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This paper is a continuation of our work on the development of multiscale numerical scheme from low-speed
isothermal flow to compressible flows at high Mach numbers. In our earlier work [Z. L. Guo et al., Phys. Rev. E
88, 033305 (2013)], a discrete unified gas kinetic scheme (DUGKS) was developed for low-speed flows in which
the Mach number is small so that the flow is nearly incompressible. In the current work, we extend the scheme to
compressible flows with the inclusion of thermal effect and shock discontinuity based on the gas kinetic Shakhov
model. This method is an explicit finite-volume scheme with the coupling of particle transport and collision
in the flux evaluation at a cell interface. As a result, the time step of the method is not limited by the particle
collision time. With the variation of the ratio between the time step and particle collision time, the scheme is an
asymptotic preserving (AP) method, where both the Chapman-Enskog expansion for the Navier-Stokes solution
in the continuum regime and the free transport mechanism in the rarefied limit can be precisely recovered with
a second-order accuracy in both space and time. The DUGKS is an idealized multiscale method for all Knudsen
number flow simulations. A number of numerical tests, including the shock structure problem, the Sod tube
problem in a whole range of degree of rarefaction, and the two-dimensional Riemann problem in both continuum
and rarefied regimes, are performed to validate the scheme. Comparisons with the results of direct simulation
Monte Carlo (DSMC) and other benchmark data demonstrate that the DUGKS is a reliable and efficient method
for multiscale flow problems.
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I. INTRODUCTION

It is a challenging problem to model and simulate nonequi-
librium flows over a wide range of Knudsen number regimes.
The difficulty arises from the different temporal and spatial
scales associated with different flow physics. For instance,
in the transition and free-molecule limit the kinetic physics
in the particle mean-free-path scale has to be considered, and in
the continuum flow regime the hydrodynamic mechanism in a
macroscopic dissipative length scale needs to be modeled. For
a multiscale flow study, one popular numerical strategy is to use
a hybrid approach, where the computational domain is divided
into subdomains with different governing equations [1]. For
instance, in hybrid particle-continuum approaches, the domain
is divided into some macro and micro subdomains, where
particle-based methods, such as molecular dynamics (MD)
or direct simulation Monte Carlo (DSMC), are used in the
micro subdomain, and the continuum Navier-Stokes equations
are used in the macro subdomain. Usually a buffer zone is
employed in the hybrid method between different subdomains
with predefined flow information exchange strategies [2–6]. A
common feature of the hybrid methods is that they are based on
numerical coupling of solutions from different flow regimes,
which are limited to systems with a clear scale separation.
This strategy may encounter great difficulties for flows with a
continuous variation of flow physics [1].

Recently, some efforts have been made to develop numer-
ical schemes for multiscale flows based on kinetic models
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(e.g., the Boltzmann equation or simplified models). These
kinetic schemes attempt to provide a unified flow description
in different regimes through the discretization of the same
kinetic equation in order to avoid the difficulties of hybrid
methods. One of the kinetic schemes is the discrete ordinate
method (DOM) [7–9], which presents accurate solutions in the
kinetic regime, but may have difficulties for near continuum
flow computation due to the use of cell size and time step on
the order of particle mean free path and collision time. In order
to overcome this problem, many asymptotic preserving (AP)
schemes have been developed (e.g., [10–13]), which mostly
can recover the Euler solutions in the continuum limit but
may encounter difficulties for recovering the Navier-Stokes
solutions. Therefore it is still desirable to design kinetic
schemes that can work efficiently and accurately in a wide
range of flow regimes.

The unified gas kinetic scheme (UGKS) is a dynamical
multiscale method with the inclusion of flow physics from
both continuum and free-molecular regimes in its algorithm
development [14,15]. The UGKS is a finite-volume scheme for
the Boltzmann model equations [16], and the particle velocity
space is discretized into a discrete velocity set, like the DOM.
However, in the update of the discrete distribution function the
flow physics from the coupled particle transport and collision
process is followed, and with the variation of scales the
numerical time step is not limited by the particle collision
term. Furthermore, the UGKS adopts the local integral solution
of the kinetic model equation in the reconstruction of the
time-dependent gas distribution function at a cell interface for
flux evaluation, and this flux function includes the flow physics
from the kinetic particle free transport to hydrodynamic wave
propagation. In the original UGKS, besides the update of gas
distribution function, the corresponding macroscopic variables
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are updated as well, which requires additional computation
cost in comparison with DOM method.

An alternative, simpler UGKS method, i.e., the so-called
discrete unified gas kinetic scheme (DUGKS), has been
proposed recently [17]. This scheme is also a finite-volume dis-
cretization of the Boltzmann–Bhatnagar-Gross-Krook (BGK)
equation. But different from the UGKS [14], the flow update is
based on the evolution of a modified distribution function in-
stead of the original one, which removes the implicit treatment
of the collision term inside each control volume in the UGKS.
At the same time, the evolution of macroscopic variables is not
required in DUGKS. Furthermore, the distribution function at
a cell interface in DUGKS is constructed from the averaging
along the characteristic line, instead of the local integral
solution in UGKS. As a result, the formulation can be much
simplified without scarifying the multiscale dynamics. The
DUGKS has the same modeling mechanism as the original
UGKS. The DUGKS has been applied successfully to a
number of gas flows, ranging from continuum to transition
regimes [17].

The previous DUGKS is designed for low-speed isothermal
flow where the Mach number is sufficiently small so that the
flow is nearly incompressible and temperature variations can
be neglected. However, in nonequilibrium flows, temperature
change may be important in both aerospace and microflow
applications. Under such a circumstance, it is necessary to
capture the thermal effect in addition to the fluid dynamics. In
this work, a full DUGKS is developed for nonequilibrium gas
flows with temperature variation. The scheme is constructed
based on the BGK-Shakhov model, which can yield a correct
Prandtl number in the continuum regime [18]. The rest of this
paper is organized as follows. In Sec. II, the full DUGKS is
presented with the analysis of the properties of the scheme. In
Sec. III, a number of numerical tests, ranging from subsonic to
hypersonic flows in different Knudsen regimes, are conducted
to validate the method. In Sec. IV, a brief summary is given.

II. BGK-SHAKHOV MODEL

In kinetic theory, the BGK model [16] uses only one
single relaxation time, which leads to a fixed unit Prandtl
number. In order to overcome this limitation, a number of
improved models, such as the BGK-Shakhov model [18] and
the ellipsoidal statistical model [19], have been proposed based
on different physical considerations. In D-dimensional space,
the BGK-Shakhov model can be expressed as

∂f

∂t
+ ξ · ∇f = � ≡ − 1

τ
[f − f S], (1)

where f = f (x,ξ ,η,ζ ,t) is the velocity distribution function
for particles moving in D-dimensional physical space with
velocity ξ = (ξ1, . . . ,ξD) at position x = (x1, . . . ,xD) and
time t . Here η = (ξD+1, . . . ,ξ3) is a vector of length L =
3 − D, consisting of the rest components of the particle
velocity (ξ1,ξ2,ξ3) in three-dimensional (3D) space; ζ is a
vector of length K representing the internal degree of freedom
of molecules; τ is the relaxation time relating to the dynamic
viscosity μ and pressure p with τ = μ/p, and f S is the

Shakhov equilibrium distribution function given by

f S = f eq

[
1 + (1 − Pr)

c · q
5pRT

(
c2 + η2

RT
− 5

)]
= f eq + fPr, (2)

where f eq is the Maxwellian distribution function, Pr is the
Prandtl number, c = ξ − u is the peculiar velocity with u
being the macroscopic flow velocity, q is the heat flux, R

is the gas constant, and T is the temperature. The Maxwellian
distribution function f eq is given by

f eq = ρ

(2πRT )(3+K)/2
exp

(
−c2 + η2 + ζ 2

2RT

)
, (3)

where ρ is the density. The conservative flow variables are
defined by the moments of the distribution function,

W =
⎛
⎝ ρ

ρu
ρE

⎞
⎠ =

∫
ψ(ξ ,η,ζ )f dξdηdζ , (4)

where ψ = (1,ξ ,(ξ 2 + η2 + ζ 2)/2)T is the collision invariant,
ρE = ρu2/2 + ρε is the total energy, and ε = cV T is the
international energy, with cV being the specific heat capacity
at constant volume. The pressure is related to density and
temperature through an ideal equation of state, p = ρRT , and
the heat flux is defined by

q = 1

2

∫
c(c2 + η2 + ζ 2)f dξdηdζ . (5)

The specific heat capacities at constant pressure and volume
are cp = (5 + K)R/2 and cV = (3 + K)R/2, respectively,
and so the specific heat ratio is

γ = cp

cV

= K + 5

K + 3
. (6)

The stress tensor τ is defined from the second-order moment
of the distribution function,

τ =
∫

cc(f − f eq) dξdηdζ . (7)

The dynamic viscosity μ usually depends on the inter-
molecular interactions. For example, for hard-sphere (HS) or
variable hard-sphere (VHS) molecules,

μ = μref

(
T

Tref

)ω

, (8)

where ω is the index related to the HS or VHS model, μref is
the viscosity at the reference temperature Tref .

The evolution of the distribution function f depends only on
the D-dimensional particle velocity ξ and is irrelevant to η and
ζ . In order to remove the dependence of the passive variables,
two reduced distribution functions can be introduced [7],

g(x,ξ ,t) =
∫

f (x,ξ ,η,ζ ,t)dηdζ , (9a)

h(x,ξ ,t) =
∫

(η2 + ζ 2)f (x,ξ ,η,ζ ,t)dηdζ . (9b)
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From Eq. (4), we can obtain that

ρ =
∫

gdξ , ρu =
∫

ξgdξ ,

(10)

ρE = 1

2

∫
(ξ 2g + h)dξ ,

and the heat flux q and the stress tensor can be computed as

q = 1

2

∫
c(c2g + h)dξ , τ =

∫
cc(g − geq) dξ , (11)

where geq is the reduced equilibrium distribution function
given below.

The evolution equations for g and h can be obtained from
Eq. (1),

∂g

∂t
+ ξ · ∇g = �g ≡ − 1

τ
[g − gS], (12a)

∂h

∂t
+ ξ · ∇h = �h ≡ − 1

τ
[h − hS], (12b)

where the reduced Shakhov distribution functions gS and hS

are given by

gS(x,ξ ,t) =
∫

f S(x,ξ ,η,ζ ,t)dηdζ = geq + gPr, (13a)

hS(x,ξ ,t) =
∫

(η2 + ζ 2)f S(x,ξ ,η,ζ ,t)dηdζ

= heq + hPr, (13b)

with

geq =
∫

f eqdηdζ

= ρ

(2πRT )D/2
exp

[
− (ξ − u)2

2RT

]
, (14a)

heq =
∫

(η2 + ζ 2)f eqdηdζ = (K + 3 − D)RTgeq, (14b)

gPr =
∫

fPrdηdζ

= (1 − Pr)
c · q

5pRT

[
c2

RT
− D − 2

]
geq, (14c)

and

hPr =
∫

(η2 + ζ 2)fPrdηdζ

= (1 − Pr)
c · q

5pRT

[(
c2

RT
− D

)
(K + 3 − D) − 2K

]
×RTgeq. (14d)

With the definitions of the conserved variables, it is easy to
verify that the collision terms �g and �h satisfy the following
conservative laws: ∫

�gdξ = 0,

∫
ξ�gdξ = 0,

(15)∫
(ξ 2�g + �h)dξ = 0.

III. DISCRETE UNIFIED GAS KINETIC SCHEME

A. Updating of the cell-averaged distribution function

The full DUGKS is constructed based on the two reduced
kinetic equations (13). The scheme is a finite-volume formula-
tion of the kinetic equations. For simplicity, we rewrite Eq. (12)
in the following form:

∂φ

∂t
+ ξ · ∇φ = � ≡ − 1

τ
[φ − φS], (16)

for φ = g or h. The domain is decomposed into a set of control
volumes (cells), then the integration of Eq. (16) over cell j

centering at xj from time tn to tn+1 with time step �t leads to

φn+1
j (ξ ) − φn

j (ξ ) + �t

|Vj | Fn+1/2(ξ )

= �t

2

[
�n+1

j (ξ ) + �n
j (ξ )

]
, (17)

where the midpoint rule is used for the time integration of
the convection term and the trapezoidal rule for the collision
term. Such treatment ensures the scheme is of second-order
accuracy in time. Here

Fn+1/2(ξ ) =
∫

∂Vj

(ξ · n)φ(x,ξ ,tn+1/2) dS (18)

is the microflux across the cell interface, where |Vj | and ∂Vj

are the volume and surface of cell Vj , n is the outward unit
vector normal to the surface, and φj and �j are the cell-
averaged values of the distribution function and collision term,
respectively, e.g.,

φn
j (ξ ) = 1

|Vj |
∫

Vj

φ(x,ξ ,tn)dx.

The update rule given by Eq. (17) is implicit due to the
term �n+1

j , which requires the conserved variables Wn+1
j . In

order to remove this implicity, we employ a technique as used
in the development of the isothermal DUGKS [17], i.e., we
introduce a distribution function,

φ̃ = φ − �t

2
� = 2τ + �t

2τ
φ − �t

2τ
φS. (19)

Then Eq. (17) can be rewritten as

φ̃n+1
j = φ̃

+,n
j − �t

|Vj | Fn+1/2, (20)

where

φ̃+ = φ + �t

2
� = 2τ − �t

2τ + �t
φ̃ + 2�t

2τ + �t
φS. (21)

It is noted that from the conservative properties of the
collision operators given by Eq. (15), we can obtain that

ρ =
∫

g̃dξ , ρu =
∫

ξ g̃dξ , ρE = 1

2

∫
(ξ 2g̃ + h̃)dξ .

(22)

Therefore, in practical computations we can track the distribu-
tion function g̃ and h̃ instead of the original ones, which can
evolve explicitly according to Eq. (20), provided the microflux
F at the cell interface at tn+1/2 is obtained. In addition to the
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conserved variables, the heat flux q and stress tensor τ can
also be obtained from φ̃. Actually, it can be shown that

q = 2τ

2τ + �tPr
q̃, with q̃ = 1

2

∫
c(c2g̃ + h̃)dξ . (23)

τ = 2τ

2τ + �t
τ̃ , with τ̃ =

∫
cc

(
g̃ − geq

)
dξ . (24)

B. Flux evaluation

The key in evaluating Fn+1/2 is to reconstruct the distribu-
tion function f n+1/2 at the cell interface. To do so we integrate
Eq. (16) along the characteristic line within a half time step
s = �t/2,

φ (xb,ξ ,tn + s) − φ (xb − ξs,ξ ,tn)

= s

2
[� (xb,ξ ,tn + s) + � (xb − ξs,ξ ,tn)] , (25)

where xb ∈ ∂Vj is the interface center of cell j , and the
trapezoidal rule is again used to evaluate the collision term. It
is noted that the formulation (25) is also implicit due to the col-
lision term �n+1

j . Similar to the treatment for φ̃, we introduce
another distribution function φ̄ to remove the implicity,

φ̄ = φ − s

2
� = 2τ + s

2τ
φ − s

2τ
φS. (26)

Then Eq. (25) can be rewritten as

φ̄(xb,ξ ,tn+1/2) = φ̄+(xb − ξs,ξ ,tn), (27)

where

φ̄+ = φ + s

2
� = 2τ − s

2τ + s
φ̄ + 2s

2τ + s
φS. (28)

Therefore, once φ̄+(xb − ξs,ξ ,tn) is obtained, the distribution
function φ̄(xb,ξ ,tn+1/2) can be determined from Eq. (27). It is
noted that the conserved variables can also be obtained from
ḡ and h̄ like Eq. (22),

ρ =
∫

ḡdξ , ρu =
∫

ξ ḡdξ , ρE = 1

2

∫
(ξ 2ḡ + h̄)dξ ,

(29)

which means that W (xb,tn+1/2) can be obtained from
φ̄(xb,ξ ,tn+1/2) directly. Furthermore, the heat flux q(xb,tn+1/2)
can also be determined from φ̄(xb,ξ ,tn+1/2),

q = 2τ

2τ + sPr
q̄, with q̄ = 1

2

∫
c(c2ḡ + h̄)dξ . (30)

xj+3/2xj+1/2

σj

σj+1

xj+1xj

xj−1/2

FIG. 1. (Color online) Schematic of 1D cell geometry.

Then the Shakhov distribution φS at interface center xb and
time tn+1/2 can be evaluated, and subsequently the original
distribution function can be calculated from Eq. (26) as

φ(xb,ξ ,tn+1/2) = 2τ

2τ + s
φ̄(xb,ξ ,tn + s)

+ s

2τ + s
φS(xb,ξ ,tn + s). (31)

Now the task is to determine the φ̄+(xb − ξs,ξ ,tn). This is
achieved through a reconstruction of the profile of φ̄+(tn) in
each cell. First, we determine the cell-averaged distribution
function φ̄+(tn) at the cell center xj from the tracked
distribution function φ̃(xj ,tn). From Eqs. (19), (26), and (28),
we can obtain that

φ̄+ = 2τ − s

2τ + �t
φ̃ + 3s

2τ + �t
φS. (32)

It should be noted that φ̃+ and φ̄+ are related. Actually, from
Eqs. (21) and (32) we can obtain that

φ̃+ = 4
3 φ̄+ − 1

3 φ̃. (33)

With this relation the computation can be simplified as noted
in the following section.

Assuming that in each cell φ̄+ is linear, then we have

φ̄+(xb − ξs,ξ ,tn) = φ̄+(xj ,ξ ,tn) + (xb − xj − ξs) · σ j ,
(34)

(xb − ξs) ∈ Vj ,

where σ j is the slope of φ̄+ in cell j . As an example, in Fig. 1
a one-dimensional (1D) case is shown. In this case, in order to
reconstruct the distribution function φ at the cell interface
xb = xj+1/2, the distribution function φ̄+ is approximated
as

φ̄+(xb − ξs,ξ,tn) =
{

φ̄+(xj ,ξ,tn) + (xb − ξs − xj )σj , ξ > 0,

φ̄+(xj+1,ξ,tn) + (xb − ξs − xj+1)σj+1, ξ < 0.
(35)

The slope σ j in each cell can be reconstructed from the cell-averaged values using some numerical limiters. For example, in the
1D case shown in Fig. 1, we can use the van Leer limiter [20], i.e.,

σj = [sgn(s1) + sgn(s2)]
|s1||s2|

|s1| + |s2| , (36)

where

s1 = φ̄+
j − φ̄+

j−1

xj − xj−1
, s2 = φ̄+

j+1 − φ̄+
j

xj+1 − xj

. (37)
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C. Evolution procedure

In summary, in the procedure of the DUGKS the flow
evolution from time step tn to tn+1 can be summarized in
the following (assuming xb is the interface center of cell j

centered at xj ):
(1) Calculate the microflux F at cell interface xb and at

time tn+1/2.
(a) Calculate φ̄+ from φ̃ at each cell center with velocity

ξ according to Eq. (32);
(b) Reconstruct the gradient of φ̄+ (i.e., σ ) in each cell

using certain numerical limiters, e.g., Eq. (36) in 1D case;
(c) Reconstruct the distribution function φ̄+ at xb − ξs

according to Eq. (34);
(d) Determine the distribution function φ̄ at cell inter-

face at time tn+1/2 according to Eq. (27);
(e) Calculate the conservative flow variables

W (xb,tn+1/2) and heat flux q(xb,tn+1/2) from
φ̄(xb,ξ ,tn+1/2) [see Eqs. (29) and (30)];

(f) Calculate the original distribution function φ

at cell interface and tn+1/2 from φ̄(xb,ξ ,tn+1/2) and
φS(xb,ξ ,tn+1/2) according to Eq. (31);

(g) Calculate the microflux Fn+1/2 through each cell
interface from φn+1/2 according to Eq. (18).
(2) Calculate φ̃+ at cell center and time tn according to

Eq. (33).
(3) Update the cell-averaged φ̃ in each cell from tn to tn+1

according to Eq. (17).
The particle velocity ξ is continuous in the above procedure.

In practical computations, the velocity space will be discretized
into a set of discrete velocities ξ i (i = 1,2, . . . ,b). Usually
the discrete velocity set is chosen as the abscissas of certain
quadrature rules such as the Gaussian-Hermite or Newton-
Cotes formula, and the integrals in the above procedure will
be replaced by the quadrature. For example, the conservative
variables can be computed as

ρ =
b∑

i=1

wig̃(ξ i), ρu =
b∑

i=1

wiξ i g̃(ξ i),

(38)

ρE = 1

2

b∑
i=1

wi[ξ
2g̃(ξ i) + h̃(ξ )],

where wi is the associate quadrature weights.

IV. ANALYSIS OF DUGKS

We now discuss some important properties of the DUGKS.
First, we will show the DUGKS has the asymptotic preserving
(AP) property [14,21], namely, (i) the time step �t is
independent of the particle collision time for all Knudsen
numbers, and (ii) the scheme is consistent with the Navier-
Stokes equations in the continuum limit. Regarding the time
step, it is noted that the particle transport and collisions are
coupled in the reconstruction of the interface distribution
function, which is necessary for an AP scheme [14]. This
coupling also releases the constraint on the collision time and
the time step as in the operator-splitting schemes, and the time
step can be determined by the Courant-Friedrichs-Lewy (CFL)

condition [14,17],

�t = α
�x

Um + ξm

, (39)

where α is the CFL number, �x is the minimal grid spacing,
ξm is the maximum discrete velocity, and Um is the maximum
flow velocity. �t determined in this way does not depend on
the relaxation time τ , and the DUGKS is uniformly stable with
respect to the Knudsen number.

Regarding point (ii), it is noted that in the continuum limit
as τ � �t , the distribution function in a cell given by Eq. (34)
can be approximated as

φ̄+(xb − ξs,ξ ,tn) = φ̄+(xb,ξ ,tn) − sξ · σ b + O(�x2), (40)

where σ b is the slope of φ̄+(ξ ,tn) at the cell interface xb.
Furthermore, following the procedure given in Appendix B of
Ref. [17], we can show that

φ(xb,ξ ,t) = φS(xb,ξ ,t) − τDtφ
S(xb,ξ ,t) + O(∂2),

(41a)

φS(xb,ξ ,tn + s) = φS(xb,ξ ,tn) + s∂tφ
S(xb,ξ ,tn) + O(∂2).

(41b)

Then, with the aids of these results, we can obtain from
Eqs. (27), (28), and (31) that (refer to Appendix B of Ref. [17])

φ(xb,ξ ,tn + s) ≈ φS(xb,ξ ,tn) − τ (∂t + ξ · ∇)φS(xb,ξ ,tn)

+ s∂tφ
S(xb,ξ ,tn), (42)

which recovers the Chapman-Enskog approximation for the
Navier-Stokes solution [14,22]. This fact suggests that the
DUGKS can be viewed as a Navier-Stokes solver in the con-
tinuum limit. It is also noted that the use of the midpoint and
trapezoidal rules in Eqs. (17) and (25), as well as the linear
reconstruction of the distribution function at the cell interface,
ensures a second-order accuracy in both space and time in the
continuum limit.

On the other hand, in the free-molecule limit where τ �
�t = 2s, we can find from Eq. (28) that φ̄+(xb − ξs,ξ ,tn) ≈
φ̄(xb − ξs,ξ ,tn), and then from Eq. (27) that φ̄(xb,ξ ,tn +
s) = φ̄+(xb − ξs,ξ ,tn) ≈ φ̄(xb − ξs,ξ ,tn). Furthermore, the
relationship between φ̄ and φ as shown in Eq. (26) gives
that φ(xb,ξ ,tn + s) ≈ φ̄(xb,ξ ,tn + s) ≈ φ(xb − ξs,tn), which
is just the collisionless limit.

We now point out some key differences between the present
DUGKS and the UGKS [14,15], which is also designed for all
Knudsen number flows, although both share many common
features such as the multidimensional nature, AP property,
and the coupling of particle transport and collision. The first
key difference is that the cell-averaged conservative variables
W and heat flux q in each cell are required to evolve along
with the cell-averaged distribution functions in the UGKS,
because the collision term is discretized with the trapezoidal
rule and the evaluation of the implicit part needs these
quantities. However, with the newly introduced distribution
function φ̃, the implicity in the collision term is removed in
the DUGKS, and W and q are not required to evolve. The
second key difference between DUGKS and UGKS lies in the
reconstruction of the distribution function at cell interfaces. In
the UGKS [14,15], the interface distribution function φ(xb,t)
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is constructed based on the integral solution of the kinetic
equation with certain approximations, while in the present
DUGKS it is constructed based on the characteristic solution,
which is much simpler. The third difference is that the DUGKS
is solely based on the single relaxation kinetic model due to
its combination of the distribution function and the collision
term, but the UGKS can be extended to the full Boltzmann
collision term as well [23]. Despite these differences, we will
show in the next section that the present DUGKS can yield
numerical predictions nearly the same as the UGKS.

Finally, we make some discussions about the computational
cost of the DUGKS in comparison with several other well-
accepted kinetic methods, i.e., the UGKS, DSMC, and lattice
Boltzmann equation (LBE) methods. (i) As compared with
the UGKS, the DUGKS is expected to be faster because of
the differences in the evolution of the distribution functions at
cell interfaces as discussed above. Both need nearly identical
computational memory, since they use the same number of
grid points in particle velocity space. The numerical tests given
below support this point. (ii) Regarding the DSMC method,
which is a stochastic particle method that decouples the particle
movement and collision process, the time step and cell size are
required to be smaller than the collision time and mean free
path, respectively, and its computational cost is linearly propor-
tional to the number of simulated particles [24]. Therefore, for
highly rarefied high-speed flows the computational efficiency
of DSMC can be higher than the DUGKS with far smaller
memory requirement; but for near continuum low-speed flows
the computational efficiency of DSMC can be much lower than
DUGKS. The statistical noise in DSMC makes it impracticable
for low-speed flows where the flow velocity is far smaller than
the sound speed. On the other hand, the DUGKS has no such
limitation for low-speed and near continuum flows. It is noted
that a variety of improved DSMC methods for reducing the
statistical noise have been developed from different viewpoints
[e.g., 25,26], but the fundamental requirements for the kinetic
scale time step and cell size still limit their applications for the
near continuum flows. (iii) For the LBE method, a regular
lattice (or mesh) associated with the underlying discrete
velocity set is usually adopted [27], which severely limits its
applications for flows with large gradient. A recent numerical
comparative study [28] between the isothermal DUGKS and
LBE indicates that with the same uniform mesh, the LBE can
be about 4 times faster than DUGKS for low-Reynolds-flow
simulations. But, the numerical stability of DUGKS is much
better than LBE with the same uniform mesh. For example, for
the two-dimensional (2D) lid-driven cavity flow the maximum
Reynolds number at which the LBE is stable is about 1900 on
a 128 × 128 mesh, while the computation of the DUGKS is
still stable even at Re = 105 [28]. Furthermore, the DUGKS
can be much more efficient than LBE for high-Reynolds-
number flows with an adaptation of nonuniform mesh. The
performance differences between the present DUGKS and
thermal LBE are expected to be similar, since their structures
in both schemes are the same as the isothermal counterparts.

V. NUMERICAL TESTS

The present DUGKS will be validated by a number of
test problems in different flow regimes in this section. The

problems include 1D and 2D subsonic or supersonic flows.
In the simulations the van Leer limiter [20] is used in the
reconstruction of the interface distribution function.

A. 1D shock structure

The first test case is the argon shock structure from low
to high Mach numbers. The results of the present DUGKS
simulations will be compared with the Boltzmann solution,
DSMC result, and UGKS prediction. The densities, velocities,
and temperatures at upstream (ρ1, u1, T1) and downstream
(ρ2, u2, T2) satisfy the Rankine-Hugoniot conditions [29]. The
Prandtl number and specific heat ratio for argon are Pr = 2/3
and γ = 5/3, respectively, and the viscosity depends on the
temperature, μ ∝ T w, where w relates to the intermolecular
interactions [29]. The mean free path λ is related to the
viscosity as [24]

λ = 2μ(7 − 2w)(5 − 2w)

15ρ(2πRT )1/2
. (43)

In the simulations the flow variables are normalized by
the corresponding upstream quantities, and the characteristic
density, length, velocity, and time are chosen to be ρ1, λ1,√

2RT1, and λ1/
√

2RT1, respectively. Specifically, in our
simulations the upstream quantities are set to be ρ1 = 1.0,
λ1 = 1.0, and T1 = 1.0, and the velocity u1 is determined
from the upstream Mach number Ma = u1/

√
γRT1 specified

case by case. The reference viscosity is set to be μ0 = 0.553 9,
and the downstream quantities are then determined from the
Rankine-Hugoniot conditions:

Ma′ =
√

Ma2(γ − 1) + 2

2γ Ma2 − (γ − 1)
,

ρ2

ρ1
= (γ + 1)Ma2

(γ − 1)Ma2 + 2
,

T2

T1
=

(
1 + γ−1

2 Ma2
)( 2γ

γ−1 Ma2 − 1
)

Ma2
( 2γ

γ−1 + γ−1
2

) ,

(44)

where Ma′ is the downstream Mach number, from which the
downstream velocity u2 can be determined.

The computational domain is chosen to be −25λ1 � x �
25λ1. A uniform mesh with 100 cells is used so that the mesh
space is �x = 0.5λ1. With this mesh, the shock structure
can be well resolved and the numerical results are found to
be grid independent. The discrete velocity set is determined
by the Newton-Cotes quadrature with 101 points distributed
uniformly in [−15,15]. Initially, the distribution functions
at x � 0 are set to be the Maxwellian distribution with the
upstream state, and those at x > 0 are set to be the Maxwellian
distribution with the downstream state. The CFL number used
in all simulations is set to be 0.95.

First we consider the hard-sphere model (i.e., w = 0.5),
which was also studied by Ohwada by solving the full
Boltzmann equation numerically [30], and by Xu and Huang
using the UGKS method with the Shakhov model [31]. In
Fig. 2 the profiles of the normalized density ρ∗ = ρ/ρ1,
temperature T ∗ = T/T1, heat flux q∗

x = qx/p1, and shear
stress τ ∗

xx = τxx/p1(2RT1)3/2 with p1 = ρ1RT1 are shown at
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FIG. 2. (Color online) Shock structure of hard-sphere gas at different Mach numbers (μ0 = 0.553 9): (left) density (ρ∗) and temperature
(T ∗); (right) stress (τ ∗

xx) and heat flux (q∗
x ).

Ma = 1.2 and 3.0. Here the location of the shock is chosen to
be x0 such that ρ(x0) = (ρ1 + ρ2)/2; the heat flux and stress
are computed according to Eqs. (23) and (24). The results are
compared with those of the Boltzmann and UGKS solutions. It
can be seen that the density, temperature, shear stress, and heat
flux predicted by the present DUGKS all agree well with the
UGKS and Boltzmann solutions at Ma = 1.2. In the case of
Ma = 3.0, the results of DUGKS agree well with those of the
UGKS, and the density and stress of both methods agree well
with the Boltzmann data, but clear deviations are observed in
the temperature and heat flux profiles in the upstream region.
Specifically, the temperature profiles predicted by the DUGKS
and the UGKS methods both rise early in the upstream region
in comparison with the Boltzmann solution, and the predicted
heat flux profiles decrease early accordingly. These deviations
are due to the use of a single relaxation time in the Shakhov
collision model employed in the DUGKS and UGKS methods,
which may be reduced by using more complicated collision
models, such as the velocity-dependent relaxation model
or the full Boltzmann model [23,32]. However, the use of
other collision operators will lead to additional computational
cost. It is emphasized here that the difference between the

present DUGKS and the UGKS [31], which is accepted as
a well-established efficient method for flows ranging from
free-molecule to continuum regimes, are rather small. For
instance, at Ma = 3.0 the maximum relative differences in
density and temperature between the two solutions are about
8.09 × 10−5 and 2.24 × 10−4, respectively.

We next test the shock structure of Ma = 8 with w = 0.68
as studied by the DSMC [33] and UGKS [31] methods.
In Fig. 3 the normalized density ρ ′ = (ρ − ρ1)/(ρ2 − ρ1),
temperature T ′ = (T − T1)/(T2 − T1), heat flux q∗

x , and stress
τ ∗
xx are shown and compared with the DSMC and UGKS

data [31,33]. Again the results predicted by the present
DUGKS are in close agreement with those of the UGKS
method, and both compare well with the DSMC results in
the downstream region. However, at this high Mach number
the temperature and the heat flux profiles predicted by the
DUGKS and UGKS methods show even larger deviations in
the upstream region in comparison with those of the DSMC.
The Mach-number-dependent discrepancies in temperature
and heat flux can again be attributed to the relaxation
approximation of the collision operator [24]. On the other
hand, it is noted that the shear stress τxx predicted by the
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FIG. 3. (Color online) Shock structure with Ma = 8 and w = 0.68 (μ0 = 0.553 9): (left) density (ρ ′) and temperature (T ′); (right) stress
(τ ∗

xx) and heat flux (q∗
x ).

present DUGKS agrees well with the DSMC result, and the
peak values of the heat flux predicted by the three methods are
quite close.

The present DUGKS is also tested as a shock-capturing
scheme. This is achieved by varying the cell size �x with
a fixed CFL number, as suggested in [14]. As an example,
the Ma = 1.2 shock structure of a hard-sphere gas with a fixed
upstream mean free path (λ1 = 1.0) is simulated by the present
DUGKS. In the calculations, the cell size �x changes from
0.5λ1 to 100λ1, and the CFL number is fixed at 0.95 so that
the time step changes with the cell size accordingly. In Fig. 4
the density and temperature profiles are shown with different
cell sizes. As observed, the solution goes from a well resolved
to highly under-resolved solution with increasing of cell sizes.
Particularly, as �x = 100λ1 the solution agrees very well with
the exact solution of the Euler equations, suggesting that the
DUGKS becomes an effective shock-capturing scheme in this
case. The low dissipative nature of the DUGKS is due to the
coupling of collision and transport in the reconstruction of the

cell interface flux. It is noted that the discrete ordinate method
(DOM) may encounter numerical instability with �x = 100λ1

and a CFL number 0.95 [14], and a much smaller CFL number
should be used to obtain a stable but more dissipative solution.

B. Shock tube

The second test case is the standard Sod’s shock tube
problem [34]. The computational domain is −0.5 � x � 0.5,
and initially the density, velocity, and pressure are set to be

(ρ,u,p) =
{

(ρ1,u1,p1) = (1.0,0.0,1.0) x � 0;

(ρ2,u2,p2) = (0.125,0.0,0.1) x > 0.
(45)

The gas considered is modeled as hard-sphere molecules such
that the viscosity is determined as μ = μ0(T/T0)0.5, where μ0

is the reference viscosity at reference temperature T0. The
reference mean free path λ0 is then changed by adjusting
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FIG. 4. (Color online) Density and temperature profiles of the shock structure (Ma = 1.2, w = 0.5, μ0 = 0.553 9) with different cell sizes
and CFL number 0.95.
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FIG. 5. (Color online) Density, temperature, and velocity profiles of the shock tube test (μ0 = 10.0).

the μ0,

λ0 = 16

5

μ0

p0

√
RT0

2π
, (46)

where p0 is the reference pressure. Here we take ρ1, p1,
and T1 as the reference density, pressure, and temperature,
respectively. With different μ0, the flow will have different
degree of rarefaction, which can be used to test the capability of
the DUGKS method for simulating flows in different regimes.

In the computation a uniform grid with 100 cells is used
to cover the physical domain, and 201 discrete velocities
uniformly distributed in [−10,10] are used to discretize the
velocity space, and the Newton-Cotes quadrature is used to
evaluate the velocity moments. The CFL number is set to be
0.95 in all simulations, and the output time is t = 0.15. In all
cases the internal freedom is set to be K = 2 so that the ratio
of specific heats is γ = 1.4. In order to make a comparison
with the UGKS, μ0 changes from 10 to 10−5 as in Ref. [14],
such that the flow ranges from continuum to free-molecular
regimes.

Figure 5 shows the density, temperature, and velocity
profiles as μ0 = 10.0, as well as the UGKS results and
the solution of the collisionless Boltzmann equation (see
Appendix A). In this case the corresponding Knudsen number

at the left boundary is about 12.77 and the flow falls in the
free-molecular regime. It can be seen that the DUGKS results
agree excellent with the collisionless Boltzmann solution and
the UGKS data. As μ0 decreases to 0.1, the flow falls in the
slip regime. The result of the DUGKS in this case is shown in
Fig. 6 and compared with the solution of the UGKS method.
The collisionless Boltzmann solution is also included as a
reference to demonstrate the collision effect for slip flows.
The results of the DUGKS and UGKS are nearly identical,
and there are some clear deviations from the collisionless
Boltzmann solutions, which is not surprising since collision
effects are significant in such case.

The results for μ0 = 10−5 are shown in Fig. 7, where the
exact solution of the Euler equations, the results of the BGK
scheme for the Navier-Stokes equations (BGK-NS) [22], and
the results of the UGKS scheme are shown together. In this case
the flow is in the continuum regime and the DUGKS becomes
a shock-capturing scheme. It can be seen that the DUGKS
results agree well with those of the BGK-NS and UGKS
methods, but some deviations from the Euler solution are
observed. The disparity is due to the fact that the interparticle
collision effect is considered in the DUGKS, which means that
the DUGKS solves the Navier-Stokes equations rather than
the Euler ones in this case. Actually, the DUGKS acts like
a shock-capturing method, and the numerical dissipation in
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FIG. 6. (Color online) Density, temperature, and velocity profiles of the shock tube test (μ0 = 0.1).

the discontinuous region plays an important role. The detailed
results are sensitive to the limiters. We note that in many other
shock-capturing methods based on the Euler equations, the
reconstruction is based on the characteristic variables instead
of the conservative ones in order to remove this kind of over-
or undershoot. The agreement between the DUGKS results
and those of the BGK-NS method, which is a Navier-Stokes
solver [22], also confirms this point. The collision effect is
also considered in the UGKS method [14], and so it is not
surprising that similar features are observed in the numerical
results. We also note that numerical oscillation appears at the
contact wave, which may come from the numerical limiter in
the reconstruction of flow variables at cell interfaces [14].

The above results suggest that the DUGKS and UGKS
give almost identical predications from continuum to free-
molecular flows. It is interesting to make a comparison
between their computational costs. A number of tests with

different meshes and discrete velocity sets are carried out, and
it is found that generally the CPU time of the DUGKS is about
70% of that of the UGKS. For instance, with a mesh of 100
cells and 101 discrete velocities, the CPU times for 10 000
iterations of the DUGKS and the UGKS are 9.940 and 14.248
s, respectively.

C. Two-dimensional Riemann problem

We now test the unified property of the DUGKS with the 2D
Riemann problem with constant initial data in each quadrant.
The solution of the Euler equations for this problem can have a
number of different configurations with different initial setups,
and a variety of numerical studies have been reported in the
past two decades [35–40]. Here we choose one of the typical
configurations as listed in Ref. [39], where the initial condition
is given by

(ρ,u,v,p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ1,u1,v1,p1) = (0.531 3, 0, 0, 0.4), x > 0, y > 0,

(ρ2,u2,v2,p2) = (1, 0.727 6, 0, 1), x � 0, y > 0,

(ρ3,u3,v3,p3) = (0.8, 0, 0, 1), x � 0, y � 0,

(ρ4,u4,v4,p4) = (1, 0, 0.7276, 1), x > 0, y � 0.

(47)
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FIG. 7. (Color online) Density, temperature, velocity, and pressure profiles of the shock tube test (μ0 = 10−5).

In our simulations, we set Pr = 2/3 and γ = 1.4. A
400 × 400 uniform mesh is employed to discretize the physical
domain 0 � x,y � 1, and the CFL number is set to be 0.5 in all
simulations. As in the 1D shock tube test, a reference viscosity
μ0 at reference temperature T0 is employed to characterize the
rarefaction of the gas, and the local viscosity is determined
by μ = μ0(T/T0)w with w = 0.5. At the four boundaries the
boundary conditions are set to be ∂nf = 0, where n is the
outward unit normal vector.

We first present the results as μ0 = 10−7. The reference
mean free path λ0 = (μ0/p0)

√
πRT0/2 and the collision

time τ = μ0/p0 are both in the order of 10−7, and the
flow is in the continuum regime. In the simulation a 8 × 8
discrete velocity set based on the half-range Gauss-Hermite
quadrature [41] is employed. The density and temperature
contours at t = 0.25 are shown in Fig. 8. It is clear that in this
case the DUGKS becomes a shock capture scheme, since now
�x = 2.5 × 10−3 � λ0 and �t ∼ 10−4 � τ . The density
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FIG. 8. (Color online) Density and temperature distributions of the 2D Riemann problem (μ0 = 10−7).
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FIG. 9. (Color online) Contours of the density (a), temperature (b), velocity magnitude (c), and velocity streamlines (d) of the 2D Riemann
problem at μ0 = 10. In (a)–(c), the background and dashed lines are from the collisionless Boltzmann equation, and the solid lines are the
DUGKS results. In (d), the dashed lines are the solutions of collisionless Boltzmann equation, and the solid lines are the DUGKS results.

configuration is in excellent agreement with the solution of
Euler equations by different numerical methods (e.g., [39,40]).
It is noted that the temperature configuration for this problem
was rarely presented in previous studies, and here we show it
just for a reference. But we can observe from Fig. 8 that the
temperature structure is consistent with the density structure.

We now test the DUGKS for the problem in the free-
molecular regime by choosing μ0 = 10. In this case the
flow is highly nonequilibrium, although the flow field is
smooth. In order to capture the nonequilibrium effects, the
particle velocity space is discretized with a 201 × 201 mesh
points in [−15,15] × [−15,15] based on the Cotes quadrature.
Furthermore, a uniform mesh with 60 × 60 cells is used in
the physical space, which is sufficient to obtain well-resolved
solutions. In Fig. 9 the density, temperature, velocity magni-
tude [(u2

x + u2
y)1/2], and streamlines are shown at t = 0.15.

For comparison, the results from the solution of collisionless
Boltzmann equation are also presented (see Appendix B). It
can be seen that the flow patterns predicted by the DUGKS
are in excellent agreement with the analytical solutions of
the collisionless Boltzmann equation. The agreement with
available data in both continuum and free-molecular regimes

suggests that the DUGKS has a nice dynamic adaptive property
for multiregime flows, which is desirable for multiscale flow
simulations.

VI. SUMMARY

The capturing of multiscale flow physics of different
regimes uniformly in a numerical scheme is difficult. In this
paper, a finite-volume discrete unified gas kinetic scheme is
developed for multiregime flows. With the implementation of
coupled transport and collision along the characteristic line of
the kinetic equation in the determination of the gas distribution
function and flux at a cell interface, the DUGKS can simulate
flows in different regimes accurately. Particularly, the time step
and cell size in DUGKS are not limited by the particle collision
time and mean free path of gas molecules. With the variation
of the ratio of the time step to the local particle collision time,
a continuum spectrum of flow physics from the rarefied to
the continuum flow regimes can be fully recovered. What is
important for the DUGKS is that it provides a reliable tool
for flow simulation with the coexistence of both continuum
and rarefied flow regimes. The DUGKS has second-order
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accuracy, multidimensional nature, and asymptotic preserving
properties, and the scheme is validated by test problems
ranging from continuum to free-molecular flows. The analysis
and numerical results suggest that the DUGKS is a valuable
method for the multiscale flow physics computation. It is
interesting to note that the DUGKS and UGKS methods
present similar numerical results, and the DUGKS is about
30% faster than UGKS with the same computational mesh
and discrete velocity set.

As a continuation of research in this direction, the DUGKS
can be further improved in several aspects. First, it is well
known that the Shakhov model with a velocity-independent
relaxation time is inadequate for highly rarefied supersonic
nonequilibrium flow simulation, especially for the flow with
significant temperature variation, such as the temperature and
heat flux profiles inside the strong shock structure. A velocity-
dependent relaxation model or the full Boltzmann collision
operator may be employed to improve the prediction of the
DUGKS for these cases [42], which is particularly useful for
high-Mach-number flows. Even though it is easy to incorporate
a generalized relaxation model to the present DUGKS, it
will become difficult to directly include the full Boltzmann
collision term in the DUGKS due to the combined update
of distribution function and collision effect. Other strategies
need to be used to remove such a limitation. For instance,
similar to the UGKS method, we may update the original
distributions and the conservative variables at both cell centers
and cell interfaces simultaneously to avoid the introductions
of f̃ and f̄ , and then extend the DUGKS to include the
full Boltzmann collision operator which has been used in the
improved UGKS [23]. The second possible improvement lies
in the further improvement of accuracy. The present DUGKS
has second-order accuracy in both space and time, which is the
same as the UGKS method. For example, the time accuracy can

be improved by employing a high-order Runge-Kutta method
for time evolution, and the spatial accuracy can be enhanced
with the high-order initial reconstruction for the distribution
function around a cell interface. In this case, the real gas
distribution function instead of the combined function of the
current method should be employed. This may be achieved
by following the strategy used in the UGKS [14]. Another
possible improvement is on the discrete particle velocity
set. Like other deterministic numerical methods for kinetic
equations, a set of discrete velocities should be employed in
the present DUGKS, which may be very large for high-speed
and/or highly nonequilibrium flows. This will lead to a large
amount of computer memory and high computational cost.
The use of adaptive velocity techniques can improve the
computational efficiency greatly [43,44]. All these aspects for
the further development of DUGKS will be considered in our
future work.

Finally, we would like to point out that the present DUGKS
method can be expended to other multiscale transport prob-
lems, such as multiple species and multiphase systems [29].
The kinetic collision operators for these systems are more
complicated, and the interactions among different species
or phases have to be taken into account. But based on
the relaxation kinetic model, a DUGKS can be constructed
following the similar procedure presented in the current work.
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APPENDIX A: SOLUTION OF COLLISIONLESS BOLTZMANN EQUATION FOR THE 1D SHOCK TUBE PROBLEM

For the shock tube problem, the solution of the collisionless Boltzmann equation is

f (x,ξ,t) =
{
f eq(WL), ξ � x/t,

f eq(WR), ξ < x/t.
(A1)

By taking velocity moments of f (x,ξ,t), we can obtain the conservative variables,

ρ(x,t) = ρ1

2
erfc(−ũ1) + ρ2

2
erfc(ũ2), (A2a)

ρu(x,t) = ρ1

2

[
(2RT1/π )1/2 exp

(−ũ2
1

) + u1erfc(−ũ1)
] + ρ2

2

[
(2RT2/π )1/2 exp

(−ũ2
2

) − u2erfc(ũ2)
]
, (A2b)

ρE(x,t) = ρ1

4

{[
u2

1 + (K + 3)RT1
]
erfc(−ũ1) + (u1 + x/t)(2RT2/π )1/2 exp

(−ũ2
2

)}
+ ρ2

4

{[
u2

2 + (K + 3)RT2
]
erfc(ũ2) − (u2 + x/t)(2RT2/π )1/2 exp

(−ũ2
2

)}
, (A2c)

where ũi = (ui − x/t)/
√

(2RTi), and erfc is the complementary error function defined by

erfc(z) = 2√
π

∫ ∞

z

e−t2
dt.
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APPENDIX B: SOLUTION OF COLLISIONLESS BOLTZMANN EQUATION FOR THE 2D RIEMANN PROBLEM

For the 2D Riemann problem, the solution of the collisionless Boltzmann equation is

f (x,y,ξx,ξy,η,t) = f eq(x − ξxt,y − ξyt,ξx,ξy,η,0). (B1)

Then the conservative variables can be obtained by taking the velocity moments of f ,

ρ(x,y,t) = ρ1

4
erfc(ũ1)erfc(ṽ1) + ρ2

4
erfc(−ũ2)erfc(ṽ2) + ρ3

4
erfc(−ũ3)erfc(−ṽ3) + ρ4

4
erfc(ũ4)erfc(−ṽ4), (B2)

ρu(x,y,t) = ρ1

4

[−(2RT1/π )1/2e−ũ2
1 + u1erfc(ũ1)

]
erfc(ṽ1) + ρ2

4

[
(2RT2/π )1/2e−ũ2

2 + u2erfc(−ũ2)
]
erfc(ṽ2)

+ ρ3

4

[
(2RT3/π )1/2e−ũ2

3 + u3erfc(−ũ3)
]
erfc(−ṽ3) + ρ4

4

[−(2RT4/π )1/2e−ũ2
4 + u4erfc(ũ4)

]
erfc(−ṽ4), (B3)

ρv(x,y,t) = ρ1

4

[−(2RT1/π )1/2e−ṽ2
1 + v1erfc(ṽ1)

]
erfc(ũ1) + ρ2

4

[−(2RT2/π )1/2e−ṽ2
2 + v2erfc(−ṽ2)

]
erfc(−ũ2)

+ ρ3

4

[
(2RT3/π )1/2e−ṽ2

3 + v3erfc(−ṽ3)
]
erfc(−ũ3) + ρ4

4

[−(2RT4/π )1/2e−ṽ2
4 + v4erfc(ṽ4)

]
erfc(ũ4), (B4)

and

ρE(x,y,t) = 1
8 (ρ1J1 + ρ2J2 + ρ3J3 + ρ4J4), (B5a)

with

J1(x,y,t) = −[
(y/t + v1) e−ṽ2

1 erfc(ũ1) + (x/t + u1) e−ũ2
1 erfc(ṽ1)

]
(2RT1/π )1/2

+ [
(K + 2)RT1 + u2

1 + v2
1

]
erfc(ũ1)erfc(ṽ1), (B5b)

J2(x,y,t) = −[
(y/t + v2) e−ṽ2

2 erfc(−ũ2) − (x/t + u2) e−ũ2
2 erfc(ṽ2)

]
(2RT2/π )1/2

+ [
(K + 2)RT2 + u2

2 + v2
2

]
erfc(−ũ2)erfc(ṽ2), (B5c)

J3(x,y,t) = [
(y/t + v2) e−ṽ2

3 erfc(−ũ3) + (x/t + u3) e−ũ2
3 erfc(−ṽ3)

]
(2RT3/π )1/2

+ [
(K + 2)RT3 + u2

3 + v2
3

]
erfc(−ũ3)erfc(−ṽ3), (B5d)

J4(x,y,t) = [
(y/t + v4) e−ṽ2

4 erfc(ũ4) − (x/t + u4) e−ũ2
4 erfc(−ṽ4)

]
(2RT4/π )1/2

+ [
(K + 2)RT4 + u2

4 + v2
4

]
erfc(ũ4)erfc(−ṽ4), (B5e)

where ũi = (ui − x/t)/
√

2RTi .

[1] G. A. Radtke, J.-P. M. Péraud, and N. G. Hadjiconstantinou,
Philos. Trans. R. Soc., A 371, 20120182 (2012).

[2] S. T. O’Connell and P. A. Thompson, Phys. Rev. E 52, R5792
(1995).

[3] T. Werder, J. H. Walther, and P. Koumoutsakos, J. Comput. Phys.
205, 373 (2005).

[4] W. N. E, B. Engquist, and Z. Huang, Phys. Rev. B 67, 092101
(2003).

[5] M. K. Borg, D. A. Lockerby, and J. M. Reese, J. Comput. Phys.
255, 149 (2013).

[6] H. A. Carlson, R. Roveda, I. D. Boyd, and G. V. Candler, AIAA
Paper 2004-1180 (2004).

[7] J. Y. Yang and J. C. Huang, J. Comput. Phys. 120, 323 (1995).
[8] Z. H. Li and H. X. Zhang, J. Comput. Phys. 193, 708 (2004).
[9] A. N. Kudryavtsev and A. A. Shershnev, J. Sci. Comput. 57, 42

(2013).
[10] S. Pieraccini and G. Puppo, J. Sci. Comput. 32, 1 (2007).
[11] M. Bennoune, M. Lemo, and L. Mieussens, J. Comput. Phys.

227, 3781 (2008).
[12] F. Filbet and S. Jin, J. Comput. Phys. 229, 7625 (2010).

[13] G. Dimarco and L. Pareschi, Numer. Anal. 51, 1064 (2013).
[14] K. Xu and J.-C. Huang, J. Comput. Phys. 229, 7747 (2010).
[15] J. C. Huang, K. Xu, and P. B. Yu, Commun. Comput. Phys. 12,

662 (2012).
[16] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511

(1954).
[17] Z. L. Guo, K. Xu, and R. J. Wang, Phys. Rev. E 88, 033305

(2013).
[18] E. M. Shakhov, Fluid Dyn. 3, 95 (1968).
[19] L. H. Holway, Phys. Fluids 9, 1658 (1966).
[20] B. van Leer, J. Comput. Phys. 23, 276 (1977).
[21] L. Mieussens, J. Comput. Phys. 253, 138 (2013).
[22] K. Xu, J. Comput. Phys. 171, 289 (2001).
[23] C. Liu, K. Xu, Q. H. Sun, and Q. D. Cai,

arXiv:1405.4479[math.NA].
[24] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation

of Gas Flows (Clarendon Press, Oxford, 1994).
[25] J. Fan and C. Shen, J. Comput. Phys. 167, 393 (2001).
[26] L. L. Baker and N. G. Hadjiconstantinou, Phys. Fluids 17,

051703 (2005).

033313-14

http://dx.doi.org/10.1098/rsta.2012.0182
http://dx.doi.org/10.1098/rsta.2012.0182
http://dx.doi.org/10.1098/rsta.2012.0182
http://dx.doi.org/10.1098/rsta.2012.0182
http://dx.doi.org/10.1103/PhysRevE.52.R5792
http://dx.doi.org/10.1103/PhysRevE.52.R5792
http://dx.doi.org/10.1103/PhysRevE.52.R5792
http://dx.doi.org/10.1103/PhysRevE.52.R5792
http://dx.doi.org/10.1016/j.jcp.2004.11.019
http://dx.doi.org/10.1016/j.jcp.2004.11.019
http://dx.doi.org/10.1016/j.jcp.2004.11.019
http://dx.doi.org/10.1016/j.jcp.2004.11.019
http://dx.doi.org/10.1103/PhysRevB.67.092101
http://dx.doi.org/10.1103/PhysRevB.67.092101
http://dx.doi.org/10.1103/PhysRevB.67.092101
http://dx.doi.org/10.1103/PhysRevB.67.092101
http://dx.doi.org/10.1016/j.jcp.2013.08.022
http://dx.doi.org/10.1016/j.jcp.2013.08.022
http://dx.doi.org/10.1016/j.jcp.2013.08.022
http://dx.doi.org/10.1016/j.jcp.2013.08.022
http://dx.doi.org/10.1006/jcph.1995.1168
http://dx.doi.org/10.1006/jcph.1995.1168
http://dx.doi.org/10.1006/jcph.1995.1168
http://dx.doi.org/10.1006/jcph.1995.1168
http://dx.doi.org/10.1016/j.jcp.2003.08.022
http://dx.doi.org/10.1016/j.jcp.2003.08.022
http://dx.doi.org/10.1016/j.jcp.2003.08.022
http://dx.doi.org/10.1016/j.jcp.2003.08.022
http://dx.doi.org/10.1007/s10915-013-9694-z
http://dx.doi.org/10.1007/s10915-013-9694-z
http://dx.doi.org/10.1007/s10915-013-9694-z
http://dx.doi.org/10.1007/s10915-013-9694-z
http://dx.doi.org/10.1007/s10915-006-9116-6
http://dx.doi.org/10.1007/s10915-006-9116-6
http://dx.doi.org/10.1007/s10915-006-9116-6
http://dx.doi.org/10.1007/s10915-006-9116-6
http://dx.doi.org/10.1016/j.jcp.2007.11.032
http://dx.doi.org/10.1016/j.jcp.2007.11.032
http://dx.doi.org/10.1016/j.jcp.2007.11.032
http://dx.doi.org/10.1016/j.jcp.2007.11.032
http://dx.doi.org/10.1016/j.jcp.2010.06.017
http://dx.doi.org/10.1016/j.jcp.2010.06.017
http://dx.doi.org/10.1016/j.jcp.2010.06.017
http://dx.doi.org/10.1016/j.jcp.2010.06.017
http://dx.doi.org/10.1137/12087606X
http://dx.doi.org/10.1137/12087606X
http://dx.doi.org/10.1137/12087606X
http://dx.doi.org/10.1137/12087606X
http://dx.doi.org/10.1016/j.jcp.2010.06.032
http://dx.doi.org/10.1016/j.jcp.2010.06.032
http://dx.doi.org/10.1016/j.jcp.2010.06.032
http://dx.doi.org/10.1016/j.jcp.2010.06.032
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRevE.88.033305
http://dx.doi.org/10.1103/PhysRevE.88.033305
http://dx.doi.org/10.1103/PhysRevE.88.033305
http://dx.doi.org/10.1103/PhysRevE.88.033305
http://dx.doi.org/10.1007/BF01029546
http://dx.doi.org/10.1007/BF01029546
http://dx.doi.org/10.1007/BF01029546
http://dx.doi.org/10.1007/BF01029546
http://dx.doi.org/10.1063/1.1761920
http://dx.doi.org/10.1063/1.1761920
http://dx.doi.org/10.1063/1.1761920
http://dx.doi.org/10.1063/1.1761920
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/j.jcp.2013.07.002
http://dx.doi.org/10.1016/j.jcp.2013.07.002
http://dx.doi.org/10.1016/j.jcp.2013.07.002
http://dx.doi.org/10.1016/j.jcp.2013.07.002
http://dx.doi.org/10.1006/jcph.2001.6790
http://dx.doi.org/10.1006/jcph.2001.6790
http://dx.doi.org/10.1006/jcph.2001.6790
http://dx.doi.org/10.1006/jcph.2001.6790
http://arxiv.org/abs/arXiv:1405.4479
http://dx.doi.org/10.1006/jcph.2000.6681
http://dx.doi.org/10.1006/jcph.2000.6681
http://dx.doi.org/10.1006/jcph.2000.6681
http://dx.doi.org/10.1006/jcph.2000.6681
http://dx.doi.org/10.1063/1.1899210
http://dx.doi.org/10.1063/1.1899210
http://dx.doi.org/10.1063/1.1899210
http://dx.doi.org/10.1063/1.1899210


DISCRETE UNIFIED GAS . . . . II. THERMAL . . . PHYSICAL REVIEW E 91, 033313 (2015)

[27] Z. L. Guo and C. Shu, Lattice Boltzmann Method and its Appli-
cations in Engineering (World Scientific Publishing, Singapore,
2013).

[28] P. Wang, L. H. Zhu, Z. L. Guo, and K. Xu, Commun. Comput.
Phys. 17, 657 (2015).

[29] S. Harris, An Introduction to the Theory of the Boltzmann
Equation (Dover Publications, New York, 2004).

[30] T. Ohwada, Phys. Fluids A 5, 217 (1993).
[31] K. Xu and J.-C. Huang, IMA J. Appl. Math. 76, 698

(2011).
[32] S. Liu and C. W. Zhong, Phys. Rev. E 89, 033306 (2014).
[33] G. A. Bird, Phys. Fluids 13, 1172 (1970).
[34] G. A. Sod, J. Comput. Phys. 27, 1 (1978).
[35] C. W. Schulz-Rinne, SIAM J. Math. Anal. 24, 76 (1993).

[36] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz, SIAM J. Sci.
Comput. 14, 1394 (1993).

[37] T. Zhang and Y. Zheng, SIAM J. Math. Anal. 21, 593 (1990).
[38] T. Chang, G.-Q. Chen, and S. Yang, Disc. Cont. Dyn. Syst. 1,

555 (1995); ,6, 419 (2000).
[39] P. Lax and X.-D. Liu, SIAM J. Sci. Comput. 19, 319 (1998).
[40] A. Kurganov and E. Tadmor, Numer. Meth. Part. Differ. Equ.

18, 584 (2002).
[41] B. Shizgal, J. Comput. Phys. 41, 309 (1981).
[42] L. Wu, J. M. Reese, and Y. H. Zhang, J. Fluid Mech. 746, 53

(2014).
[43] S. Z. Chen, K. Xu, C. B. Li, and Q. D. Cai, J. Comput. Phys.

231, 6643 (2012).
[44] S. Brull and L. Mieussens, J. Comput. Phys. 266, 22 (2014).

033313-15

http://dx.doi.org/10.4208/cicp.240614.171014a
http://dx.doi.org/10.4208/cicp.240614.171014a
http://dx.doi.org/10.4208/cicp.240614.171014a
http://dx.doi.org/10.4208/cicp.240614.171014a
http://dx.doi.org/10.1063/1.858777
http://dx.doi.org/10.1063/1.858777
http://dx.doi.org/10.1063/1.858777
http://dx.doi.org/10.1063/1.858777
http://dx.doi.org/10.1093/imamat/hxr002
http://dx.doi.org/10.1093/imamat/hxr002
http://dx.doi.org/10.1093/imamat/hxr002
http://dx.doi.org/10.1093/imamat/hxr002
http://dx.doi.org/10.1103/PhysRevE.89.033306
http://dx.doi.org/10.1103/PhysRevE.89.033306
http://dx.doi.org/10.1103/PhysRevE.89.033306
http://dx.doi.org/10.1103/PhysRevE.89.033306
http://dx.doi.org/10.1063/1.1693047
http://dx.doi.org/10.1063/1.1693047
http://dx.doi.org/10.1063/1.1693047
http://dx.doi.org/10.1063/1.1693047
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1137/0524006
http://dx.doi.org/10.1137/0524006
http://dx.doi.org/10.1137/0524006
http://dx.doi.org/10.1137/0524006
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1137/0521032
http://dx.doi.org/10.1137/0521032
http://dx.doi.org/10.1137/0521032
http://dx.doi.org/10.1137/0521032
http://dx.doi.org/10.3934/dcds.1995.1.555
http://dx.doi.org/10.3934/dcds.1995.1.555
http://dx.doi.org/10.3934/dcds.1995.1.555
http://dx.doi.org/10.3934/dcds.1995.1.555
http://dx.doi.org/10.3934/dcds.2000.6.419
http://dx.doi.org/10.3934/dcds.2000.6.419
http://dx.doi.org/10.3934/dcds.2000.6.419
http://dx.doi.org/10.1137/S1064827595291819
http://dx.doi.org/10.1137/S1064827595291819
http://dx.doi.org/10.1137/S1064827595291819
http://dx.doi.org/10.1137/S1064827595291819
http://dx.doi.org/10.1002/num.10025
http://dx.doi.org/10.1002/num.10025
http://dx.doi.org/10.1002/num.10025
http://dx.doi.org/10.1002/num.10025
http://dx.doi.org/10.1016/0021-9991(81)90099-1
http://dx.doi.org/10.1016/0021-9991(81)90099-1
http://dx.doi.org/10.1016/0021-9991(81)90099-1
http://dx.doi.org/10.1016/0021-9991(81)90099-1
http://dx.doi.org/10.1017/jfm.2014.79
http://dx.doi.org/10.1017/jfm.2014.79
http://dx.doi.org/10.1017/jfm.2014.79
http://dx.doi.org/10.1017/jfm.2014.79
http://dx.doi.org/10.1016/j.jcp.2012.05.019
http://dx.doi.org/10.1016/j.jcp.2012.05.019
http://dx.doi.org/10.1016/j.jcp.2012.05.019
http://dx.doi.org/10.1016/j.jcp.2012.05.019
http://dx.doi.org/10.1016/j.jcp.2014.01.050
http://dx.doi.org/10.1016/j.jcp.2014.01.050
http://dx.doi.org/10.1016/j.jcp.2014.01.050
http://dx.doi.org/10.1016/j.jcp.2014.01.050



