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We consider developed turbulence in the two-dimensional Gross-Pitaevskii model, which describes wide
classes of phenomena from atomic and optical physics to condensed matter, fluids, and plasma. The well-known
difficulty of the problem is that the hypothetical local spectra of both inverse and direct cascades in the weak-
turbulence approximation carry fluxes that are either zero or have the wrong sign; Such spectra cannot be realized.
We analytically derive the exact flux constancy laws (analogs of Kolmogorov’s 4/5 law for incompressible fluid
turbulence), expressed via the fourth-order moment and valid for any nonlinearity. We confirm the flux laws in
direct numerical simulations. We show that a constant flux is realized by a nonlocal wave interaction in both
the direct and inverse cascades. Wave spectra (second-order moments) are close to slightly (logarithmically)
distorted thermal equilibrium in both cascades.
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Turbulence is a state where pumping and dissipation happen
at very different scales, so the main issue is the nature
of the transfer of a conserved quantity (say, energy) from
pumping to damping due to a nonlinear interaction. Despite
the fundamental importance of this process, there is a certain
terminological (and even conceptual) confusion surrounding
the notion of locality of turbulence cascades. It may seem clear
intuitively: The energy either is transferred locally in k space
by a cascadelike process or jumps directly from the motions
of pumping scales to those of damping scales.

The problems start when one tries to formally sort out
how locality or nonlocality is manifested in the correlation
functions. The simplest case is that of a complete scale
invariance when the statistics at the scales between the
pumping scale lp and the damping scale ld are independent
of lp and ld ; it is then natural to call it a local cascade. Such
cases do exist at least for some inverse cascades; however,
scale invariance is spontaneously broken in direct cascades
(see, e.g., [1]). Indeed, the direct energy cascade in three
dimensions has lp explicitly entering all the velocity structure
functions except the third, which determines the energy flux
through the scale r . The same is true for the direct vorticity
cascade, where all velocity and vorticity correlation functions
contain lp, again, except the triple moment expressing the flux
of squared vorticity [2–4]. Are we to call such turbulence
nonlocal, because the pumping scale explicitly determines the
moments (including the second one, i.e., the energy spectrum),
or to classify it as a local cascade, because the flux through the
scales is constant?

One finds even more confusion in weak turbulence theory,
which aspires to provide a close description solely in terms
of the second moment: If it contains lp and/or ld , turbulence
is called nonlocal [5]. We wish to state here that even in such
cases there must exist a higher-order correlation function that is
universal, i.e., dependent on neither lp,ld nor the mechanisms
of pumping and dissipation.

It is thus important to clearly distinguish nonlocality of
turbulence (when some correlation functions in the inertial
interval depend on the pumping and/or dissipation scales) and
locality of the flux, which corresponds to a single correlation

function independent of lp and ld . Locality of the flux is, in
a sense, a trivial consequence of a conservation law and may
coexist with the nonlocality of turbulence.

Here we show that such coexistence takes place for two-
dimensional (2D) turbulence in the framework of the Gross-
Pitaevskii model. We derive universal (i.e., independent of
lp,ld ) flux relations for both direct and inverse cascades. These
universal flux relations are expressed via the fourth moments.
Yet we show that both cascades are not scale invariant, so the
second moments (and spectral densities) explicitly depend on
the pumping and dissipation scales.

The Gross-Pitaevskii model is one of the most universal
models in physics. It describes wave propagation in a wide
class of phenomena in fluids, solids, and plasma. Applications
include light propagating in media with the Kerr nonlinearity
[6] and nonequilibrium states of cold atoms in Bose-Einstein
condensates [7].

The range of applications is broad because the physical
model is built on a single assumption: the narrow distribution
in the space of momenta of wave vectors. The complex wave
envelope ψ then evolves according to the Gross-Pitaevskii or
nonlinear Schrödinger equation

ψt = i∇2ψ + is|ψ |2ψ. (1)

On the right-hand side, the first term describes a linear
propagation and the second term represents a nonlinear
interaction (of waves or particles). The parameter s in front
of the nonlinear term distinguishes the focusing (attractive)
(s = +1) and defocusing (repulsive) (s = −1) cases.

Equation (1) has two integrals of motion (conserved quan-
tities): the wave action N = ∫ |ψ |2dr and the Hamiltonian
H = ∫ |∇ψ |2 − 1

4 s|ψ |4dr. Assuming a weak nonlinearity, it
can be shown that the cascade of wave action in spectral space
is inverse [5], i.e., directed toward small wave numbers, while
the cascade of the energy is direct. Independent of the sign of
the nonlinearity, the inverse cascade results in the appearance
of large, spatially coherent structures [8,9] and, in the case of
the defocusing nonlinearity, in the accumulation of condensate,
the mode that is spatially coherent across the whole system. In
this study, however, we avoid condensate creation by adding
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FIG. 1. Schematic representation of forcing and damping in
spectral space.

dissipation at low k. Therefore, even though we work with
s = −1, some of our results could be relevant to the focusing
case as well.

We numerically solve Eq. (1) with the defocusing nonlin-
earity, using a standard split-step method [8] modified to be
fourth order accurate in time. Forcing and damping, applied
in spectral space, are represented on the right-hand side of the
equation

iψt + ∇2ψ − |ψ |2ψ = if̂kψ + iĝk. (2)

We use the same code as in Ref. [10], with the numerical
method described in detail in references therein. Our com-
putational domain is square, L × L, with periodic boundary
conditions, so the lowest wave number is determined by the
domain size kmin = 2π/L. All simulation presented here are
done at the same resolution �x = �y = 2π/1024 and time
step �t � 10−5. We use domains up to L = 32π , with grids
up to 16 3862 points.

To deposit wave action into the system we use the additive
forcing gk = |gk|eiφk with random phases φk and amplitudes

|gk| ∝
√

(k2 − k2
l )(k2

r − k2), which are nonzero only in a ring
of wave numbers k ∈ [kl,kr ]. The forcing is normalized to
deposit a specified amount of wave action Ṅ ≡ α, where
N = 〈|ψ |2〉 and angular brackets denote spatial averaging. The
multiplicative forcing fk = −β(k/kd )4(k/kd − 1)2 provides
small-scale damping at k > kd . We use kd ≈ 3kr to include
a contribution of cubic nonlinearity to the direct cascade. In
addition to high-k damping, we have an option to include
low-k friction fk = −(1,1, 1√

2
)γ for k = (0,1,

√
2)kmin. Unless

otherwise specified, we use γ = 6.2α2/3. To distinguish
dissipation at low and high wave numbers we will refer to
them respectively as friction and damping to stress that they
play different roles. The purpose of friction is to absorb the
wave action and prevent the accumulation of condensate, while
the purpose of damping is to absorb the energy and limit the
spectrum to a finite number of modes (see Fig. 1).

One advantage of running at the same resolution is that we
can use the same damping parameters kd = 256 and β = 400
in all simulations. Our studies of the inverse cascade are
done with pumping rings with kl = 68 and kr = 84, while our
simulations of the direct cascade are done with kl = 6kmin and
kr = 9kmin. The strength of forcing and friction are controlled
by α and γ , respectively, which are treated as simulation
parameters.
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FIG. 2. (Color online) Ratio of the correlation function Q(r) to
the input rate of wave action in simulations of inverse (left) and direct
(right) cascades. The data are collected over time and averaged in
the angular direction. The filter removing harmonics with k > kl is
applied before averaging in the inverse cascade runs. Dashes lines are
data in the damping interval of scales.

Notice that α is an input rate of wave action into the system,
which is close to but not exactly equal to the flux into the
inverse cascade α̃. In our simulations of the inverse cascade,
at most 10% of wave action is lost to damping, that is, α̃ �
0.9α. The lost fraction is measured by computing the wave
action consumed by friction in a steady state and also from
simulations without friction, where the slope of N (t) initially
matches the rate of wave deposition α and switches to α̃ later.

We start with the demonstration that the flux laws expressed
in terms of fourth moments are exact and local, that is, inde-
pendent of kp and L. Let us consider steady-state turbulence
and look at the quantity 〈|ψ1 − ψ2|2〉. Here ψ1 and ψ2 refer to
the values at two points separated by the distance r taken in
the interval of the inverse cascade L 
 r 
 k−1

p . This second
moment can be related to the spectral density

〈|ψ1 − ψ2|2〉 =
∫

|ψk|2(1 − cos kr)dk �
∫ ∞

1/r

|ψk|2dk.

Next we use Eq. (2) to take the time derivative of

〈|ψ1 − ψ2|2〉 = 2N − 〈ψ1ψ
∗
2 + ψ∗

1 ψ2〉
and obtain

Q(r) ≡ 2 Im〈ψ∗
1 |ψ2|2ψ2〉 = −α̃. (3)

This exact flux relation is valid for any dimensionality. Note
that the right-hand side is an outcome of all mechanisms of
pumping and dissipation acting at the scales smaller than r ,
i.e., the effective flux of the wave action into the inverse
cascade. This result is nontrivial because it shows that the
fourth correlation function Q(r) is the divergence of the wave
action flux, which is equal to the input rate in the steady state,
and thus does not depend on the distance r .

Simulations with different input rates show that Q(r) scales
as α in the range from the damping scale to the size of the
domain for both the direct and inverse cascades. Simulations
of the inverse cascade confirm the appearance of the plateau
Q(r) = −α̃ for r � rp, as shown in Fig. 2, left panel. Here
we have filtered out small-scale oscillations r < rp, resulting
from spectrally narrow pumping.

For the direct energy cascade, one generally cannot obtain
a scale-invariant flux law since the energy contains two terms:
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FIG. 3. (Color online) (a) Noncompensated and (b) compensated
spectra in simulations with different domain sizes with α = 400.

the quadratic kinetic term |∇ψ |2 and the quartic potential term
|ψ |4. At least for not very strong nonlinearities, when the
potential energy is not very large, we expect the kinetic energy
flux P = ∇2Q to be scale independent, or equivalently Q(r) ∼
r2. The right panel of Fig. 2 shows that indeed Q(r)/α ≈
−4.5(r/rp)2, resulting in P ≈ −18αr−2

p for r � 0.2rp.
Note that our simulations of systems evolving freely,

without friction, show that there is no time interval when the
flux Q is constant in the inverse cascade, while the region
Q ∝ r2 is formed in the direct cascade region. Thus, the flux
law (3) is specific to steady spectra. This by itself is already a
signature of nonlocality: Indeed, in incompressible turbulence,
the 4/5 law of the direct cascade takes place even for decaying
turbulence, while the 3/2 law of the inverse cascade takes
place at a given scale when larger scales continue to evolve
(see, e.g., [11,12]).

Next we look at the spectra, starting with the inverse
cascade. As was observed in Refs. [8,9,13,14], such spectra
are close to thermal equilibrium nk = T/(k2 + k2

μ), where the
temperature T and chemical potential μ ≡ k2

μ are system-
dependent parameters. The transition to the equipartition
region kμ is independent of the size of the domain, as shown in
Fig. 3. When the range of k is limited, there is no equipartition
region at all.

We characterize the degree of nonlinearity by the ratio of
the mean potential energy of interaction to the kinetic energy
Hp/Hk = 〈|ψ |4〉/〈|∇ψ |2〉. In simulations with smaller nonlin-
earities (100 � α � 800, 0.07 < Hp/Hk < 0.15) the spectra
have the weak-turbulence scaling nk ∝ α1/3 [5], confirming the
dominance of resonant four-way interactions [see Fig. 4(a)].
The higher-k parts of compensated spectra (to the immediate
left of pumping) have a well-defined slope, which can be
described by a logarithmic correction. This part of the spectrum
is relatively insensitive to friction. There is a pileup at low k;
the amplitude and location of the pileup depend on the friction.
Adjusting γ , we can minimize the pileup but cannot eliminate
it completely.

The pileup is more pronounced at higher nonlinearities
(2.5 × 104 � α � 1.6 × 106, 0.4 < Hp/Hk < 1.5) eliminat-
ing the part of the spectrum that logarithmically decreases
towards lower k [Fig. 4(b)]. At high nonlinearities we start to
observe a region with action equipartition. The gap at low k

in Fig. 4(b) is similar to the gap in Fig. 3(b); the higher the
α, the wider the gap is. Unlike the amplitude of the pileup,
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FIG. 4. (Color online) Effect of pumping rate on stabilized spec-
tra in simulations with L = 4π . (a) At lower rates nk ∼ α1/3.
(b) At higher rates nk ∼ α1/2 and spectra develop an equipartition
region. Friction was selected to minimize the pileup: γ = 6.2α2/3 for
α � 800 and γ = (250α)1/2 for α � 2.5 × 104. (Numbers in square
brackets denote multiplication by powers of 10.)

which is very sensitive to friction, the width of the gap is
relatively robust; the friction only slightly affects the width of
the equipartition region.

At high input rates the overall level of spectra changes
from nk ∝ α1/3 scaling to nk ∝ α1/2, suggesting a transition
to three-way interactions, which are nonresonant without a
condensate. It could well be that in our case the role of the
condensate (or precondensate) is played by the collection of
low-k modes. The analysis of the degree of coherence between
these modes and their role in interactions with the rest of the
spectrum remains a subject for future work.

A pileup and low-k equipartition, similar to those shown
in Figs. 3 and 4, was observed in simulations of water wave
turbulence and attributed to the bottleneck [15] due to a lack
of low-frequency modes [16]. In our case, we can rule out
this explanation since our simulations performed in increasing
domains show the appearance of the equipartition region even
for moderate α. Note briefly that the form of the spectrum
deviation suggested in Ref. [8] is not supported by our data.

Next we describe the steady-state spectra of the direct
cascade, shown in Fig. 5. Far from the pumping, the spectra
scale as nk ∝ α1/2, similarly to inverse cascades with high
nonlinearities. As we extend our computational domain, we
observe a nonuniversal region at low k and a universal region
at high k (in our case, k > 16). We compare the shape of the
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FIG. 5. (Color online) The left plot shows spectra of the direct
cascade for L = 2π and different α. The right plot shows spectra
with α = 400 compared with the Malkin model, fit with C = 88.
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spectra in the universal region to the theory by Malkin [17].
The theory assumes a nonlocal weakly nonlinear interaction
and describes the shape of the direct cascade in terms of Nk/N ,
which is the fraction of wave action contained within a sphere
of radius k. The spectrum nk is described implicitly through
the equations

nkk
2

k2
min

= C

2π

[
ln

N

Nk

]1/3

, (4)

C

N
ln

kM

k
= p

(
Nk

N

)
, (5)

where C is a constant related to the energy flux and kM is
the cutoff mode. The function p(m) is an integral that can be
expressed in terms of the lower incomplete 	 function P(a,x),
e.g., Eq. (6.5.1) in Ref. [18],

p(m) =
∫ 1

m

ln−1/3 1

y
dy = 	

(
2

3

)
P

(
2

3
, ln

1

m

)
. (6)

To compare our data and the theory predictions, we extract
Nk/N from numerical simulations and verify Eqs. (4) and (5)
individually. The comparison shows good agreement in the
range ln(N/Nk) ∈ [10−3,0.3], or for Nk/N ∈ [0.74,0.999].
We stress that the data are fitted with the single parameter
C = 88 for α = 400. The total wave action N = 405 is
computed from the simulations. As for the cutoff mode, we
use kM = 270, which works better than the damping cutoff
kd = 256. Taking into account that damping is a smooth
function of k, nonzero at k � kd , we find this modification
acceptable. Once we have determined parameter C in Eqs. (4)
and (5), we can combine these equations to describe the
shape of the spectrum in a parametric representation shown
with a solid curve in Fig. 5, right panel. To provide an
explicit expression for nk(k), one can approximate Eq. (6)
as papprox(m) = 3

2 (1 − m)2/3, which gives

nkk
2

k2
min

= C

2π
ln1/3

[
1 −

(
2C

3N
ln

kd

k

)3/2]
. (7)

In the range k ∈ [16,256] where the original theory agrees
with the data, the approximation works as well as the
original parametric representation. The agreement of the final
expression with the data might not be impressive on its
own [for example, nkk

2 ∝ ln1/2(kM/k) also provides a good

fit], however the agreement of underlying arguments gives
additional support to the theory.

Our results can be extended beyond the single value of α,
by taking into account nk ∝ α1/2 scaling, which leads to C =
cα1/2 with c ≈ 4.4. To connect C ∝ (nk)2/3 to the energy flux,
we recall our earlier observation P = ∇2Q ∝ α, illustrated in
Fig. 2, to conclude that C ∝ P 1/3, as proposed by Malkin. Yet
nonlinearity restricts the range of applicability of the theory to
the high-k part of the spectrum. We speculate that the deviation
at small k can be reduced, and the range of applicability could
be extended, if the comparison were done for smaller α.

It is instructive to compare briefly the 2D case considered
here with the 3D case treated within the weak-turbulence
limit in Refs. [19,20]. The inverse cascade is local in three
dimensions [5,19], while the spectrum of the direct cascade
contains a logarithmic factor ln−2/3(klp) [20].

To conclude, we have derived and confirmed exact fourth-
order flux relations for both direct and inverse cascades. We
have found the second moments and the spectra to be nonlocal
for both cascades. The inverse cascade is weakly turbulent at
low pumping rates, while nonlinearity is found to be substantial
for the direct cascade at any input rate and for the inverse
cascade at high input rates.

We wish to stress the general lesson that an exact flux
relation, which contains neither a pumping nor a damping
scale, must exist in the inertial interval of every turbulence.
Such a relation does not preclude turbulence from being
nonlocal, as is the case for the direct cascade in 2D Navier-
Stokes turbulence [4] and as is shown here for both cascades
in the 2D Gross-Pitaevskii model.
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