the inset to Fig. 8. In order to understand this observation,
we recall that the effective critical temperature decreases with
sample size following Eq. (6), while on the other hand, the
coexistence temperatures associated to first-order transitions
increase with the size, for D fixed. Close to those transitions,
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FIG. 6. (Color online) (a) Average absolute value of the magnetization, 〈|m|〉, (b) susceptibility, kBT χ , and (c) Binder cumulant, U , versus
the temperature, obtained for D = 0 and samples of different size, as indicated. The inset in (b) shows the extrapolation of the finite-size
effective critical temperatures corresponding to the peaks of χ (Tχmax versus L−1/ν with ν = 1), which yields kBTc/J = 0.647(15) in the
L → ∞ limit.

D is large and impurities dominate, generating isolated islands
of spins on the sample. The number of these islands increases
with the size and it is necessary to increase the temperature
to observe a paramagnetic phase. The competition between
those two different behaviors that occurs close to the tricritical

point, where both first- and second-order transitions meet, may
be the reason of the absence of sample size effects in the
location of the tricritical point. Although there may be scaling
corrections that cannot been observed within the limited
size of the lattices considered in this work, our extensive
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FIG. 7. (Color online) (a) Scaling plots of the average absolute value of the magnetization, 〈|m|〉Lβ/ν versus |T − Tc|L1/ν , obtained by
setting β = 1/8, ν = 1, and the critical temperature kBTc/J = 0.647, following the best fit to the data shown in the inset to Fig. 6(b).
(b) Scaling plots of the Binder cumulant. Both panels show data corresponding to D = 0 and obtained for lattices of different size, as
indicated.
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FIG. 8. (Color online) Phase diagram of the MEM-BC model
obtained for samples of different linear size L, as indicated. Solid
and open symbols indicate lines of second- and first-order effective
transitions, respectively, which meet at the effective tricritical point.
The inset displays a close-up view, which shows that the tricritical
point is essentially independent of the sample size.

simulations indicate the existence of a true tricritical point
located at (kBTtri/J = 0.425(10), Dtri/J = 1.145(10)), where
the error bars estimate both statistical errors and finite-size
effects.

IV. CONCLUSIONS

Motivated by an interest to contribute to a deeper under-
standing of magnetic thin-film growth by deposition, which
is widely used in the fabrication of MEMs, impurities were
incorporated to a (2 + 1)-dimensional MEM model previously
studied [42]. Since the quality and performance of magnetic
devices are strongly determined by the purity, structural
integrity, and degree of homogeneity of their epitaxial layers,
impurities (or vacancies) produce a decrease in the interface
magnetization, which is particularly undesired. In most exper-
imental setups, thin films are grown far from thermodynamic
equilibrium. In this work, we have presented a nonequilibrium

model, which considers a three-state spin system (si = ±1,0)
to study the influence of impurities in the growth of magnetic
thin films with strip geometries. We have also compared our
results with those from its equilibrium counterpart, namely the
2D Blume-Capel model.

The MEM-BC model’s properties are dependent upon
two parameters: the temperature (T ) that controls thermal
fluctuations and the crystal field (D) that governs the density of
impurities. Despite its apparent simplicity, this model presents
a rich variety of stationary states and different growth regimes
that depend on the values of T and D. In the absence of impu-
rities (or vacancies), previous studies have established that the
model presents two phases, paramagnetic and ferromagnetic,
separated by a continuous, second-order transition [42]. Here,
we found analogous results for low enough concentrations of
impurities, in which densities of spins and impurities show a
smooth change with T and D when crossing the second-order
transition. Besides these two phases, moreover, nonmagnetic,
impurity-dominated states appear for large values of D and
they change into ferromagnetic states across a first-order
transition, by either decreasing the temperature, the crystal
field, or both. Across this type of transition, the densities of
impurities and spins change abruptly. We have established
the type of transitions also studying the susceptibility and
the Binder cumulant for the magnetization and the density of
impurities, which show sharp or smooth behavior according
to the transition being first or second order, respectively.
Furthermore, using finite-size scaling analysis, we obtained
critical exponents for the second-order transition, which,
intriguingly, are the same as those corresponding to the 2D
Blume-Capel model under equilibrium conditions. Finally, the
first- and second-order transition lines were found to meet each
other at a tricritical point located at Dt/J = 1.145(10) and
kBTt/J = 0.425(10), which appears to be independent of the
sample size within the accuracy of our simulations.
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Phys. Rev. B 57, 11575 (1998).
[28] W. Selke, Surf. Sci. 144, 176 (1984).
[29] A. Zaim, Y. El Amraoui, M. Krouad, and H. Arhchoui, J. Magn.

Magn. Mater. 320, 1030 (2008).
[30] R. da Silva, N. A. Alves, and J. R. Drugowich de Felı́cio,

Phys. Rev. E 66, 026130 (2002); B. C. S. Grandi and W.
Figueiredo, ibid. 70, 056109 (2004).

[31] C. J. Silva, A. A. Caparica, and J. A. Plascak, Phys. Rev. E 73,
036702 (2006).

[32] J. W. Tucker, J. Magn. Magn. Mater. 237, 215 (2001);
E. Albayrak and M. Keskin, ibid. 261, 196 (2003).
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