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Generation of magnetic fields by large-scale vortices in rotating convection
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We propose a self-consistent dynamo mechanism for the generation of large-scale magnetic fields in natural
objects. Recent computational studies have described the formation of large-scale vortices in rotating turbulent
convection. Here we demonstrate that for magnetic Reynolds numbers below the threshold for small-scale dynamo
action, such turbulent flows can sustain large-scale magnetic fields, i.e., fields with a significant component on
the scale of the system.
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Many astrophysical bodies possess large-scale magnetic
fields. These are believed to be the products of hydromag-
netic dynamo action, in which the inductive motions of
an electrically conducting fluid, typically driven by thermal
convection, maintain the magnetic field against Ohmic dissi-
pation. In rapidly rotating, low-viscosity astrophysical bodies,
convective flows appear on scales small compared with the
system size. The most important and long-standing question
in dynamo theory thus concerns the mechanism by which
such small-scale flows can produce magnetic fields at large
scales (i.e., of a size comparable with that of the body itself).
In this Rapid Communication we demonstrate a mechanism
for the generation of large-scale magnetic fields based on the
formation of large-scale vortices (LSVs) in rotating turbulent
convection.

Significant progress on the problem of large-scale magnetic
field generation has been achieved through computational
models, which have shown that convective flows can indeed
produce large-scale fields (e.g., Refs. [1,2]). In these models,
the generation of magnetic fields with a pronounced large-
scale component relies on the presence of coherent convec-
tive vortices aligned with the rotation axis [3,4]. However,
the inescapable difficulty with any numerical model is that
the wide range of dynamical length scales present in natural
flows simply cannot be accommodated, even on present-day
supercomputers. Instead, numerical models employ (either
explicitly or implicitly) a fluid viscosity that is typically at
least ten orders of magnitude larger than that in astrophysical
objects. The use of unrealistically large viscosity presents
two major difficulties in interpreting computational results.
First, the convective vortices assume an artificially large scale
in the numerical models; more realistic simulations (with
lower viscosity) would drive convective flows at much smaller
scales. At these small convective scales, the magnetic Reynolds
number Rm, the ratio of the Ohmic diffusion time scale
to the magnetic induction time scale, is less than unity for
planetary conditions; realistic small-scale convective flows are
therefore unable to maintain magnetic fields through dynamo
action [5]. Second, the simulated flows are considerably less
turbulent than those that occur naturally. In the models,
convective vortices can produce large-scale magnetic fields in
only a relatively laminar regime, where the buoyancy driving
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is moderate [6,7]. When the driving is increased, although
the convective vortices retain their axial structure, they lose
their spatial and temporal coherence, thereby diminishing the
electromotive force responsible for maintaining the large-scale
magnetic field [8,9]. In this case, provided that the magnetic
diffusion is sufficiently small, it is small-scale fields (i.e., of
size comparable with or smaller than the perpendicular length
scale of the convective vortices) that are generated.

This second point is emphasized in Fig. 1, which pinpoints
the location in parameter space of previous numerical models
of convective dynamos in planar geometry [1,7,8,10,11]. The
ordinate plots the Ekman number Ek, the ratio of the rotation
period to the viscous diffusion time scale; for comparison,
Ek ≈ 10−15 in the Earth’s liquid core. The abscissa denotes
the degree of supercriticality of the convection expressed
by the rescaled Rayleigh number, ˜Ra = Ra Ek4/3, where the
Rayleigh number Ra measures the ratio of buoyancy driving
to dissipative effects. Under the Boussinesq approximation
the onset of convection is given by ˜Ra ≈ 8.7 as Ek → 0
[12]. For compressible convection, ˜Ra is depth dependent;
the values shown in Fig. 1 are those given in the referenced
papers [10,11]. The gray symbols represent dynamos that
produce large-scale fields, while the open symbols represent
small-scale dynamos. The crosses and the dashed line denote
the transition between these two types of dynamo reported
by Tilgner [7], which is in agreement with the other studies,
both Boussinesq and compressible. Importantly, Tilgner [7]
emphasized that the transition is located well within the
rapidly rotating convection regime defined by hydrodynamic
studies. Indeed, the transition is located close to the onset of
convection, even as Ek is decreased towards more realistic
values. However, in astrophysical bodies, it is thought that
convection is driven well above onset, in a regime where small-
scale dynamos are to be expected if we were to extrapolate
previous results to small Ek. Consequently, this suggests that
a vital ingredient is missing in these models in terms of
explaining the generation of large-scale magnetic fields. This
missing ingredient must rely on an inviscid process that leads
to the formation of flows at large scales, for which Rm is
sufficiently large to support dynamo action, and operates in
a turbulent regime. This process is traditionally thought to
originate from strong magnetic feedback forces acting on
the flow, leading to a balance in the momentum equation
between magnetic, buoyancy (Archimedean), and Coriolis
forces (so-called MAC balance). Here, based on recent work on
rotating turbulent convection, we propose an alternative view
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FIG. 1. (Color online) Parameter values in (Ek,˜Ra) parameter
space for previous studies of convective planar dynamos. For
compressible convection: Käpylä et al. [10] (�) and Favier and
Bushby [11] (©). For Boussinesq convection: Stellmach and Hansen
[1] (�), Cattaneo and Hughes [8] (�), and Tilgner [7] (×). Gray
(open) symbols indicate dynamos producing large-scale (small-scale)
magnetic fields for Pm = O(1). The crosses and the dashed line
indicate the transition between the two types of dynamos identified
in Tilgner [7]. The red region represents where LSVs occur in
nonmagnetic convection for aspect ratio λ = 1 and Pr = 1 [15]; the
plus symbol is the case studied here.

for the formation of large-scale flows that is hydrodynamical
(rather than magnetohydrodynamical) in origin.

In previous studies of convective dynamos, the flow typi-
cally consists of small-scale vortices. However, recent work in
nonmagnetic rotating planar convection has demonstrated that
large-scale coherent flows can form from turbulent convective
vortices, for both compressible [13,14] and Boussinesq fluids
[15–17]. These large-scale flows consist of depth-invariant,
concentrated cyclonic vortices, which form by the merger of
convective thermal plumes and eventually grow to the size of
the computational domain. Weaker anticyclonic circulations
form in their surroundings. Two conditions are needed for the
formation of a large-scale vortex (LSV): rapid rotation and a
sufficient level of convection-driven turbulence. These may be
quantified as (i) the local Rossby number, a measure of the ratio
of rotation period to convective turnover time scale, �0.1, and
(ii) ˜Ra � 20 [15]. In Fig. 1, the region bounded by these two
conditions (i.e., the parameter window where LSVs occur in
planar geometry) is indicated in red. The bottom line of the red
window corresponds to the smallest Ekman number employed
in Guervilly et al. [15], but we expect the window to extend
towards smaller Ek. Since the range of ˜Ra over which LSVs
occur widens as Ek decreases, we expect that LSVs could well
be present in rapidly rotating astrophysical objects.

In this Rapid Communication we address the important
issue of the nature of the dynamo action resulting from
convection containing LSVs. In particular, can LSVs produce
large-scale magnetic fields? If this is indeed the case, then it
offers a possible resolution to two long-standing problems.
The first concerns the scale of the flows responsible for the
dynamo; the scale of the LSVs is independent of viscosity and
therefore does not become extremely small for Ek � 1. The
second addresses whether large-scale field can be produced far
above the onset of convection; although the formation of LSVs

does need a small Rossby number, crucially it also requires a
certain level of turbulence.

For computational efficiency we employ a local planar
model of rotating Boussinesq convection. The computational
domain is three dimensional and periodic in the horizontal
directions. A vertical temperature difference �T is imposed
across the layer of depth d. The aspect ratio of horizontal to
vertical box dimensions is denoted by λ. The gravitational
field is uniform, g = −gez. The rotation vector is �ez. The
fluid has kinematic viscosity ν, thermal diffusivity κ , magnetic
diffusivity η, density ρ, thermal expansion coefficient α,
and magnetic permeability μ0, all of which are constant.
Lengths are scaled with d, times with 1/(2�), temperature
with �T , and magnetic field with 2�d(ρμ0)1/2. The system
of dimensionless governing equations is

∂u
∂t

+ u·∇u + ez × u

= −∇p + Ek ∇2u + Ra Ek2

Pr
θez + (∇ × B) × B, (1)

∂θ

∂t
+ u·∇θ − uz = Ek

Pr
∇2θ, (2)

∂ B
∂t

= ∇ × (u × B) + Ek

Pm
∇2 B, (3)

where u = (ux,uy,uz) is the (solenoidal) velocity field, p

the pressure, θ the temperature perturbation relative to a
linear background profile, and B = (Bx,By,Bz) the magnetic
field. The dimensionless parameters are the Rayleigh number,
Ra = αg�T d3/κν, the Ekman number, Ek = ν/2�d2, and
the thermal and magnetic Prandtl numbers, Pr = ν/κ and
Pm = ν/η. The upper and lower boundaries are taken to be
perfect thermal and electrical conductors, impermeable and
stress free. Equations (1)–(3) are solved using a pseudospectral
code described in detail in Ref. [18].

We focus on one particular simulation that produces an
LSV in the nonmagnetic case, with Ek = 5 × 10−6, Pr = 1,
Ra = 5 × 108, and λ = 1 (the plus symbol in Fig. 1); the
numerical resolution is 256 × 256 × 257 collocation points.
The Reynolds number, here defined by Re = wd/ν, where
w is the rms vertical (i.e., convective) velocity, is 765. We
vary only the magnetic Prandtl number Pm, which controls
the magnetic diffusivity in Eq. (3), and hence the dynamo
threshold. Our results show that coherent large-scale magnetic
fields are indeed generated in the presence of LSVs, but that the
value of Pm has a crucial influence on the structure of the field
sustained by the flow. At Pm = 0.2, just above the dynamo
threshold, the horizontal magnetic field clearly displays a
system-size structure [Fig. 2(a)], whereas for Pm = 2.5 the
form of the field is drastically different, with structures only at
much smaller scales [Fig. 2(b)].

Figure 3 shows the mean values of the kinetic and magnetic
energies in the saturated (i.e., dynamic) phase as a function
of Pm as it varies from zero (the hydrodynamic case) to
Pm = 2.5. For this Reynolds number, dynamo action ensues
when Pm � 0.2, i.e., for Rm � 153, where Rm = Re Pm is
the magnetic Reynolds number. While the magnetic energy
increases with Pm, as expected, the kinetic energy undergoes a
significant decrease, such that for Pm = 2.5 the kinetic energy
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FIG. 2. (Color online) Horizontal cross sections of Bx at z =
0.25 for (a) Pm = 0.2 and (b) Pm = 2.5.

is one order of magnitude smaller than for the hydrodynamic
case. Above the dynamo threshold, both energies display
large fluctuations (indicated by the black vertical lines); these
decrease for Pm = 2.5, especially those of the kinetic energy.
The decrease of the total kinetic energy corresponds essentially
to the decay of the energy of the LSV (represented by the red
vertical bars), while the vigor of the convective flows at smaller
scales remains relatively unchanged as Pm is increased (blue
bars). The suppression of the LSV when Pm � 1 is confirmed
in Fig. 4(b), which shows a horizontal cross section of the axial
vorticity for Pm = 2.5. The flow is dominated by small-scale
convection, in sharp contrast with the hydrodynamic case
[Fig. 4(a)], in which the flow is organized into a concentrated
cyclone at large scale. The horizontal power spectra of the
velocity corresponding to the snapshots of Fig. 4 are shown
in Fig. 5(a); the horizontal wave number kh = n includes all
modes in the range n − 1/2 � (k2

x + k2
y)1/2 < n + 1/2; kh = 1
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FIG. 3. (Color online) Kinetic (Eu) and magnetic (Eb) energies
as a function of Pm. The dots indicate the mean values, and the black
vertical lines the range of variation of the energies in the saturated
phase. The red vertical bars show the mean kinetic energy in the
LSV [i.e., the energy corresponding to the horizontal wave number
(kx,ky) = (1,1)], and the blue bars the energy in the remainder of the
flow.

(a) (b)

(c) (d)

FIG. 4. (Color online) Horizontal cross sections of the axial
vorticity at z = 0.25 for (a) Pm = 0, (b) Pm = 2.5, and (c) Pm = 0.2
at tmax and (d) tmin. The color scale is bounded by ±0.8 in all the
cases.

corresponds to the LSV. The upscale kinetic energy transfer is
clearly halted for Pm = 2.5 compared with the hydrodynamic
case, while the kinetic energy of the scales in the neighborhood
of, or smaller than, the dominant convective scale (kh ≈ 10)
remains unchanged.

The magnetic field generated at Pm = 2.5 is dominated
by small scales [Fig. 2(b)]. No coherent field is produced
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FIG. 5. (Color online) Horizontal power spectra of (a) the veloc-
ity (eu) and (b) the magnetic field (eb). In (b), the squares and crosses
represent the horizontal and vertical components of the magnetic field,
respectively, for Pm = 0.2 at t = tmax (red symbols) and Pm = 2.5
(black).
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FIG. 6. Time series of the kinetic (Eu, solid black line) and
magnetic (Eb, gray) energies for Pm = 0.2. The vertical dashed
(dotted) line indicates the time t = tmax (t = tmin).

with either a vertical or horizontal large-scale structure. The
small-scale field suppresses the LSV, even though the magnetic
energy is less than half the kinetic energy. For sufficiently
large Pm (i.e., sufficiently large Rm), the suppression of the
LSV is an example of small-scale magnetic field impeding
the transport properties of the flow, as seen in studies of the
interactions between turbulent flows and imposed magnetic
fields [19,20].

By contrast, the behavior at Pm = 0.2 is very different:
Figures 4(c) and 4(d) show two snapshots of the axial vorticity
at a maximum (t = tmax) and a minimum (t = tmin) of the
kinetic energy in the saturated phase. A large-scale cyclone
similar to that produced in the hydrodynamic case is present at
tmax. At tmin, the cyclone is significantly weakened and reduced
in size, but crucially is not entirely destroyed, unlike for Pm =
2.5. The power spectra of the velocity [Fig. 5(a)] show that
the kinetic energy of the LSV for Pm = 0.2 at tmax is slightly
smaller than in the hydrodynamic case. Only the amplitude of
the largest scales (1 � kh � 3) varies significantly during the
fluctuations of the kinetic energy. Figure 6 shows the time
series of the kinetic and magnetic energies for Pm = 0.2.
The kinetic and magnetic fluctuations are anticorrelated and
correspond to cycles of regeneration and suppression of the
LSV. When the magnetic field is weak, the amplitude of
the LSV grows, yielding a rapid increase in the magnetic
energy; when the field becomes sufficiently strong, the LSV
is suppressed, thereby leading to the eventual decrease of the
magnetic field.

The snapshot of Bx in Fig. 2(a) is taken at t = tmax, during
a growing phase of the magnetic energy. Bands of strong
horizontal magnetic field are localized in the shear layers
surrounding the LSV, while the magnetic field is weaker in
the core of the cyclone. The horizontal power spectra of
the horizontal and vertical magnetic field for Pm = 0.2 at
t = tmax are shown in Fig. 5(b); kh = 0 corresponds to the
horizontally averaged mode. The horizontal magnetic energy
is dominated by the largest horizontal scales. The vertical field
displays a finer structure dominated by horizontal length scales
around kh = 6, with only a weak amplitude at larger scales. By
comparison, the horizontal and vertical components of the field

for Pm = 2.5 are dominated by scales in the neighborhood
of the convective scale, with a peak around kh = 10. For
Pm = 0.2, the LSV never entirely disappears; the magnetic
field is then dominated by large-scale bands of horizontal field
during the entire cycle.

In order to determine if a small-scale dynamo may be
present for Pm = 0.2, we reduce the aspect ratio of the
box to λ = 0.25, keeping all other parameters constant.
For this small aspect ratio, the hydrodynamic convection
is dominated by small-scale flows, with no LSV. Here we
find that the dynamo threshold is increased to Pm = 1; thus
there is no small-scale dynamo driven by the convective
flows for Pm < 1. Consequently, the dynamo action ob-
served for 0.2 � Pm < 1 with λ = 1 relies crucially on the
presence of the LSV. The fluctuations of these dynamos
are caused by the amplification of the small-scale magnetic
field due to interactions between the convective flows and
the large-scale magnetic field. This amplification quenches
the LSV, which, in turn, leads to a decrease of the mag-
netic field at all scales. The LSV can eventually regenerate
once the small-scale magnetic field has become sufficiently
weak.

In summary, we have proposed a self-consistent dynamo
mechanism to explain the generation of system-size magnetic
fields by turbulent rotating convection. The dynamo involves
two steps: the formation of LSVs from small-scale convective
flows, and the generation of large-scale magnetic fields by
the action of the LSVs. The large-scale fields concentrate
in the shear layers surrounding the LSVs and are essentially
horizontal. The dynamo operates for small Pm (i.e., moderate
Rm in our simulations, where Re is roughly constant), below
the threshold for small-scale dynamo action. The competition
between the generation of large-scale magnetic fields in
the presence of LSVs, which leads to the amplification of
small-scale magnetic fields by the convective flows, and the
subsequent suppression of the LSVs by these small-scale
fields, yields the fluctuating behavior of this dynamo. Above
the small-scale dynamo threshold, the small-scale magnetic
field acts on the convective flows so as to prevent the formation
of LSVs. In our numerical model, at Ek = 5 × 10−6, this
threshold occurs for Pm � 1, i.e., Rm � 765. However, the
threshold presumably depends on the convective scale and
therefore on Ek, so in the limit of small Ek, the relevant
regime for many astrophysical objects, we might expect that
small-scale dynamo action will require much larger Rm. The
suppression of the LSVs by small-scale magnetic fields at
high Rm probably restricts the relevance of the dynamo
mechanism that we propose here to those astrophysical objects
with moderate Rm. Significantly, however, this includes both
terrestrial and gas planets, for which Rm = O(103–105) at
the system size and Rm < 1 at the convective scale. The
importance of this dynamo is its robustness in the limit of small
Ekman numbers. Indeed, unlike traditional self-consistent
convective dynamo models that rely on the presence of
coherent, viscously controlled columnar flows, the dynamo
discussed here relies on the formation of LSVs, which is
controlled by nonlinear inviscid energy transfers in rapidly
rotating systems. It is important to note that the LSVs consist
essentially of horizontal flows, so they cannot themselves act
as dynamos [21]. In a forthcoming study, we shall investigate
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the dynamo mechanism in detail, and, in particular, describe
how the LSVs modify the three-dimensional flows so as to
generate large-scale magnetic fields.
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