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Network reciprocity created in prisoner’s dilemma games by coupling two mechanisms
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We found that a nontrivial enhancement of network reciprocity for 2 × 2 prisoner’s dilemma games can be
achieved by coupling two mechanisms. The first mechanism presumes a larger strategy update neighborhood
than the conventional first neighborhood on the underlying network. The second is the strategy-shifting rule. At
the initial time step, the averaged cooperation extent is assumed to be 0.5. In the case of strategy shifting, an
agent adopts a continuous strategy definition during the initial period of a simulation episode (when the global
cooperation fraction decreases from its initial value of 0.5; that is, the enduring period). The agent then switches
to a discrete strategy definition in the time period afterwards (when the global cooperation fraction begins to
increase again; that is, the expanding period). We explored why this particular enhancement comes about, and to
summarize, the continuous strategy during the initial period relaxes the conditions for the survival of relatively
cooperative clusters, and the large strategy adaptation neighborhood allows those cooperative clusters to expand
easily.
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I. INTRODUCTION

Evolutionary games, such as the prisoner’s dilemma (PD),
are regarded as good models for solving the mysterious puzzle
of why human beings, as well as other animal species, success-
fully evolve cooperation instead of egocentric defection within
their societies. Many papers (for comprehensive reviews, refer
to [1–3]) have discussed network reciprocity, which is one of
the five fundamental mechanisms that Nowak classified [4]
for resolving the dilemma; it attempts to solve the dilemma by
adding “ocial viscosity.” This network reciprocity continues
to receive a lot of attention because, although the central
assumption of the model, i.e., “playing with neighbors on
an underlying network and copying a strategy from them,”
is simple, it is nonetheless a very plausible explanation of why
cooperation survives in any real context.

Recently, researchers have been concerned with identifying
any additional model frameworks that would enhance network
reciprocity to levels above those found in the basic spatial
prisoner’s dilemma game. Among the large number of previous
attempts to identify an additional framework that can bring
further network reciprocity, we note several outstanding ideas.

One such intriguing idea concerns what happens if a gaming
neighborhood, or interaction network (IN) (in other words, the
number of agents playing the game with the focal agent in
the typical manner), and a strategy adaptation neighborhood,
or learning network (LN) (in which the focal agent copies his
or her strategy from a number of neighbors), are expanded.
In most of the previous studies the IN and LN are consistent,
and the first neighborhood is used on the underlying network.
Xia et al. [5] found that appropriately selecting the size of the
IN and LN to be larger than the first neighborhood bolsters
network reciprocity.

Another interesting idea, proposed by Kishimoto et al. [6],
is strategy shifting in the middle course of an evolutionary
process. They found that network reciprocity is enhanced if
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agents are required to obey a continuous strategy, which allows
a player to offer a real number defining a middle course that lies
between complete defection (0) and complete cooperation (1),
during a certain initial period in the evolutionary process.
After this initial period, the agents refer to another rule, a
discrete strategy, which is the conventional strategy, in which a
player offers either complete cooperation (1 or C) or defection
(0 or D).

In our recent publications, we have tried to provide a
sort of holistic discussion to answer the following question:
“What is the central mechanism in bringing about network
reciprocity?” [7–9]. The key idea in our discussion is that
we should divide an evolutionary path starting from an
initially random state and proceeding to a final equilibrium
into two periods, as below, and should carefully observe
what happens in those two periods separately. Thus, in the
present study, following Shigaki et al. [7], we use the term
enduring period (END) to refer to the initial period (because
cooperators try to endure the defectors’ invasion), in which
the global cooperation fraction (Pc) decreases from its initial
value. As an example, the initial state may have an equal
number of cooperators and defectors randomly assigned on
the underlying network. Correspondingly, we use the term
expanding period (EXP) to refer to the period following the
END in which Pc increases (see Fig. 1), since cooperators who
successfully survive in the END period by forming cooperative
clusters (C clusters) expand their area by converting defectors
into cooperators.

Relying on the concept of the END and EXP periods, we can
guess why a LN larger than the first neighborhood enhances
network reciprocity as follows (although no explanation was
provided by Xia et al.). In the EXP period, a large LN could
make more defectors that are located close to cooperative
clusters switch to being cooperators than in the usual case.

Also, our concepts of the END and EXP periods can also
suggest what happens in terms of strategy shifting. The time
scale of strategy spreading [10] in the case of continuous
strategy definition is unequivocally larger than that in the
case of a discrete strategy definition, because the expected
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FIG. 1. (Color online) Schematic view of the evolution of coop-
eration in the spatial prisoner’s dilemma game, with the concepts
of END and EXP demonstrated. Enduring (END) period: Initial
cooperators are rapidly plundered by defectors, allowing only a few
cooperators to survive through the formation of compact C clusters.
Expanding (EXP) period: C clusters start to expand, as a cooperator
on a cluster’s border can attract a neighboring defector into the cluster.
We presume P initial

c = 0.5 for this visualization.

strategy difference between two randomly selected agents is
smaller in the continuous strategy setting. This fact increases
the possibility of relatively cooperative clusters surviving until
the END period due to a slower expansion of defectors [10],
which may help realize a more cooperative equilibrium.

This study is motivated by the question of whether we can
gain more significant network reciprocity if these two unique
mechanisms are coupled together in one single model. In fact,
we find that this bolsters the network reciprocity, and in the
discussion, we outline ideas relevant to our holistic question:
“What is the central mechanism in bringing about network
reciprocity?” using the idea of the END and EXP periods.

This paper is organized as follows. Section II describes
our model and the simulation procedure, Sec. III presents and
discusses the results, and Sec. IV draws conclusions from the
results.

II. MODEL SETUP

At every time step, an agent occupying a vertex on the
network plays a prisoner’s dilemma game with each of his
or her immediate neighbors, and the agent obtains payoffs
from all games. As the underlying topology, we use a two-
dimensional lattice graph. The total number of agents is set
to N = 104, which has been confirmed to be sufficiently large
to yield simulation results that are insensitive to system size.
After gaming, each agent synchronously updates his or her
strategy by referring to its neighbors, defined by the LN
neighborhood explained in the next section.

A. Underlying network

As we reported recently [11], expanding the LN neighbor-
hood to bolster cooperation makes sense only in the case of a
homogeneous and regular graphlike lattice. Hence, we adopt
the two-dimensional (2D) lattice as our underlying topology.
Relying on the so-called Moore neighborhood, the degrees
of the first and second neighborhoods are k = 8 and 24,
respectively. We vary the strategy update neighborhood (the

LN) between two Moore neighborhoods: k = 8 and 24. It is
important that the number of Moore neighborhoods that we
compare to each other in this study should be limited. In
summary, assuming Moore neighborhoods with k = 8 and
24 as well as k = 4 (that is, the so-called von Neumann
neighborhood) is a bad idea, because the latter topology
potentially has different network features. For example, the
cluster coefficient of a von Neumann neighborhood with k = 4
is 0, which obviously differs from those of our chosen Moore
neighborhoods.

B. Game description and strategy definition

In a PD game, a player receives a reward (R) for each
mutual cooperation (C) and a punishment (P) for each mutual
defection (D). If one player chooses C and the other chooses
D, the latter obtains a temptation payoff (T), and the former is
labeled a sucker (S). Without losing mathematical generality,
we can define a PD game space by presuming R = 1 and
P = 0 as follows:(

R S

T P

)
=

(
1 −Dr

1 + Dg 0

)
, (1)

where Dg = T − R and Dr = P − S define a chicken-type
dilemma and a stag-hunt-type dilemma, respectively [12]. We
limit our games to the ranges 0 � Dg � 1 and 0 � Dr � 1.

In a discrete strategy setting, an agent is allowed to offer
either C or D. Thus, the payoff can be algebraically derived
from Eq. (1).

In a continuous strategy setting, the values of the strategy
and offer of an agent i are consistent, and are expressed with a
real number si in the interval between zero and 1. When agent
i plays the game with agent j , (s)he obtains a payoff given by

π (si,sj ) ≡ (S−P )si+(T −P )sj+(P − S − T + R)sisj + P

= −Drsi + (1 + Dg)sj + (−Dg + Dr )sisj . (2)

This might be the simplest and most plausible setup that ex-
pands the discrete strategy model but still uses the elementary
payoff matrix Eq. (1).

We define the procedure of strategy shifting below. At the
beginning of an evolutionary episode, each of the agents on
the vertices of a lattice is given a random real number of [0,1]
as the agent’s strategy si , drawn from a uniform distribution.
During the END period, in other words, during the period
when Pc decreases from its initial value of 0.5, agents keep
the continuous strategy system. When Pc begins to increase
as the EXP period starts, following the END period, strategy
shifting takes place, and all agents shift from the continuous
strategy to the discrete strategy system. This implies that an
agent shifts strategy system at the next time step just after the
END period (in other words, the first time step in the EXP
period). The actual procedure of strategy shifting is outlined
below. Agents who maintain the same real value as in their
continuous strategy (perhaps forming a cluster because they
would originate from the same strategy seed) probabilistically
take either entire cooperation C (1), or entire defection D (0),
according to the continuous strategy value at that time. This
is understood by comparing the snapshots of steps 6 and 7
in Fig. 6 which will be discussed later. Some of the gray
highlighted clusters in step 6 shift to black clusters (entire
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FIG. 2. Averaged cooperation fractions over all PD regions
0 � Dg � 1 and 0 � Dr � 1, for the following four cases: (1) the
conventional model (standard IN and LN and a discrete strategy
system), (2) a model assuming standard IN, large LN, and a discrete
strategy system, (3) a model assuming standard IN and LN and
shifting from a continuous to a discrete strategy system, and (4)
our proposed model assuming standard IN, large LN, and shifting
from a continuous to a discrete strategy system.

cooperation) in step 7, while others shift to white (entire
defection).

C. Strategy update

The strategy of an agent, irrespective of whether it is
continuous or discrete, is synchronously refreshed for every
time step according to the imitation maximum (IM) system,
in which the focal player i imitates the strategy with the
maximum payoff among all the strategies taken by the focal
player and his or her neighbors, as defined by the LN
neighborhood. As mentioned above, we vary the LN, i.e., the
LN refers to the first (immediate) neighborhood k = 8, or the
second neighborhood k = 24.

D. Simulation procedure

Each simulation is performed as follows. Initially, a real
number drawn from a uniform distribution [0,1] is randomly
given to each of the N agents allocated to the different
vertices of the network. Several simulation time steps, or
generations, are run until the frequency of cooperation reached
quasiequilibrium. If the cooperation frequency continues to
fluctuate, we use the average frequency of cooperation over
the last 250 generations of a 10 000-generation run. The results
shown below were drawn from 100 runs, i.e., each ensemble
average was formed from 100 independent simulations.

III. RESULTS AND DISCUSSION

Figure 2 shows the summarized result, where we compare
the averaged cooperation fractions of all PD regions 0 �
Dg � 1 and 0 � Dr � 1 in the following four cases: (1)
the conventional model (standard IN and LN and a discrete
strategy system), (2) a model assuming standard IN, large
LN, and a discrete strategy system, (3) a model assuming
standard IN and LN and shifting from a continuous to a

FIG. 3. Ensemble-averaged cooperation fractions over 100 real-
izations of PD for 0 � Dg � 1 and 0 � Dr � 1: (a) the conventional
model (standard IN and LN and a discrete strategy system), (b)
a model assuming standard IN, large LN, and a discrete strategy
system, (c) a model assuming standard IN and LN and shifting from
a continuous to a discrete strategy system, and (d) our proposed
model assuming standard IN and large LN and shifting from a
continuous to a discrete strategy system. Open circles in (a) and
(b) represent (Dg,Dr ) = (0,0.8), for which detailed information is
shown in Fig. 5. The open square and triangle in (d) respectively
represent (Dg,Dr ) = (0.7,0.8) and (0,1), shown in more detail in
Figs. 6 and 7.

discrete strategy system, and (4) our proposed model assuming
standard IN, large LN, and shifting from a continuous to a
discrete strategy system. The proposed model outperforms
other settings including the conventional model. Note that the
strategy shifting improves network reciprocity by coupling
with the enlarged LN.

Figure 3 shows the ensemble-averaged cooperation fraction
of each of the four settings over 100 realizations of the PD
for 0 � Dg � 1 and 0 � Dr � 1. Observing Fig. 3(a), the
default setting, we confirm that the region of Dg + Dr < 2/3
shows an almost all-cooperators state; otherwise it seems to
be an almost all-defectors state. This can be explained as
follows. Let us define a term, the “perfect C cluster,” meaning
a block of nine (3 × 3) cooperators surrounded by defectors.
Suppose we have a situation in which one single perfect C
cluster is positioned in a sea of defectors, for which the global
cooperation fraction is 9/N = 0.0009. When we observe
Fig. 4(a), we understand that agent (D − 1) neighboring the
perfect C cluster most effectively exploits the neighboring
cooperator and receives a payoff of 3T + 5P . This is rewritten
as 3(1 + Dg) by substituting into Eq. (1). The neighbor,
cooperative agent (C − 1), is exploited by three neighboring
defectors and thus earns only 5R + 3S = 5 − 3Dr . However,
one of the neighbors, agent (C − 2) at the center of the
perfect C cluster, gains a high payoff 8R = 8. Even if an
agent is severely exploited by defecting neighbors, the IM rule
compels him or her to remain cooperative as long as there is
a cooperative neighbor who obtains a high payoff. For this
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FIG. 4. (Color online) Schematic configuration in which a per-
fect C cluster is surrounded by defectors: (a) a perfect C cluster
surrounded by defectors, (b) a concave configuration of a perfect C
cluster and two additional cooperators surrounded by defectors.

reason, we can infer that a perfect C cluster, initially placed
somewhere in the domain, never perishes, as long as Dg < 5/3,
and that a perfect C cluster can expand in the domain as
long as Dg + Dr < 2/3. An initial random assignment of
defectors and cooperators on the domain has scarcely any
perfect C clusters. This is why the region of Dg + Dr > 2/3
in the case of Fig. 3(a) shows an almost all-defectors state.
However, as shown in Fig. 3(c), introducing the concept of
shifting from the continuous to the discrete strategy system can
subtly improve this, thus making the region Dg + Dr > 2/3
a little more cooperative than in the conventional model.
This is because the implementation of the continuous strategy
allows partially cooperative clusters to survive until the END
period due to the slower growth of defection (as well as
cooperation) brought about by the real number strategy. This
helps in the following way: after shifting to the discrete
strategy at the beginning of the EXP period, some of the
cooperative clusters can survive with higher probability than
in the case of the conventional model, but it is still impossible
for these clusters to expand in the EXP period. However,
this improvement in network reciprocity is not significant as
compared with that due to implementation of the larger LN,
as shown in Figs. 3(b) and 3(d). The effect of the larger LN is
phenomenal, because it can relax the condition described by
Dg + Dr < 2/3, thus enabling a perfect C clusters to expand.
Figure 4(b) suggests that, even if a defector (D − 2) efficiently
exploits five cooperators, the defector is forced to change to
cooperation by copying from a central cooperator (C − 3)
as long as Dg < 3/5. This is not a necessary condition for
expansion of cooperation, wherein any episodes in the region
of Dg < 3/5 can attain an all-cooperators state, but does at
least imply that even a defector exploiting five cooperators
like (D − 2) in Fig. 4(b) may be changed to a cooperator.
This is why we can observe a reasonable cooperation level,
despite not attaining an almost all-cooperators state, in the
region Dg + Dr > 2/3 and Dg < 3/5 in Fig. 3(b). But in
Fig. 3(d), we can observe an almost all-cooperators state in
the region Dg < 3/5; moreover, the region over that threshold
shows a certain level of cooperation. This point is discussed
with further insight below.

Let us observe the effect resulting from the larger LN
using snapshots. Figure 5 compares a snapshot and its time
evolution for one of the 100 episodes of the conventional model

FIG. 5. Snapshots and time series of one of the representative
paths of (Dg,Dr ) = (0,0.8) for the model that assumes standard IN,
standard LN, and a discrete strategy system (i.e., the conventional
case), as shown in Fig. 3(a), and for the model that assumes standard
IN, large LN, and a discrete strategy system shown in Fig. 3(b).
(a) and (b) show snapshots of the conventional case and the latter
case, respectively. (c) shows those time series in terms of the global
cooperation fraction.

(standard IN and LN, with the discrete strategy system), and an
alternative model (standard IN and large LN, with the discrete
strategy system). The presumed dilemma for these two cases
is (Dg,Dr ) = (0,0.8), and the global cooperation fractions are
shown in Figs. 3(a) and 3(b), respectively. These two episodes
successfully survive the END period, but what happens at
particular time steps, e.g., during the EXP period, is evidently
different. In the conventional model, the surviving C clusters
cannot expand in a sea of defectors because Dg + Dr > 2/3.
However, in the alternative, larger-LN case, the episode can
attain an all-cooperators state by the end of the simulation.
This is because, as noted above, the larger LN relaxes the
critical condition for cooperators expanding when surrounded
by defectors.

Figures 6 and 7 also show snapshots and time series for the
proposed alternative model, assuming a standard IN and large
LN and shifting from the continuous to the discrete strategy
system, when (Dg,Dr ) = (0.7,0.8) and (0,1) are presumed,
respectively. As mentioned before, the global cooperation
fractions of the respective cases observed in Fig. 3(d) are both
shown to be at a reasonable level, but they nonetheless differ
from each other. Although the result of (Dg,Dr ) = (0.7,0.8) is
a relatively low level of cooperation, the result of (Dg,Dr ) =
(0,1) shows a relatively high cooperation level. This means
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FIG. 6. Snapshots and time series of one of the representative
paths of (Dg,Dr ) = (0.7,0.8) by the proposed model assuming
standard IN, large LN, and a shift from the continuous to the discrete
strategy system, as shown in Fig. 3(d).

that the averaged cooperation fraction shown in the region
of Dg > 3/5 in Fig. 3(d) results from a so-called bistable
(or multistable) feature, where some of the 100 realizations
are absorbed by a lower cooperation level while others are
attracted by a higher cooperation level. Both cases occur in
the regions Dg + Dr > 2/3 and Dg > 3/5. Moreover, in both
cases, fortunately, cooperators survive in the END priod due
to a slower strategy-diffusion effect, which we have discussed
above, and which results from a characteristic of the continu-
ous strategy system. At the next time step after the change from
END to EXP, the strategy system shifts to the discrete strategy
system in both cases. This strategy shifting creates inner stress
in this dynamical system, which introduces transient dynamics

FIG. 7. Snapshots and time series of one of the representative
paths of (Dg,Dr ) = (0,1) for the proposed model, assuming standard
IN, large LN, and a shift from the continuous to the discrete strategy
system, as shown in Fig. 3(d).

into the system other than the initial transient dynamics
we observed at the beginning of the END period. This can
be proved by the fact that the global cooperation fractions in
the early stage of the EXP period in both cases fluctuate (see the
respective time series of Figs. 6 and 7). In Fig. 6 especially,
the fluctuation appears phenomenal. During this fluctuation
process, C clusters surviving the END period undergo fissions
and fusions repeatedly. Also, in the case shown in Fig. 7 alone,
those cooperators happen to be merged into one single C
cluster at the 14th time step. This is the start of expansion
of cooperators in a monotonic way, because defectors are not
able to simultaneously exploit many cooperators belonging to
different C clusters; thus they are prevented from obtaining a
high payoff before the high payoff even becomes possible.
Conversely, in the case shown in Fig. 6, this merging of
cooperators into one single C cluster does not occur. Instead,
they remain spatially segregated clusters, and thus the results
do not show a surge of cooperation, even though fluctuation
continues for a long time. Whether or not an abrupt increase in
emergence of cooperation takes place stochastically, the key
point is that the inner stress brought about by the shifting of
the strategy system increases fluctuation, letting cooperators
merge and dissolve. Just as noise can sometimes work to
improve system efficiency through the so-called resonance
effect, this perturbation works to give a stochastic resonance
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effect. This seems analogous to what Qiu et al. [13] described
as an “annealing” effect.

IV. CONCLUSIONS

We found a nontrivial enhancement of the network reci-
procity for 2 × 2 prisoner’s dilemma games when two
different mechanisms are dovetailed. The first is to presume
a larger strategy update neighborhood than the conventional
assumption of the first neighborhood on the underlying
network, and the second is the strategy-shifting rule, in which
an agent alters from a continuous strategy during the initial
period of a simulation episode (when the global cooperation
fraction is decreasing from its initial value) to a discrete
strategy during a later period (when the global cooperation
fraction begins to increase instead).

These settings in our model can be justified using our
daily observations of events in the real world, where a human
behaves more prudently (by introducing smaller alterations of
strategy) during the early stage of an evolutionary episode,
which is more transient and dynamically chaotic than later
time periods. Furthermore, with better information resources,
a human may learn from indirect neighbors as well as direct
ones, the latter being their opponents in mutual interactions.

Simulation reveals that our model performs well in enhanc-
ing the network reciprocity, and the mechanism behind this is

explained using the concepts of the END and EXP periods we
previously introduced. To summarize, the continuous strategy
adopted in the initial period, i.e., the END period, allows a
larger number of relatively cooperative clusters to survive,
and the large strategy adaptation neighborhood allows those
cooperative clusters to easily expand in the following period,
i.e., the EXP period. More importantly, we found that shifting
from a continuous to a discrete strategy system works to
add a stochastic resonance effect that enables the survival of
cooperators in the period by forming a single C cluster through
repeated fission and fusion of C clusters, which finally causes
a surge in the cooperation level. All our findings related to the
working behind this model might help us to understand the
important mechanism of network reciprocity and the cause of
the emergence of cooperation in real social systems.

Concerning the limitations of the present report, we note
them below. It is about underlying topology. There have
been very extensive accumulations of the previous works on
networks and evolutionary 2 × 2 games (e.g., [1,14–17]).
Since we apply an expanding LN neighborhood as one of
the two combined mechanisms, we must be concerned about
the homogeneity of the network. Although we have assumed a
k = 8 lattice series as representative, it might be meaningful to
use a (k = 4)-lattice series, a ring, a kagome graph, or others.
This paper is preliminary and these are directions for future
work.
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