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Galilean-invariant Nosé-Hoover-type thermostats
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A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar
in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007)] (AS) but is
based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity
distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the
pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for
thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These
thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions,
being based on the kinetic and configurational definitions of temperature, respectively. Some differences between
the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the
different thermostats. The thermostats based on the configurational temperature produced very similar monotically
decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous
shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear
thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither
purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects
are discussed.
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I. INTRODUCTION

Temperature control in a system of interacting particles
has been the subject of intensive investigation over the last
few decades. A number of schemes have been proposed,
and of them, the deterministic thermostat, in which the
equations of motion are modified to cause a system to have
an average temperature which is predetermined, appears to be
one of the most successful. Under equilibrium thermodynamic
conditions the deterministic thermostats allow simulations to
be performed in other than isoenergetic or NVE conditions.
There is continual interest in developing this subject, which
is in part driven by the demands of nonequilibrium molecular
dynamics (NEMD) simulations in which heat production in the
system requires a thermostatting mechanism to achieve steady-
state conditions with minimal interference of the system’s
physical behavior [1,2].

The Nosé-Hoover (NH) thermostat [3,4], which gives
the canonical distribution of particle positions and momenta
from continuously variable deterministic and time-reversible
trajectories, has perhaps proved to be the most popular
method among the many constant temperature approaches.
A desired temperature in the system is achieved by a feedback
mechanism incorporating an additional dynamical variable or
frictionlike coefficient. The fluctuations of the variable are
driven by the difference between the instantaneous kinetic
temperature (defined through the instantaneous kinetic energy)
and that corresponding to the target temperature. Many
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modifications and generalizations based on the Nosé-Hoover
scheme have been proposed [5–10].

A second main method of controlling the temperature is the
Gaussian thermostat [11,12], in which no additional degree of
freedom is involved, and a multiplier as an additional term
in the equations of motion for the momentum variables is
calculated from a closed expression [1]. Of the two, only
the NH thermostat generates the canonical distribution of
momenta, but if the initial distribution is canonical, then the
Gaussian thermostat preserve it too [1].

The NH and Gaussian thermostats are designed to control
the kinetic temperature and therefore are based on the ideal-gas
thermometer and the average of the sum of the squares of
particle velocities.

Since the seminal paper by Rugh [13], which introduced
a statistical mechanical definition of the thermodynamic
temperature, measures of temperature other than that based
on the kinetic energy have become possible. In fact, there are
many phase functions whose average at equilibrium leads to
the system temperature. It is clear from a later generalization
of Rugh’s expression [14,15] that

kBT = 〈∇H · B(�)〉
〈∇ · B(�)〉 , (1)

where B is a general vector field and � = (q1, . . . ,qN,

p1, . . . ,pN ). Other measures of temperature can be ob-
tained by different choices of the vector field, B(�). For
example, B = (0, . . . ,0,p1, . . . ,pN ) gives the conventional
kinetic temperature, and B = (F1, . . . ,FN ) gives an example
of the so-called “configurational” temperature, 1/kBTconF =
〈−∑

i ∇i · Fi〉/〈
∑

i F2
i 〉. The configurational temperature is

defined solely in terms of the particle positions or configura-
tional properties of the system.
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Different temperature definitions may serve as a foundation
for alternative thermostatting schemes. The first deterministic
thermostat based on the configurational temperature was
invented by Delhommelle and Evans [16]. However, this
thermostat does not generate the canonical ensemble, which
was corrected subsequently by Braga and Travis (NHBT) [17].
The NHBT configurational thermostat generates the canonical
phase-space distribution, and its construction is very much like
the NH kinetic temperature thermostat.

The configurational thermostat is expected to be more
useful than the kinetic thermostat in the field of NEMD,
which generates flow patterns because it does not require prior
knowledge of the form of the local streaming velocity [1,2,18].
In the case of the kinetic thermostat one must know or assume
a priori the streaming velocities at the particle positions to
calculate the thermal component of an atom’s momentum. This
may be problematic, particularly far from equilibrium, where
imposing an assumed velocity profile can produce unphysical
behavior, e.g., such as the so-called “string phase” [16,18]. It
may be expected that temperature control by a configurational
temperature is more appropriate for a system of structured
molecules, as kinetic thermostats are usually applied to the
center-of-mass momenta to avoid the problem of assigning a
streaming velocity at atomic sites [16,19]. In their favor, ther-
mostats that control kinetic temperature are more convenient to
implement in practice as they need only the momenta variables.
Also, the configurational temperature involves the calculation
of the derivative of the force, which for more complex force
fields may not be a trivial exercise, [18], and cutoff effects
can be more pronounced. Also, more recently a number
of previously unrecognized features of the configurational
thermostat have come to light. For example, Hoover and
Hoover [20] observed that there is a rotational contribution
to the configurational temperature. Also the NHBT config-
urational thermostat does not conserve angular momentum,
which is discussed later in this report. Although this should not
be a problem for systems with periodic boundary conditions,
which do not conserve total angular momentum anyway, it
may make the thermostat unsuitable for simulations of isolated
systems of particles, e.g., clusters or individual structured
molecules, by introducing rotation in an uncontrollable way.
Furthermore, for some applications Galilean invariance and
conservation of both total linear and angular momenta are
important. They are, for example, a necessary condition for
producing the correct hydrodynamic behavior in dissipative
particle dynamics (DPD) simulations [21]. Thermostats which
meet these requirements have already been proposed, such
as that of Stoyanov and Groot [21], which builds on the
previous generalizations by Lowe [22] and Peters [23] of
the Andersen thermostat, [24] and the Nosé-Hoover type
thermostat proposed by Allen and Schmid [25], which we refer
to as “NHASv.” A characteristic feature of these thermostats
is that they act on pairs of particles rather than single particles.
The Stoyanov and Groot thermostat involves a stochastic
element and has not been shown to generate the canonical
ensemble. The deterministic NHASv thermostat is based on
relative velocities of pairs of molecules and generates the
canonical distribution of particle positions and momenta. It
conserves total linear and angular momentum and is expected
to be useful in both DPD and MD simulations. Furthermore as

only relative velocities are used to define an instantaneous
temperature, the NHASv thermostat may provide a more
physically realistic temperature control mechanism for fluid
flows and other nonequilibrium situations when compared with
the conventional kinetic thermostats which take averages over
the whole system.

In this work some less well recognized consequences of the
NHBT and NHASv thermostats connected with the angular
momentum and fluid flow are investigated. We propose a new
deterministic thermostat of the NH type based on pairs of
particles and the NHBT equations. The proposed thermostat
generates the canonical distribution, is Galilean invariant and
conserves both total linear and angular momenta. The new
thermostat can be considered to be a counterpart of the NHASv
thermostat.

The pairwise NHASv thermostat is described in Sec. II. In
Sec. III a pairwise thermostat based on the configurational
thermostat is proposed and discussed. The behavior and
performance of both pairwise thermostats are analyzed using
MD simulations of a few model systems. The simulation
details are given in Sec. IV. The main bulk equilibrium
properties are studied in Sec. V, and a specific nonequilbrium
situation, that of Couette flow, is considered in Sec.VI. The
case of small isolated systems is discussed in Sec. VII. In all
simulations a comparison is made of the results obtained with
the NH and NHBT thermostats. Some possible generalizations
of the pairwise NH thermostats are briefly presented in
Sec. VIII and conclusions given in Sec. IX.

II. PAIRWISE NOSÉ-HOOVER THERMOSTAT, NHASv

In this work a classical system of N particles in volume
V interacting with a pairwise potential, φ(rij ), is considered.
The total energy of the system, H (r,p) is the sum of the
potential energy, U (r) = ∑N−1

i=1

∑N
j>i φ(rij ), and the kinetic

energy, K(p) = ∑N
i=1 p2

i /2mi , where pi is the momentum of
particle i with mass mi , at position ri , and rij =| rij |, where
rij = ri − rj . The notation r and p implies the complete set
of coordinates {r1,r2, . . . ,rN } and momenta {p1,p2, . . . ,pN },
respectively. The force acting on particle i is Fi = −∇ri

U =∑
j �=i Fij , with the pair forces satisfying Newton’s third law,

i.e., Fij = −Fji .
A deterministic, Galilean-invariant thermostat based on

relative velocities has been derived by Allen and Schmid [25],
which in its final form can be represented by the following
equations of motion:

dri

dt
= pi

mi

, (2)

dpi

dt
= Fi − ζV i , (3)

dζ

dt
= 1

Qζ

N∑
i

[
pi

mi

· V i − kBT ∇pi
· V i

]
, (4)

where ζ is a dynamical variable or friction-like coefficient
and Qζ is, as in the Nosé-Hoover method, the thermostat
“mass” parameter which determines the extent of coupling
of the thermostat to the system. In the above extension of the
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NH approach, the quantity V i is a function of (r,p), which
can be considered to be a generalized particle velocity. In
the particular case, V i(r,p) ≡ pi the formulas in Eqs. (2)–(4)
reduce to the NH scheme. Averaging of the last or the
thermostatting equation, Eq. (4) yields the expression for the
controlled temperature, TKV ,

kBTKV =
〈∑N

i
pi

mi
· V i

〉
〈 ∑N

i ∇pi
· V i

〉 , (5)

which follows from the general definition of temperature,
where B(�) is set to (0,0, . . . ,0,V1,V2, . . . ,VN ). To make
the scheme suitable for the DPD simulation, Allen and Schmid
wrote the generalized velocity in the pairwise additive form,
V i = ∑

j �=i V ij with V ij = −Vji , where

V ij = (vij · Wij )Wij = W 2
ij (vij · r̂ij )r̂ij , (6)

vij = vi − vj , and vi = pi/mi is a particle velocity. Wij is
a function of the distance between particles i and j , and its
particular form is given below. It can be confirmed that the total
linear momentum, P = ∑

i pi and total angular momentum,
L = ∑

i ri × pi of the system are conserved without any
additional condition; in the NH scheme the conditions P(0) =
0 and L(0) = 0 are required as P(t) = P(0) exp[− ∫ t

0 ζ (t ′) dt ′]
and L(t) = L(0) exp[− ∫ t

0 ζ (t ′) dt ′]. Also, the central and
pairwise additive nature of all forces involved in the scheme
implies the dynamics is Galilean invariant.

Additionally, just as in the case of the NH thermostat, a
subsidiary equation can be added to the equations of motion
which defines the following quantity:

HNHASv(r,p,ζ,s) =
∑

i

p2
i

2mi

+ U (r) + 1

2
Qζζ

2 + kBT ln(s),

(7)

which is conserved. The subsidiary equation for the NHASv
scheme has the form ds/dt = sζ

∑N−1
i=1

∑N
j>i W

2
ij /mij , where

mij = (mimj )/(mi + mj ).
An important feature of the pairwise velocity ther-

mostat is that the phase space function ρ(r,p,ζ ) ∼
exp[−H (r,p)/kBT ] exp(−Qζζ

2/2kBT ) is a stationary solu-
tion of the Liouville equation. It means that the scheme
can generate the canonical ensemble [25], just as NH does;
however, there is no guarantee that it will for all dynamical
systems. In the same paper, the NHASv scheme was tested for
a particular form of the pair force typical of that employed in
DPD, Wij = Wij r̂ij = w(rij )r̂ij , where w(r < rc) = 1 − r/rc

and is zero otherwise (rc is the cutoff distance, which in
general can be different from the interparticle potential cutoff
distance, RC). It was found that the performance of the
scheme in this case is comparable to that of the NH scheme
and can be useful in both DPD and MD simulations. Also,
because only local relative velocities are used to define an
instantaneous temperature it is expected that the NHASv
dynamics may provide a more physically realistic way of
controlling temperature when there are fluid flows in the
modeled system and the property gradients can be large [25].

III. PAIRWISE NHBT THERMOSTAT, NHBTf

The equations of motion of Braga and Travis [17] are

dri

dt
= pi

mi

+ ξFi , (8)

dpi

dt
= Fi , (9)

dξ

dt
= 1

Qξ

∑
i

(
F2

i + kBT ∇ri
· Fi

)
, (10)

which are referred to as the NHBT equations of motion here.
They look similar to the NH scheme but are designed to control
the configurational rather than the kinetic temperature. The
feedback mechanism between the thermostat and the physical
system is through the velocity equation, Eq. (8), rather than
the force one as in NH, and the dynamical variable ξ is driven
by a balance between F2 and ∇ · F. The balance in this case is
through functions which are only particle position dependent.
In the extended system the function

HNHBT(r,p,ξ,χ ) =
∑

i

p2
i

2mi

+ U (r) + 1

2
Qξξ

2 + kBT ln(χ )

(11)

is a conserved quantity. The time dependence of χ is
given by dχ/dt = χξ

∑
i ∇ri

· Fi . The NHBT scheme or
configurational thermostat generates the canonical distribution
in the physical phase space, (r,p) [17], and its behavior satisfies
dP/dt = 0 and dL/dt = ξ

∑
i Fi × pi �= 0, which means that

the total momentum of the system is conserved but the total
angular momentum is not a conserved quantity. In practice, the
nonconservation of the total angular momentum is irrelevant
for most MD calculations as they are usually performed with
the periodic boundary conditions where the L is not conserved
anyway. However, in some cases, such as isolated systems
(clusters of particles or macromolecules) or externally driven
systems (such as by gravity), the conservation of L may be
essential to preserve. Thus, consequences of the application of
the NHBT thermostat to such systems requires clarification,
which is one aspect of this work (see Sec. VII).

The conservation of L can be achieved by a suitable
generalization of the NHBT scheme in the form of the
following set of equations of motion, which are denoted as
“NHBTf”:

dri

dt
= pi

mi

+ ξ
fi
mi

, (12)

dpi

dt
= Fi , (13)

dξ

dt
= 1

Qξ

∑
i

1

mi

(fi · Fi + kBT ∇ri
· fi). (14)

The function, fi(r,p), is in some sense analogous to the V i(r,p)
function in the NHASv thermostat, with the corresponding
pairwise additive property being, fi = ∑

j �=i fij and fij = −fji .
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PIEPRZYK, HEYES, MAĆKOWIAK, AND BRAŃKA PHYSICAL REVIEW E 91, 033312 (2015)

The expression for the temperature, TCf ,

kBTCf =
〈∑

i
1
mi

fi · Fi

〉
〈−∑

i
1
mi

∇ri
· fi

〉 , (15)

follows from Eq. (14) and is a variant of the gen-
eral temperature definition with the field B(�) being
(f1,f2, . . . ,fN,0,0, . . . ,0).

In the special case, fi(r,p)/mi ≡ Fi the NHBTf scheme
reduces to the configurational NHBT thermostat, Eqs. (8), (9),
and (10). In this special case kBTCf reduces to kBTC =
〈∑i(∂U/∂ri)2〉/〈∑i(∂

2U/∂r2
i )〉 which is often denoted in

the literature by TconF [14,15,17]. As shown in Appendix A,
dL/dt = ξ

∑
i fi × pi is equal to zero if

fi =
∑
j �=i

fij =
∑
j �=i

(v̂ij · Fij )v̂ij =
∑
j �=i

Fij (v̂ij · r̂ij )v̂ij . (16)

It is noteworthy that the NHBTf dynamics defined in
Eqs. (12), (13), and (14) together with the above fi form pre-
serves (as does NHASv) all the main features and symmetries
of Newtonian dynamics if the forces between particles are
conservative and pairwise additive. These include conservation
of total linear momentum and angular momentum, and the me-
chanical quantity, G = tP − ∑

i miri , which is related to the
initial coordinate of the center of mass, R = ∑

i miri/
∑

i mi

(details are given in Appendix A).
It can be shown that the density distribution, ρ(r,p,ξ ) ∼

exp[−H (r,p)/kBT ] exp(−Qξξ
2/2kBT ) is a stationary solu-

tion of the Liouville equation, which means that the scheme
generates the canonical ensemble. More specifically, the time
average along a trajectory generated by Eqs. (12)–(14) of any
phase space variable, A(r,p), of an ergodic system is equal to
the canonical ensemble average (or more precisely it is equal
to the MD canonical ensemble NVTPG for systems in periodic
boundary conditions; see Ref. [26]).

As in other NH-type schemes, one extra equation of motion,

dχ

dt
= −χξ

∑
i

∇ri
· fi , (17)

allows us to define a quantity of the extended system,
denoted by HNHBTf(r,p,ξ,χ ), which has units of energy and
is conserved (see Appendix A). This equation is not needed to
generate the evolution of the system. The constant of motion
HNHBTf has the same form as HNHBT given in Eq. (11). Some
details on the calculation of the ∇ri

· f i term and its formula
for the LJ interaction are given in Appendix B.

IV. SIMULATIONS

In order to assess the performance of the new pair-
particle-based or NHBTf scheme, several tests for equilibrium
bulk systems, small clusters, and a fluid undergoing shear
flow were performed. Comparisons with two well-established
thermostats, the kinetic NH and the configurational NHBT,
were made. Calculations were performed also for the NHASv
thermostat, which has already been exploited for the “water”
DPD model in the work of Allen and Schmid. How it performs
for other model pair potentials is investigated. In most of the
tests the systems were composed of particles interacting with
the Lennard-Jones potential, φ(r) = 4ε[(σ/r)12 − (σ/r)6].

The calculated quantities are given in conventional pair
potential reduced units of ε and σ for the energy and
length scales, respectively, and time is in units of σ (m/ε)1/2,
temperature in ε/kB , pressure in ε/σ 3, and the diffusion
coefficient is in σ (εm)1/2. The thermostat parameter, Qζ or
Qξ is in the LJ reduced units, mσ 2 for NH, σ 2/m for NHASv,
(ε2m)/σ 2 for NHBT, and ε2/(mσ 2) for NHBTf. For bulk
systems periodic boundary conditions were applied and most
of the calculations were performed with N = 864 particles.
The interaction potential cutoff was RC = 4. Isolated clusters
of different size composed of N = 7, 13, and 33 particles
were considered, which are referred to as LJ7, LJ13, and LJ33,
respectively.

The Runge-Kutta algorithm was used to integrate the
equations of motion of the clusters or small systems, and
the velocity Verlet algorithm which requires only two force
calculations per time step was used to integrate equations of
the bulk systems with a larger number of particles. The time
step was dt = 0.0005. After equilibration, the time averages
were calculated from simulations of order, 0.5 × 106 time steps
for the bulk systems and up to 10 million time steps for the
clusters.

For the NH-type thermostats the value of Qζ or Qξ needs
to be chosen carefully. In practice appropriate values can
be established by performing preliminary simulations and
finding a range where the distribution function of the dynam-
ical variable is Gaussian to a good approximation [27,28].
The known dependence of Qζ ∼ T and Qζ ∼ N in the
case of the NH thermostat [29,30] was also exploited. For
the NHASv method a similar dependence is observed. In the
case of the NHBT and NHBTf thermostats, the N dependence
appears to be Qξ ∼ N2, which means that for most N and
T we have Qξ � Qζ (in reduced units). In the calculations
Qζ ∼ 100–400 for NH and NHASv, and Qξ ∼ 1–8 × 106

for NHBT and NHBTf were used. For the NH, NHASv,
NHBT, and NHBTf thermostats the imposed temperature T

is controlled through the suitable feedback, which leads to the
expressions for the controlled temperatures, TK,TKV ,TC , and
TCf , respectively. In the NHASv thermostat, for example, the
value of T is introduced into the equation for the variable ζ ,
which acts as a target temperature. From time averaging of
this equation, kBTKV as given in Eq. (5) can be calculated,
where TKV is called the “controlled temperature,” as it should
be equal to T if the scheme is working properly. In the same
simulation the averages needed to calculate TK , TC , and TCf ,
which we call “calculated” or “measured” temperatures, are
also accumulated. A measured temperature like any other static
average is expected to have a 1/N dependence. The controlled
temperature is always (within statistical uncertainly) equal to T

(by construction), but the measured temperatures may display
a different N dependence, which is clearly evident in Fig. 1.
Therefore, in simulations with any of these thermostatting
schemes, apart from the controlled temperature, the other
three temperatures can be calculated, e.g., in the NH scheme
the kinetic temperature TK is the controlled temperature,
and the measured three temperatures, i.e., TKV ,TCf ,TC , can
be computed from expressions in Eqs. (5) and (15) and
k−1
B 〈∑i(∂U/∂ri)2〉/〈∑i(∂

2U/∂r2
i 〉, respectively. They are all

special cases of the statistical mechanical definition of temper-
ature in Eq. (1), which should be the same in the large system
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GALILEAN-INVARIANT NOSÉ-HOOVER-TYPE THERMOSTATS PHYSICAL REVIEW E 91, 033312 (2015)

0 0.005 0.01

1.59

1.6

1.61

T

1/N

 

 

NH
0 0.005 0.01

1.59

1.6

1.61

T

1/N

 

 

NHASv

0 0.005 0.01

1.59

1.6

1.61

T

1/N

 

 

NHBT
0 0.005 0.01

1.59

1.6

1.61

T

1/N

 

 

NHBTf

(a) (b)

(c) (d)

FIG. 1. (Color online) Variation of the controlled (solid lines)
and measured (dashed lines) temperature values with system size
using the (a) NH, (b) NHASv, (c) NHBT, and (d) NHBTf ther-
mostats. The symbols are results for the LJ fluid at T = 1.6,
ρ = 0.3 for N = 108,500,1372. In each subplot �,	,©, and ×
stand for TK,TKV ,TC , and TCf , respectively. Results for the other
simulated state points were tested in the same way: (T ,ρ) =
(1.6,0.8442),(1.6,0.5),(0.722,0.8442) are similar, and the discrep-
ancy for N � 500 is less than 0.3 %.

limit [14]. In Fig. 1 it is shown that, in fact, the calculated
temperatures with the four dynamical schemes are practically
the same as the imposed temperature equal for systems for
more than about 500 particles in the simulation cell.

V. EQUILIBRIUM BULK SYSTEM PROPERTIES

Some basic thermodynamic properties of several LJ fluid
state points were calculated using the four different thermostat-
ting schemes. The results for the potential energy per particle,

the pressure, and the heat capacity are given in Table I. The heat
capacity was calculated from the energy fluctuation formula.

As may be seen from the table, the averages obtained are
identical within the statistical uncertainly of the simulations.
Also the uncertainties in the calculated quantities are compa-
rable demonstrating a similar efficiency of the four schemes.
Furthermore, the calculated radial distribution functions, g(r),
at the same state points were practically insensitive to the
thermostatting scheme applied. Thus, as far as structural and
thermodynamic properties are concerned, all four thermostats
give the same results within the statistical uncertainty of the
simulation values.

Some basic time-dependent functions were calculated to
examine the effect of the thermostats on dynamical properties.
These are the mean-square displacement (MSD), velocity
autocorrelation function (vACF), and autocorrelation function
of the off-diagonal component of the stress tensor (σACF). As
can be seen in Fig. 2, all three functions are unaffected by the
choice of the thermostatting scheme.

The diffusion coefficient calculated from the MSD and
vACF for a few state points given in Table II are self-consistent.
Also, the values of the shear viscosity obtained from the
integral of σACF show reasonable agreement. This time the
correlation function is based on a many-particle property and
therefore shows a greater statistical uncertainty than for the
vACF, which is based on a single particle property, for the
same simulation time.

An effective thermostatting scheme must steer the system
to a target temperature and respond to a change in this
temperature so that the calculated temperature follows closely
the targeted temperature without any spurious trends or long-
lived oscillations. In order to explore this issue, and how
well the thermostats perform in this regard, Fig. 3 shows the
response of the system to a sudden temperature increase to T2

followed by its sudden drop to the initial value, T1, at a later
time. The time-accumulated controlled temperature for each
type of thermostat is shown in each case. The accumulation
starts after each change or pulse of T .

TABLE I. Potential energy, U , pressure P , and heat capacity, CV of the LJ fluid (N = 864) obtained from simulations at four state points
using the different thermostatting schemes. The long-range correction, computed with g(r > RC) = 1 is added to U and P . In the last column
the data from Johnson et al. [31] and from Sadus et al. [32] are given. The asterisk indicates that the value was obtained from formulas (7) and
(9) in Ref. [31]. The numbers in parentheses are the uncertainties in the final digits.

NH NHASv NHBT NHBTf Literature

T = 0.722 U − 6.082(2) − 6.085(2) − 6.082(2) − 6.083(4) − 6.0883*a

ρ = 0.8442 P 0.161(5) 0.162(5) 0.161(4) 0.162(5) 0.1550*a

CV 2.98(47) 2.73(22) 2.64(13) 2.74(21) −
T = 1.6 U − 5.230(1) − 5.231(1) − 5.231(2) − 5.233(2) − 5.2508*a

ρ = 0.8442 P 4.915(3) 4.910(4) 4.909(3) 4.910(3) 4.9112*a

CV 2.90(47) 2.42(23) 2.38(5) 2.34(14) 2.40b

T = 1.6 U − 3.284(2) − 3.284(2) − 3.284(2) − 3.284(2) − 3.284(2)a

ρ = 0.5 P 0.547(2) 0.547(1) 0.547(3) 0.551(4) 0.552(3)a

CV 1.82(24) 2.02(15) 1.89(10) 1.86(10) 1.90b

T = 1.6 U − 2.036(3) − 2.036(3) − 2.037(3) − 2.036(3) − 2.030(6)a

ρ = 0.3 P 0.278(1) 0.278(1) 0.278(1) 0.278(2) 0.277(1)a

CV 2.10(28) 2.05(11) 1.89(6) 1.82(23) 1.85b

aJohnson et al. [31].
bSadus et al. [32].
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FIG. 2. (Color online) Three types of time-dependent function
are shown, namely: (a) the mean-square displacement, MSD, (b)
the velocity autocorrelation function vACF, and (c) the off-diagonal
pressure tensor autocorrelation function σACF. At each LJ fluid
state point (T ,ρ), considered the time correlation functions of the
four thermostats are practically indistinguishable on the scale of the
graphs. The transport coefficients derived from these functions are
given in Table II.
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FIG. 3. (Color online) The extent of temperature control where
the target temperature is a function of time. Calculations were
performed for the LJ fluid (ρ = 0.8442,N = 256,RC = 2.5). The
target temperature was changed from T1 = 2 to T2 = 3 at t = 25 and
returned to T1 at t = 50. The insets show the temperature evolution
just after the change of the targeted temperature value. The figure also
shows the pair distance cutoff (rc) dependence of T for the NHASv
thermostat.

The calculated temperature quickly responds to the target
value after the temperature is changed suddenly for all four
thermostats. However, the NH and NHASv schemes show
a slight oscillatory behavior just after the temperature step.
This effect, seen better in the insets, is sensitive to the Qζ

value but could not be completely eliminated by tuning this
parameter. Also, the value of rc in the NHASv scheme has
an effect on the way the targeted temperature is reached after
the pulse. This might have been expected as this parameter
regulates the number of particles involved in the thermalization
of the system. For small rc < RC the heat bath is coupled
with the physical system through only a few particles. For
simulations, the case where rc = RC appears to be an optimal
choice.

TABLE II. Transport properties of LJ liquid (N = 864) at the same state points as in Table I computed using the different thermostats. The
self-diffusion coefficient, D, was calculated from the mean square displacement (MSD) and the velocity autocorrelation function (vACF). The
shear viscosity, η, was computed from the corresponding time correlation function [33]. The numbers in parentheses are the uncertainties in
the final digits.

NH NHASv NHBT NHBTf Woodcock [34]

T = 0.722 DMSD 0.030(1) 0.030(1) 0.030(1) 0.030(1) 0.032
ρ = 0.8442 DvACF 0.030(1) 0.030(1) 0.030(1) 0.030(1) −

η 2.62(58) 2.60(32) 2.42(70) 2.56(42) 2.535
T = 1.6 DMSD 0.090(2) 0.089(2) 0.090(2) 0.090(1)
ρ = 0.8442 DvACF 0.091(3) 0.089(3) 0.090(3) 0.090(2)

η 2.34(35) 2.15(24) 2.19(20) 2.27(50)
T = 1.6 DMSD 0.344(3) 0.343(3) 0.346(2) 0.343(4)
ρ = 0.5 DvACF 0.350(5) 0.348(6) 0.353(4) 0.347(8)

η 0.43(8) 0.41(6) 0.44(6) 0.44(8)
T = 1.6 DMSD 0.682(5) 0.682(6) 0.683(5) 0.679(7)
ρ = 0.3 DvACF 0.693(4) 0.693(4) 0.695(4) 0.691(4)

η 0.18(2) 0.17(2) 0.16(2) 0.18(3)
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To summarize, we note that the simulations carried out
for a range of static and dynamic properties of the LJ
fluid demonstrate that the two pair thermostats, NHASv
and NHBTf, give the same results within the simulation
statistical uncertainty as the more established thermostats
(NH and NHBT) for key physical properties which specify
the thermodynamic and dynamical states of the system. In
these specific examples no particular advantages between the
pair thermostats have been observed. For equilibrium bulk
properties, the NH scheme, being formally the simplest and
the easiest one to implement, is the recommended method in
our judgment.

VI. NONEQUILIBRIUM PROPERTIES

The behavior of the two pairwise thermostats in the
nonequilibrium regime was explored using a WCA model fluid
subjected to planar Couette flow. A series of nonequilibrium
molecular dynamics (NEMD) simulations was performed with
N = 2048, T = 0.722, and ρ = 0.8442, which are the same
conditions as those used in previous tests of kinetic and
configurational thermostats by Evans and Sarman [16,35].
The Sllod algorithm was used to generate planar Couette
flow with shear rates ranging between γ = 0.1 to 5.0. In the
calculations, the time step, dt = 0.001, and averages were
calculated from production simulations of 1 million steps, after
establishing a nonequilibrium steady state of 0.2 million steps.
The thermostat “mass” parameters were 400,0.6,6 × 106, and
8 × 106 for the NH, NHASv, NHBT, and NHBTf dynamics,
respectively. The shear viscosity was calculated from the ratio
of the shear stress to the shear rate: η = −〈Pxy〉/γ . The
results obtained using the different thermostats are plotted
in Fig. 4. The viscosity obtained with the NHBTf thermostat
closely follows the results produced with the configurational
thermostat (NHBT) at all studied shear rates. The viscosity
decreases smoothly with increasing shear rate, without any
accompanying shear-induced ordering evident in the snapshots
of the particle positions. The shear rate dependence of the
viscosity of the NH and NHASv thermostats is similar only
to that obtained with NHBTf and NHBT at lower shear rates.
At γ ≈ 2.4, a sudden drop in viscosity is clearly visible in the
figure for the NH thermostat. The sharp transition in the shear
thinning profile is connected with formation of the so-called
“string phase,” which was much studied in the 1980s (see,
for example, Refs. [36,37]). A snapshot of projected particle
coordinates on the yz plane shown in the inset indicates that
for the NH thermostat there is partial shear-induced ordering
along the flow direction for shear rates in excess of ca.
2.4 ± 0.1. In the case of the NHASv thermostat, in contrast, the
viscosity gradually increases with shear rate within the same
γ range. Such “shear thickening” was previously observed in
NEMD simulations and might be a consequence of the constant
volume condition (see the discussion in Ref. [16,18]). Thus,
it may be concluded that the NHASv dynamics cannot be
considered as a practical thermostatting scheme for systems
away from equilibrium. Although, at lower shear rates the
behavior of η(γ ) produced by NHASv is practically the same
as that under the NH, NHBT, and NHBTf dynamics. It should
be stressed that for nonequilibrium systems the definition of
temperature is still problematical, and the nonkinetic energy
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FIG. 4. (Color online) Shear viscosity versus shear rate for the
Couette flow simulations of the WCA system at ρ = 0.8442 and T =
0.722 (N = 2048). The results obtained using different deterministic
thermostats are presented according to the given symbols, where
filled symbols are results from [18]. For ca. γ > 2.4 a sharp decrease
of viscosity is visible for the NH thermostat and a more gradual
increase in η for the NHASv thermostat. The corresponding snapshot
of particle positions in the yz plane (bottom) for the NH thermostat
indicates the formation of the string phase. Under NHBT and NHBTf
dynamics the viscosity decreases smoothly, and the snapshot of
particle positions (top) shows no ordering effect. Such an apparently
random pattern of molecular coordinates is also seen for the NHASv
dynamics case.

defined thermostats built on the definition given in Eq. (1)
assume the thermodynamic definition of temperature exists
away from equilibrium (see Chap. 10 in Ref. [1] for further
discussion of this issue).

VII. ISOLATED SMALL SYSTEMS

Studies of isolated systems consisting of a small number
of particles, such as microclusters, must take into account
those specific characteristics which distinguish them from
bulk systems. The isolated system generally conserves not
only the total energy and total translational momentum but
also the total angular momentum. As has previously been
demonstrated [38–40] conservation of the angular momentum
can considerably influence the properties of this type of system.
It causes, for example, the local kinetic temperature of each
atom to be inhomogeneous within the cluster. Atoms farther
from the center of mass are at a lower temperature than those
near the center [41]. Thus, it is necessary in a thermostatting
scheme to conserve the total angular momentum and allow for
the effects of inhomogeneity of local temperature.

As shown in Secs. II and III, both pairwise thermostats
conserve the total angular momentum but the NHBT scheme
does not provide conservation of L. Consequently, for exam-
ple, an atomic cluster at rest [i.e., with L(t = 0) = 0], driven
by the NHBT equations starts to rotate in an unpredictable
manner, and this unphysical aspect of the NHBT thermostat is
illustrated in the bottom set of curves of Fig. 5. This feature
makes the NHBT scheme unsuitable for studies of finite-sized
systems such as isolated molecules and microclusters.
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FIG. 5. (Color online) Time evolution of the total angular mo-
mentum L(t), in LJ13 cluster at T = 0.15. The bottom part of the
graph (the curves starting with L = 0 at t = 0) shows that the initial
condition, L(0) = 0, is not preserved by the NHBT dynamics. The
upper part of the figure illustrates the situation for an initially rotating
cluster with Lz(0) = 8,Lx(0) = Ly(0) = 0. In this case only Lz(t) is
shown, and, as seen, only NHASv and NHBTf dynamics conserve
the initial angular momentum.

In Fig. 6 the local temperature obtained for the small
nonrotating LJ clusters with NH, NHASv, and NHBTf
dynamics are shown. The local temperature is defined by
T κ

i = 2〈κi〉/3kB , where κi is the kinetic energy of ith atom.
During the simulations the N particle clusters remain in their
stable solid structures. As can be seen in the figure the results
produced by the different thermostats are mutually consistent
and display the expected behavior of a lower temperature for
more distant atoms and a lower inhomogeneity of the local
temperature for larger clusters. The results confirm also the
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Tκ i

〈r i〉

NH NHASv NHBTf

N=33 
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FIG. 6. (Color online) The local kinetic temperature T κ
i against

the atom average distance from the cluster center of mass, 〈ri〉. The
data were obtained using NH, NHASv, and NHBTf thermostatted
dynamics for nonrotating [i.e., L(t) = 0] LJ7,LJ13, and LJ33 clusters
at T = 0.1. The dashed lines are the theoretical curves from Eq. (18).
The atomic positions from the center of mass form groups on the
figure, reflecting the coordination shells of the stable solid clusters
(seven atoms form a pentagonal bipyramid, 13 atoms form an
icosahedron, and 33 atoms a dodecahedron).

validity of the theoretical predictions of Refs. [40,41],

T κ
i =

(
1 − 1

N
− 2m〈ri〉2

3〈I 〉
)

TK, (18)

which are the dashed lines on the figure. In the above
expression, TK = 2〈K〉/(3N − 6) is the kinetic temperature,
ri is the atom’s distance from the center of mass, and in the
derivation a quasi-isotropic shape of the cluster was assumed,
Ix � Iy � Iz = I (this assumption is obeyed well for the
LJ7,LJ13, and LJ33 clusters). The last term in the expression
in Eq. (18) demonstrates how the conservation of total angular
momentum affects the kinetic temperature of the atoms.

In the more general case of a cluster with nonzero total
angular momentum the evaluation of its kinetic temperature
TK as well as the local temperature T κ

i requires knowledge
of the rotational component of nonrigid systems. There are
two methods to deal with this angular momentum conser-
vation problem. There is a special Monte Carlo sampling
technique [42] and a partitioning scheme separating vibra-
tional and rotational components of instantaneous kinetic
energy [39,43]. The second method, which we exploit in
this work, introduces the instantaneous angular velocity ω(t)
defined by the relation L = I(t) · ω(t), where I(t) is the
instantaneous tensor of inertia of the cluster. Knowledge of
the fixed vector L = ∑

i ri × pi = const and calculation at
each instant the tensor, I(t), gives the time evolution of ω

as I−1 · L. The rotational component of the kinetic energy,
KR , is then obtained as ω · L/2. Thus, a nonrigid cluster at
any t is represented via a certain rigid body rotating with
angular velocity ω(t) and having the same I(t) and L. With
this approach the vibrational component KV = K − KR or
equivalently KV = ∑N

i [pi − mi(ω × ri)]2/2mi [39] can now
be obtained from which TKV

= 2 < KV > /(3N − 6) (the
cluster does not shift, P = 0). From the vibrational part one
obtains κi = [pi − mi(ω × ri)]2/2mi , which allows the local
kinetic temperature T κ

i to be determined.
Some results for small rotating clusters driven by the

NHBTf and NHASv dynamics are shown in Figs. 7 and 8 for
the case of the LJ13 cluster where the total angular momentum
is Lx = Ly = 0,Lz = 8. As shown in Fig. 7 in both cases
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FIG. 7. (Color online) Time evolution of the vibrational (TKV
)

and rotational (TKR
) kinetic temperature of a rotating LJ13 cluster

at T = 0.2. The data are generated using the pairwise thermostats,
NHASv and NHBTf for Lz(t) = 8,Lx(t) = Ly(t) = 0.
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FIG. 8. (Color online) The local kinetic temperature T κ
i of the

rotating cluster LJ13 at T = 0.15. The dashed line is the theoretical
curve in Eq. (18). The cluster rotates around the z axis, where Lz(t) =
8 and Lx(t) = Ly(t) = 0. The rotation causes a slight distortion of
the initial spherical top symmetry and consequently, as shown in the
inset, a splitting of the outer coordination shell takes place.

the calculated TKV
follows closely the targeted temperature,

T = 0.2. The corresponding “rotational temperature” TKR
=

2 < KR > /(3N − 6) indicates almost the same contribution
from KR and KV to the total kinetic energy in this case.

The calculations performed for rotating LJ7, LJ13, LJ33

clusters demonstrate that the local kinetic temperature displays
a very similar ri,N , and TK dependence to that observed for
nonrotating clusters (i.e., L = 0) and can be well represented
by the same expression in Eq. (18). As may be seen in
Fig. 8 for all i atoms in the cluster T κ

i (Lz = 8) ≈ T κ
i (L = 0).

Note, however, that the rotation around the z axis causes
a slight distortion of the cluster, which becomes an oblate
spheroid. This is visible in the inset, which shows splitting
of the outer atomic shell. These calculations indicate that
even considerable rotation of the cluster has a minor effect
on the local kinetic temperature. A more significant effect can
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FIG. 9. (Color online) Temperature dependence of heat capacity
CV for the LJ13 cluster. The solid line and solid triangles are data from
Refs. [42] and [44], respectively. The symbols marked in the figure
are results obtained with the deterministic thermostats NH, NHASv,
and NHBTf for the nonrotating cluster, and NHASv and NHBTf for
the rotating cluster, where Lz(t) = 8 and Lx(t) = Ly(t) = 0.

be observed in other properties, however, such as the heat
capacity. In Fig. 9 the heat capacity CV versus the temperature
for a nonrotating and rotating LJ13 clusters is shown. The
results produced with the canonical NHBTf and NHASv
dynamics reproduce well the data obtained previously with
the modified Monte Carlo method [42] and Nosé molecular
dynamics [44].

Note that because NHBT dynamics do not conserve angular
momentum and the NH dynamics can be exploited only in the
particular case of L = 0 (see Fig. 5), the pairwise deterministic
canonical dynamics (NHBTf, NHASv) are a valuable tool for
investigating the dynamical behavior of a rotating cluster at
constant temperature.

VIII. EXTENSIONS OF THE PAIRWISE THERMOSTATS

In the NHASv and NHBTf thermostats the precise form
of the pairwise functions V i and fi is determined by Wij =
w(rij )r̂ij and the interparticle force F(rij ), respectively. It
can be shown formally that in both cases these particular
forms can be replaced by an arbitrary differentiable function
Aij = A(rij )r̂ij . This presents a potential route to derive a
more suitable form for the pairwise functions which could,
for example, make NHASv less sensitive to the time step
or simplify the calculations of ∇ri

· f i (a problem noted
in Ref. [18]). Our preliminary calculations indicate that the
NHBTf dynamics with A(r) = n/rn+1 applied to the LJ fluid
yields the same results as in Table I obtained with A(r) = F (r)
providing 6 < n < 18. Thus, from a practical point of view
it looks like the A(r) functions should not be substantially
different to F (r) or W (r) in analytic form with similar constant
and exponent values.

The pairwise thermostats considered in this work are not
purely kinetic or configurational thermostats because both
V i and fi depend on the positions and momenta of the
particles. The form of the NHASv equations of motion and
their performance makes the NHASv thermostat more closely
related to the kinetic NH thermostat, however. Similarly the
NHBTf thermostat is closer to the configurational NHBT
thermostat. These two deterministic thermostats can also be
viewed as special cases of the general equations of motion,

dri

dt
= pi

mi

+ ξ
fi
mi

, (19)

dpi

dt
= Fi − ζV i , (20)

dζ

dt
= 1

Qζ

N∑
i

[
pi

mi

· V i − kBT ∇pi
· V i

]
, (21)

dξ

dt
= 1

Qξ

∑
i

1

mi

(fi · Fi + kBT ∇ri
· fi). (22)

The above set of equations preserves the main features of
the NHBTf and NHASv thermostats, in that they produce
the canonical distribution, preserve P, L, and G, and are
Galilean invariant. This is the form proposed by Kusnezov,
Bulgac, and Bauer [6,45], and being a two-variable thermostat
is considered to be more efficient in thermalizing nonmixing
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systems than one-variable thermostats. More investigations
along these lines would be required, however, to assess the
practical usefulness of such an approach.

IX. CONCLUSIONS

The pairwise NH-type thermostat, NHBTf, proposed in
this work extends the methodology of deterministic equations
of motion in generating a canonical distribution. In contrast
to some other widely used schemes, the NHBTf thermostat
involves pairs of particles. This general approach was used
recently by Allen and Schmid to formulate the pair velocity
thermostat, denoted here by “NHASv,” in the context of the
DPD simulations. Both pairwise thermostats generate the
canonical distribution, are Galilean invariant, and conserve all
the basic properties of linear momentum, angular momentum,
total energy of the extended system, and the center of mass. In
this sense the pairwise scheme seems be the most appropriate
of the deterministic thermostat schemes in generating canon-
ical dynamics which are as close to Newtonian dynamics as
can be achieved currently.

In this work in a number of test calculations the practical at-
tributes of the pairwise thermostats were studied and compared
with the kinetic NH and configurational NHBT thermostats.
It was demonstrated that a valuable and unique feature of the
pairwise thermostats is their unconditional conservation of the
total angular momentum. This property allows a new pairwise
NH-type thermostat to be proposed and tested for various
properties of rotating isolated systems and for bulk systems
where a small part of the system executes concerted rotational
motion. As far as equilibrium bulk systems are concerned
the pairwise thermostats offer no practical advantages over
the currently widely used thermostats (especially the Nosé-
Hoover one). In fact, their efficiency is lower than the
NH method owing to the more computationally demanding
calculations of the thermostat functions (i.e., fi or V i). To
some extent the problem of simplifying the ∇ri

· f i term in
the NHBTf thermostat equations may be solved by exploiting
the nonuniqueness of the W (r) and fi functions.

Differences between the four thermostats considered be-
come evident at large shear rates in Sllod Couette flow NEMD
simulations. The Braga-Travis (NHBT) thermostat and the
pairwise extension of it (NHBTf) produce a monotonically
decreasing viscosity with increasing shear rate, which main-
tains a disordered liquid-like internal structure throughout.
The Nosé-Hoover thermostat produces discontinuous shear
thinning and in parallel the formation of the string phase. The
NHASv thermostat exhibits a transition from shear thinning to
shear thickening at high shear rate. It may be no coincidence
that the NHASv equations of motion bear some similarity
to a Stokesian dynamics (SD) model, which also showed
continuous shear thickening [46–48]. The SD equations of
motion incorporate a contribution to the force on the particle
involving the pair velocities (in that case to represent the
lubrication interaction between colloidal particles). Shear
thickening can be associated with the formation of jammed
cluster of rapidly growing dimensions, which it appears from
these studies are more likely to develop with the locally
more “responsive” NHASv thermostat than the other pairwise

thermostat (NHBTf), which acts on the velocity rather than
the acceleration of the particle.

It is worth noting that the pairwise thermostats considered
here are in fact neither purely kinetic (as is the NH method)
nor purely configurational (like the NHBT method). They can
be considered to be special cases of more general prescription
and set of equations encapsulated in Eqs. (19)–(22), which
might provide a pathway to make future improvements.

The pairwise thermostats will have an advantage in the
molecular simulation of bulk polyatomic molecular systems
and isolated clusters, as the rotation of the body can have
a significant influence on the structural, vibrational, and
thermodynamic properties of the system (an example of
this influence can be seen in Fig. 9). Evaporation [49] and
nucleation [50] processes, the onset of microturbulence in
liquids [51], and cluster collision dynamics [43,52] are areas
of possible specific application of the pairwise thermostats.
Almost 20 years ago a Monte Carlo sampling method was
proposed to deal with the rotating cluster problem [42]. The
pairwise thermostats are the first deterministic counterpart of
this MC method, which additionally allows us to explore the
dynamical (time-dependent) properties of rotating clusters.
Finally, the pair thermostat may be useful for studying
very dilute systems (even when there are periodic boundary
conditions) such as a high-temperature gas phase composed
of nonspherical particles (or their mixtures) in which the
molecules spend a relatively large period of time performing
ballistic motion between collisions.
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APPENDIX A: CONSTANTS OF MOTION OF THE
NHBTf DYNAMICS

In this Appendix the conservation of four quantities in
the NHBTf dynamics is shown: total linear and angular
momentum, pseudoenergy, and the center-of-mass-related
quantity G.

1. Total linear momentum

The conservation of total momentum, P = ∑
i pi , in the

NHBTf scheme follows directly from Eq. (13) and the pairwise
additive form of forces Fij = −Fji :

dP
dt

= d

dt

∑
i

pi =
∑

i

d

dt
pi =

∑
i

Fi =
∑
i �=j

Fij = 0.

(A1)

2. Total angular momentum

In order to prove that the total angular momentum L =∑
i Li = ∑

i ri × pi is conserved or L = const we show that
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dL/dt = 0. Taking into account Eqs. (12) and (13) and
∑

i pi × pi/mi = 0,
∑

i ri × Fi = 0 it follows that

dL
dt

=
∑

i

dri

dt
× pi +

∑
i

ri × dpi

dt

=
∑

i

pi

mi

× pi + ξ
∑

i

fi
mi

× pi +
∑

i

ri × Fi

= ξ
∑

i

fi
mi

× pi . (A2)

Next, the pairwise function fi is substituted,

∑
i

fi
mi

× pi =
∑

i

⎡
⎣ N∑

j �=i

(vij · Fij )
vij

v2
ij

⎤
⎦ × vi

=
[

(v12 · F12)
v12

v2
12

+ (v13 · F13)
v13

v2
13

+ · · · + (v1N · F1N )
v1N

v2
1N

]
× v1

+
[

(v21 · F21)
v21

v2
21

+ (v23 · F23)
v23

v2
23

+ · · · + (v2N · F2N )
v2N

v2
2N

]
× v2

+ · · · +
[

(vN1 · FN1)
vN1

v2
N1

+ (vN2 · FN2)
vN2

v2
N2

+ · · · + (vN(N−1) · FN(N−1))
vN(N−1)

v2
N(N−1)

]
× vN . (A3)

In this sum for each term ((vij · Fij )vij /v
2
ij ) × vi there exists the corresponding term [(vji · Fji)vji/v

2
ji] × vj . Because

vij = −vji and Fij = −Fji , their sum is (vij · Fij )(vij × vij )/v2
ij = 0, which means that the entire sum,

∑
i fi × pi/mi = 0, and

consequently L = const.

3. The quantity HNHBTf

The conservation of HNHBTf = ∑
i p2

i /2m + U (r) + Qξξ
2/2 + kBT ln(χ ) follows from the following straightforward algebra:

dHNHBTf

dt
=

∑
i

pi

mi

· dpi

dt
−

∑
i

Fi · dri

dt
+ Qξξ

dξ

dt
+ kBT

1

χ

dχ

dt

=
∑

i

pi

m
· Fi −

∑
i

Fi · pi

mi

− ξ
∑

i

Fi · fi
mi

+ ξ

[∑
i

Fi · fi
mi

+ kBT
∑

i

1

mi

∂fi
∂ri

]
− kBT ξ

∑
i

1

mi

∂fi
∂ri

=
∑

i

pi

m
· Fi −

∑
i

Fi · pi

mi

− ξ
∑

i

Fi · fi
mi

+ ξ
∑

i

Fi · fi
mi

+ kBT ξ
∑

i

1

mi

∂fi
∂ri

− kBT ξ
∑

i

1

mi

∂fi
∂ri

= 0. (A4)

In the last expression the terms cancel in pairs for arbitrary fi .

4. The quantity G

In the NHBTf dynamics in addition to the “energy,” the total linear and angular momentum, the quantity, G = Pt − ∑
miri , is

also a constant of motion. This can be proved by noting first that the sum,
∑

i fi = ∑
i

∑N
j �=i(vij · Fij )vij /v

2
ij = 0, which follows

directly from the property (vij · Fij )vij = −(vji · Fji)vji . This sum is simply related to the time derivative of the quantity G,
through

dG
dt

= dP
dt

t + P −
∑

i

mi

dri

dt
= P −

∑
i

pi −
∑

i

ξ fi = −ξ
∑

i

fi , (A5)

where in the calculations the conservation of the total momentum P = ∑
i pi = const was used. Thus, dG/dt = 0 and G = const.

In the situation when the total momentum, P = 0, the center of mass of the system remains constant with time.

APPENDIX B: CALCULATION OF ∇ri · fi

The NHBTf dynamics involve the calculation of the derivative of the fi function. In general the derivation of the analytical
expression for this quantity may not be a straightforward exercise as it is a similar problem to the calculation of the configurational
Laplacian of the potential energy in the NHBT scheme [18]. In this appendix the expression for a pairwise additive potential is
derived.
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Writing,

fi =
N∑

j �=i

(v̂ij · Fij )v̂ij =
N∑

j �=i

αij v̂ij , (B1)

where

αij = v̂ij · Fij , (B2)

we have

∇ri
· fi = ∇ri

·
N∑

j �=i

αij v̂ij =
N∑

j �=i

∇ri
· αij v̂ij =

N∑
j �=i

(∇αij · v̂ij + αij∇ · v̂ij ) =
N∑

j �=i

∇αij · v̂ij . (B3)

In the calculation of ∇αij = ∇(v̂ij · Fij ) the vector identity

∇(A · B) = A · ∇B + B · ∇A + A × (∇ × B) + B × (∇ × A) (B4)

where A,B are arbitrary vectors, and ∇B,∇A are dyads, can be exploited.
Thus,

∇(v · F) = v · ∇F + F · ∇v + v × (∇ × F) + F × (∇ × v), (B5)

where for clarity the indices are omitted. Because ∇v = 0, ∇ × F = 0, and ∇ × v = 0, the last three terms are zero, and thus

∇(v · F) = v · ∇F. (B6)

We calculate now the expression

1

v2
v · (v · ∇F) = 1

v2
(x̂vx + ŷvy + ẑvz) · (v · ∇F)

= 1

v2

[
vx

(
vx

∂Fx

∂x
+ vy

∂Fx

∂y
+ vz

∂Fx

∂z

)
+ vy

(
vx

∂Fy

∂x
+ vy

∂Fy

∂y
+ vz

∂Fy

∂z

)

+ vz

(
vx

∂Fz

∂x
+ vy

∂Fz

∂y
+ vz

∂Fz

∂z

)]
(B7)

which in terms of the potential energy has the following form:

1

v2
v · (v · ∇F) = − 1

v2

[
vx

(
vx

∂2U

∂x2
+ vy

∂2U

∂x∂y
+ vz

∂2U

∂x∂z

)
+ vy

(
vx

∂2U

∂y∂x
+ vy

∂2U

∂y2
+ vz

∂2U

∂y∂z

)

+vz

(
vx

∂2U

∂z∂x
+ vy

∂2U

∂z∂y
+ vz

∂2U

∂z2

) ]

= − 1

v2

[
vx

∂

∂x

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
+ vy

∂

∂y

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

+ vz

∂

∂z

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

) ]
U

= − 1

v2

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
U

= − 1

v2
(v · ∇)(v · ∇)U = − 1

v2
(v · ∇)2U, (B8)

from which it follows finally that

∇ri
· fi = ∇ri

·
N∑

j �=i

(v̂ij · Fij )v̂ij =
N∑

j �=i

∇ri
· (v̂ij · Fij )v̂ij

= −
N∑

j �=i

1

v2
ij

(vij · ∇)2U = −
N∑

j �=i

(v̂ij · ∇)2U (B9)

= −
N∑

j �=i

1

rij

∂U

∂rij

+
(

∂2U

∂r2
ij

− 1

rij

∂U

∂rij

)
(v̂ij · r̂ij )2. (B10)
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For the Lennard-Jones potential the first and second spatial derivatives are given, respectively, by

∂U

∂rij

= −24
ε

σ

[
2

(
σ

rij

)13

−
(

σ

rij

)7
]

(B11)

and

∂2U

∂r2
ij

= 24
ε

σ 2

[
26

(
σ

rij

)14

− 7

(
σ

rij

)8
]

. (B12)

The form of ∇ri
· fi in Eq. (B10) together with Eqs. (B11) and (B12) are the desired expressions needed to perform the NHBTf

thermostat simulations (Sec. III).
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