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1Departamento de Fı́sica, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile
2Department of Chemistry, University of Basel, Klingelbergstr. 80, 4056 Basel, Switzerland

(Received 8 November 2014; revised manuscript received 6 January 2015; published 25 March 2015)

Velazquez and Curilef [J. Stat. Mech. (2010) P02002; (2010) P04026] have proposed a methodology to
extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their
proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-
driven phase transition. After a comprehensive review about ideas and connections of this framework, we
discuss the application of a reweighting technique to improve the accuracy of microcanonical calculations,
specifically, the well-known multihistograms method of Ferrenberg and Swendsen [Phys. Rev. Lett. 63, 1195
(1989)]. As an example of application, we reconsider the study of the four-state Potts model on the square
lattice L × L with periodic boundary conditions. This analysis allows us to detect the existence of a very
small latent heat per site qL during the occurrence of temperature-driven phase transition of this model, whose
size dependence seems to follow a power law qL(L) ∝ (1/L)z with exponent z � 0.26 ± 0.02. Discussed is
the compatibility of these results with the continuous character of temperature-driven phase transition when
L → +∞.
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I. INTRODUCTION

Recently [1,2], Velazquez and Curilef proposed a method-
ology that overcomes slow sampling problems due to the
presence temperature-driven discontinuous phase transitions
(PT). Essentially, their proposal allows us to improve any
Monte Carlo (MC) algorithms based on canonical ensemble
by introducing some suitable modifications. These extended
canonical MC algorithms reduce exponential dependence
of decorrelation time τ (N ) ∝ exp(γN ) on the system size
N by a very weak power-law behavior τ (N ) ∝ Nw. Ac-
cording to early estimations considering two-dimensional
(2D) q-state Potts models [3–5], critical exponents w of
these algorithms are lower than the ones achieved using
the multicanonical method and its variants [6–8]. Recently,
we have shown that the extended canonical MC algorithms
also exhibit a great performance near critical point of a
temperature-driven continuous PT [9]. Surprisingly, we have
verified that an extended version of the Metropolis importance
sample [10,11] exhibits an efficiency slightly greater than the
canonical cluster algorithms of Swendsen-Wang and Wolff
[3–5].

The main goal of this work is to combine extended
canonical MC algorithms with a reweighting technique to
improve the accuracy of microcanonical calculations. Infor-
mation collected from different MC simulations can be com-
bined to estimate properties at new different conditions [12].
Specifically, we will consider the multihistograms method of
Ferrenberg and Swendsen [13]. We shall reconsider the study
of the four-state Potts model on the square lattice L × L

with periodic boundary conditions to improve microcanonical
calculations performed in our previous work [9]. This new
analysis allows us to detect the existence of a very small,
but definitely nonvanishing, latent heat qL and states with
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negative heat capacities C < 0 for lattice size range of L =
22–90, which are typical behaviors of a finite system that
undergoes a temperature-driven discontinuous PT [14–19]. All
associated thermodynamical behaviors, such as the entropy
defect �s due to the region of convexity, are very small
(see Fig. 8). Even using the present improvements, they
are only revealed with a careful analysis of microcanonical
dependencies.

At first glance, these results seem to be in contradiction with
Baxter’s exact results [20], which emphasize the continuous
character of PT of this model in the thermodynamic limit L →
+∞. Anticipating our discussions on this question, we think
that there is no contradiction here. Baxter’s exact results do
not forbid the existence of negative heat capacities outside the
thermodynamic limit. In fact, the Potts model on the square
lattice L × L with q = 4 is a marginal case for this family
of models [20–22], and therefore there is nothing strange if
ambiguities in some thermodynamical behaviors are detected
for finite lattice sizes L. Besides, the size dependence of our
MC estimates of latent heat per site qL seems to follow a
power law qL(L) ∝ (1/L)z with exponent z � 0.26, which is
fully compatible with an eventual vanishing of this quantity
when L → +∞.

The paper is organized into sections as follows. Section II
is devoted to discuss some important antecedents of this
study. For the sake of self-consistency of the paper, we
start reviewing some generalized fluctuation relations de-
rived by Velazquez and Curilef and their relevance in MC
simulations [23–28]. Afterwards, we discuss the main ideas
associated with extension of canonical MC methods [1,2,9]
as well as connections with other MC methods that perform
microcanonical calculations [12]. Section III is devoted to
discuss the application of the multihistograms method to
improve these type of microcanonical MC calculations. As
an example of application, we discuss the improvement of
microcanonical estimations of the four-state Potts model on
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the square lattice L × L with periodic boundary conditions.
Final remarks and open questions are discussed in the
Sec. IV.

II. ANTECEDENTS

A. Generalized fluctuation relations and their application to
MC simulations

Since early demonstration of the generalized fluctuation
relation

C = β2〈δU 2〉 + C〈δβωδU 〉 (1)

by Velazquez and Curilef, it was clearly evidenced that
its associated background conditions of derivation can be
employed to extend any MC algorithm based on the canonical
ensemble

ωc(U |β) = 1

Z(β)
exp (−βU ) (2)

(see Sec. 3.1 in Ref. [23]). As shown earlier by Boltzmann and
Gibbs [29], the canonical ensemble (2) describes a system of
interest that is put in thermal contact with an environment of
constant temperature or, equivalently, a thermal bath of infinite
heat capacity. In full analogy with the known relation [30]

C = β2〈δU 2〉 (3)

of classical fluctuation theory is employed in any MC study
based on canonical ensemble (2) to obtain the heat capacity
C from the energy fluctuations, the more general fluctuation
relation (1) can be employed with the same purpose in any
MC study where the environmental inverse temperature βω

experiences thermal fluctuations that are coupled with thermal
fluctuations of the system energy U [23–25].

A simple realization of this effect arises when the system
of interest is put in thermal contact with a bath with finite
heat capacity Cω. The inverse temperature βω of the bath
will no longer be a constant parameter as the case of
canonical ensemble (2). On the contrary, it turns a dynamical
variable that evolves as a consequence of the underlying
thermodynamic interaction, which is described in Eq. (1) by
the existence of a nonvanishing correlation function 〈δβωδU 〉.
For any MC study based on the consideration of a bath with
finite heat capacity, its corresponding inverse temperature βω

is a dynamical variable that evolves during the course of
simulation. It is noteworthy that these same arguments were
employed in the past by Gerling and Hüller to proposed the
so-called dynamic ensemble method [31]. The Velazquez and
Curilef methodology to extend canonical MC algorithms could
be regarded as an improvement of the Gerling and Hüller
proposal [9]. This methodology now includes modifications
that enhance potentialities of this type of formalism, which
also share several connections with some ideas proposed in
the past by Challa and Hetherington [32–34].

An advantage of this perspective is that it involves a
stronger control on the system fluctuating behavior and its
stability than the one considered by canonical ensemble (2).
Equation (1) is compatible with the existence of negative
heat capacities C < 0 that appear during the occurrence of
a temperature-driven discontinuous PT [14–19]. This fact is
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FIG. 1. (Color online) Behavior of energy distributions within
canonical ensemble (2) along the occurrence of phase coexistence
phenomenon of the 10-state Potts model on the square lattice 25 × 25
with periodic boundary conditions (u = U/N is the energy per site)
(after [23]). This study clearly illustrates the bimodal character of
energy distribution functions when the inverse temperature parameter
β of the canonical ensemble takes values around the critical value
βc � 1.421 of temperature-driven discontinuous PT. Notice that the
branch of microcanonical caloric curve β(u) = ∂s(u)/∂u (open
squares) with states with negative heat capacities C < 0 is poorly
populated by using a bath with constant temperature since these states
are canonically unstable. The values of bath inverse temperature β

are represented here by horizontal lines. Intersection points of these
horizontal lines with microcanonical inverse temperature correspond
to the energies where the energy distribution function exhibits its
local maxima and minima.

easy to see by rephrasing Eq. (1) as follows:

C[1 − 〈δβωδU 〉] = β2〈δU 2〉, (4)

where the prerequisite of negative heat capacity C < 0 implies
the inequality 〈δβωδU 〉 > 1. Clearly, the study of systems with
this behavior is not possible for MC simulations based on
canonical ensemble (2), where thermal fluctuations of bath
inverse temperature δβω ≡ 0. In fact, its associated fluctuation
relation (3) is compatible with positive heat capacities only.
The presence of states with negative heat capacity can be
manifested by the multimodal character of energy distribution
function within the canonical ensemble [1]. This mathematical
behavior of canonical energy distributions is shown in Fig. 1
for the case of the 10-state Potts model on the square
lattice. It is noteworthy that states with negative heat capacity
associated with the S bend of microcanonical caloric curve
β(u) are poorly populated within the canonical ensemble.
Such anomalous states can be studied in a MC simulation
that implements the existence of a thermal contact with a bath
of finite heat capacity, which is shown in Fig. 2 for the same
model system [23].

Recently [9], we have emphasized that the present argu-
ments can be useful in MC studies of systems that undergo
a temperature-driven continuous PT. As discussed elsewhere
[30], heat capacity C can be very large, or even diverge, when
a system approaches the critical point of a temperature-driven
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FIG. 2. (Color online) The use of a bath with a finite heat capacity
Cω enables a direct study of the branch of microcanonical caloric
curve (open squares) with negative heat capacities, which is shown for
the same model system of Fig. 1 (after [23]). Here, energy distribution
exhibits a single Gaussian peak that is located inside the region where
microcanonical caloric curve exhibits negative heat capacities C < 0.
Both the bath inverse temperature βω (thick red line) and the system
energy U exhibit thermal fluctuations around their equilibrium values
(coordinates of the red circle that mark the interception point between
microcanonical caloric curve and the bath inverse temperature curve).
In the past [31], Gerling and Hüller proposed this type of arguments
to obtain microcanonical caloric curve considering the expectation
values 〈βω〉 and 〈U〉. The analysis of their thermal fluctuations
〈δU 2〉 and 〈δβωδU〉 enables a direct derivation of a negative value of
microcanonical heat capacity C at the equilibrium energy considering
fluctuation relation (1).

continuous PT. According to canonical fluctuation relation (3),
a divergence of the heat capacity C implies a divergence
of energy fluctuations 〈δU 2〉. In MC simulations, large
fluctuations imply large configurational changes that are also
accompanied by slow sampling problems [12]. Commonly, the
strategy to overcome these difficulties is the implementation of
nonlocal MC moves, namely, the use of cluster MC algorithms
[3–5]. By itself, fluctuation relation (1) suggests an alternative
way to face these problems: the use of a bath with positive
finite heat capacity Cω.

For a simple illustration of the above idea, let us consider
the first-order approximation for thermal fluctuations of bath
inverse temperature δβω = −β2

ωδUω/Cω ≡ β2δU/Cω, which
enables us to rephrase the fluctuation relation (1) as follows:

CCω

C + Cω

= β2〈δU 2〉. (5)

Accordingly, the system energy fluctuations are fully deter-
mined by the bath heat capacity Cω when the system heat
capacity C → +∞:

Cω = β2〈δU 2〉 ≡ β2
〈
δU 2

ω

〉
. (6)

It is easy to realize that this last result is fully equivalent to
canonical relation (3) when one permutes the roles of the bath
and the system of interest. The positivity of the right-hand side
of Eq. (5) also implies that the study of a system with negative

heat capacity C < 0 demands the fulfillment of the following
inequality:

Cω < |C| , (7)

which was derived by Thirring in Ref. [14]. These reasonings
show that heat capacity Cω of the bath should not be finite
only, but also it must satisfy the above constraint. In addition,
the value of heat capacity Cω can be optimized to reduce as
low as possible the statistical uncertainties associated with
determination of the microcanonical caloric curve of the
system of interest [see Eq. (28)]. Fluctuation relation (5) was
also derived by Challa and Hetherington in Ref. [34] using
different arguments.

Energy-temperature fluctuation relation (1) is just a partic-
ular case of more general fluctuation theorems [26,27]. As an
example, the following fluctuation relation [30]

χT = β〈δM2〉 (8)

is also widely employed in MC simulations to obtain isother-
mal magnetic susceptibility χT from thermal fluctuations of
the total magnetization M of a certain magnetic system [12].
This relation can be generalized as follows:

χT = β〈δM2〉 − βχT 〈δHωδM〉
+ [T (∂M/∂T )T − M]〈δβωδM〉, (9)

while the corresponding fluctuation relation for the heat
capacity at constant magnetic field CH is given by

CH = β2〈δQ2〉 + CH 〈δβωδQ〉
− [T (∂M/∂T )T − M]β2〈δHωδQ〉. (10)

Here, βω and Hω represent the environmental inverse temper-
ature and the intensity of the external magnetic field that is
applied over a magnetic system of interest. Moreover, δQ =
δU − HδM is the amount of heat absorbed or transferred by
the system at the equilibrium, where 〈δQ〉 = 0. Under general
thermodynamical conditions, all these macroscopic quantities
and thermodynamical parameters undergo thermal fluctuations
that are coupled among them.

Correlated thermal fluctuations as those commented in
Fig. 3 are systematically omitted by conventional ensem-
bles of statistical mechanics, such as canonical ensemble
(2) and its generalization, the so-called Boltzmann-Gibbs
distributions [30]. Consequently, its associated fluctuation
relations as (3) and (8) are incompatible with the exis-
tence of response functions with anomalous values, such
as negative heat capacities CH < 0 or negative isothermal
susceptibilities χT < 0 in a ferromagnetic system. Some direct
consequences as the inequality (7) also imply a violation of
zeroth law of thermodynamics [9,35,36]. In the framework
of MC simulations, all these general fluctuation relations
are relevant because the occurrence of phase transitions is
mostly accompanied with the existence of anomalous values
in response functions [17]. This connection is also shown in
Fig. 4 for the case of the Ising model on the square lattice
L × L with periodic boundary conditions, where fluctuation
relation (9) was employed to study anomalous values of
isothermal magnetic susceptibility χT that are found below
the critical temperature of ferromagnetic-paramagnetic PT of
this paradigmatic model system [26]. All that is discussed
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FIG. 3. (Color online) Correlated thermal fluctuations analogous
to the one described by fluctuation relation (1) can also be observed
among other pairs of conjugated thermodynamical variables. Left:
Thermal fluctuations of the total magnetization M of a magnetic
sample (red rectangle) induce thermal fluctuations in its associated
total magnetic flux (red dash lines) through the Helmholtz coils
(whose cross sections are represented here by four gray circles). As
consequence of electromagnetic induction, the total magnetic field Hω

of these Helmholtz coils (blue lines) experiences correlated thermal
fluctuations 〈δHωδM〉 with the total magnetization M of the sample.
Right: Schematic representation of two finite fluid systems A and B
that are separated by a moving wall or piston (red rectangle). The
total volume V of fluid system A experiences correlated thermal
fluctuations 〈δpωδV 〉 with the external pressure pω of fluid system B.

in this work concerning the MC study of microcanonical
energy-temperature dependence and its associated response
function, the microcanonical heat capacity, can directly be
extended to other situations with several control parameters
introducing appropriate modifications. This perspective was
employed in Ref. [26] to obtain microcanonical magnetization
versus magnetic field dependence shown in Fig. 4.

B. Extended canonical MC algorithms

As already commented, the use of a bath with finite heat
capacity in MC simulations was first proposed by Gerling
and Hüller [31]. These authors considered that the system of
interest is put in thermal contact with a bath with constant heat
capacity Cω (e.g., the system acting as a bath can be an ideal
gas). Let us denote by UT the total energy of the system and
the bath, which remains fixed when they are put in thermal
contact. It can be shown that the inverse temperature of the
bath under the above conditions depends on the system energy
U as follows:

βω(U ) = Cω

UT − U
. (11)

As naturally expected, this situation is just a particular
case among all possible equilibrium situations considered
by generalized fluctuation relation (1). If the system size N

is sufficiently large, the thermodynamic influence of every
bath with finite heat capacity Cω > 0 turns asymptotically
equivalent as a consequence of applicability of Gaussian
approximation for energy fluctuations. However, significant
differences in system fluctuating behavior arise when the
system size is not so large. In fact, the bath proposed by Gerling
and Hüller is not the most convenient one.

Magnetization distribution function:
H=-0.004
H=-0.002
H=0.0
H=+0.002
H=+0.004

-rich phase -rich phase

-1.0 -0.5 0.0 0.5 1.0
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0.10  MC simulations with 0
 estimated magnetization curve (BG)

H
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FIG. 4. (Color online) Behavior of distributions of magnetization
per site m = M/N of the Ising model on the square lattice with
periodic boundary conditions for different constant values of the
external magnetic field H at constant temperature T < Tc, where
Tc is the temperature critical value of ferromagnetic-paramagnetic
continuous PT of this model (after [26]). Open circles are a MC
estimation of microcanonical dependence of magnetization vs the
external magnetic field (analogous to microcanonical caloric curve).
Dotted line represents dependence of average magnetization 〈m〉
when the intensity of the external magnetic field H is smoothly
varying from negative to positive values at constant temperature.
Clearly, this canonical dependence (constant values of control
parameters T and H ) fails to describe the S bend of its microcanonical
counterpart. Moreover, the region with negative values of isothermal
magnetic susceptibility χT < 0 is poorly populated by magnetization
distributions for constant values of the external magnetic field H and
temperature T . In full analogy as the energy-temperature fluctuation
relation (1) enables the study of systems with negative heat capacities
C < 0, fluctuation relation (9) was employed in this MC study to
obtain anomalous values of isothermal magnetic susceptibility χT .

For an arbitrary bath with probability weight ω(U ), its
corresponding inverse temperature βω(U ) can be expressed
as follows1 [23]:

βω(U ) = − ∂

∂U
ln ω(U ). (12)

Notice that this definition contains temperature parameter β

of canonical ensemble as a particular case (2). The energy
dependence of inverse temperature βω(U ) can be developed in
power series around a certain reference energy Us as follows:

βω(U ) = βs +
+∞∑
n=1

an (U − Us)
n . (13)

If thermal fluctuations of the system energy are sufficiently
small, in particular, when the size N of the system under study
is sufficiently large, high-order terms in power expansion (13)

1This definition follows from combining Einstein postulate
dp(U |UT ) = A exp [ST (U |UT )] dU of classical fluctuation theory
and the additivity of entropy ST (U |UT ) = S(U ) + Sω(UT − U ).
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can be disregarded, except the term corresponding to linear
approximation

βω(U ) = βs + λs (U − Us) /N. (14)

For the sake of convenience, we have identified here a1 ≡
λs/N . Moreover, additional parameters Us and βs can be
regarded as roughly estimates of the expectation values
〈U 〉 and 〈βω〉. Expression (14) is the simplest mathematical
dependence for the bath inverse temperature βω that captures
the existence of correlated fluctuations 〈δβωδU 〉 described
by fluctuation relation (1). Hereinafter, we shall assume this
dependence is exact, that is, let us assume a bath that fulfills
this expression.

According to definition (12), linear dependence (14) corre-
sponds to the Gaussian ensemble

ωG (U |θ ) = exp [f (θ ) − φ(U |θ )] (15)

introduced by Challa and Hetherington [32–34], where θ ≡
(Us,βs,λs) with parameter λs � 0, and φ(U |θ ) is the second-
order polynomial function

φ(U |θ ) = βs (U − Us) + 1

2N
λs (U − Us)

2 . (16)

Formally speaking, Gaussian ensemble (15) corresponds to
a bath that is composed of a hypothetical substance whose
heat capacity C depends on its temperature T as C ∝ 1/T 2.
This type of dependence is indeed observed in the high-
temperature limit of a paramagnetic system [30]. However,
Gaussian ensemble (15) can also be regarded as a nonphysical
ensemble for the purpose of MC simulations. Certainly, there is
nothing wrong with this interpretation. Nonphysical statistical
ensembles are usually considered in MC studies with different
purposes, as the case of the so-called multicanonical ensemble
[12]. The use of this generalized statistical ensemble here is
fully justified by practical purposes. Gaussian ensemble (15)
contains canonical ensemble (2) in the limit λs → 0+, as well
as microcanonical ensemble

ω(U |Us) = 1


(Us)
δ [U − Us] (17)

in the limit λs → +∞. This ensemble is easy to combine
with any MC algorithm based on canonical ensemble (2)
regardless whether its character is local or nonlocal [9]. The
rough idea is to replace constant temperature parameter β of
canonical ensemble (2) by the transition inverse temperature
βt

ij = [βω(Ui) + βω(Uj )] of the initial and final configurations
with energies Ui and Uj , respectively. For the case of
the Metropolis importance sample [10,11], its acceptance
probability is modified as follows:

W (Ui → Uj ) = min
[
1, exp

(−βt
ij�Uij

)]
, (18)

where �Uij = Uj − Ui . Implementation of this statistical
ensemble for canonical cluster MC algorithms was extensively
discussed in Sec. II C of our previous paper [9]. The simple
mathematical form of this ensemble makes all analytical
developments of the present methodology easier, such as
the analysis of detailed balance and the analysis about the
incidence of finite size effects [9].

As naturally expected, statistical expectation values of
physical quantities are ensemble dependent. To avoid this

difficulty, the primary goal of extended canonical MC methods
is the calculation of microcanonical quantities derived from
the first derivatives of the system microcanonical entropy
S(U ), such as the microcanonical caloric curve β(U ) (energy
dependence of the system inverse temperature) and the
curvature curve κ(U ):

β(U ) = ∂S(U )

∂U
and κ(U ) = −N

∂2S(U )

∂U 2
. (19)

This second quantity is directly related to the microcanonical
heat capacity C as κ = β2N/C. In full analogy with the
dynamic ensemble MC method [31], calculation of the
microcanonical caloric curve can be achieved in the framework
of Gaussian approximation of energy distribution function
using the expectation values of the bath inverse temperature
and the system energy

βe � 〈βω〉 and Ue � 〈U 〉, (20)

where Ue represents the most likely value of the system
energy. The value of microcanonical curvature κe = κ(Ue) at
the energy Ue can be estimated from generalized fluctuation
relation (1) as follows:

κe � 1 − λs〈δU 2〉/N
〈δU 2〉/N . (21)

Although the above estimations of microcanonical dependen-
cies (19) are only exact in the thermodynamic limit N → ∞,
the incidence of finite size effects is considerably reduced
using the following formulas [1]:

Ue = 〈U 〉 − 1 − ψ1

2〈δU 2〉 〈δU
3〉 + O

(
1

N3

)
,

βe = 〈βω〉 − λs

1 − ψ1

2N〈δU 2〉 〈δU
3〉 + O

(
1

N3

)
, (22)

κe = 1 − ψ1 − λs〈δU 2〉/N
〈δU 2〉/N + O

(
1

N2

)
.

Here, ψ1 = 6
5ε2 + 11

30ε1 is a second-order correction term
defined from the cumulants ε1 and ε2:

ε1 = 〈δU 3〉2

〈δU 2〉3
, ε2 = 1 −

〈
δU 4

〉
3〈δU 2〉2

. (23)

These same calculations enable us to obtain rough estima-
tions for the third- and the fourth-order derivatives of the
entropy:

ζ 3
e = N2 ∂3S(Ue)

∂U 3
= N2 〈δU 3〉

〈δU 2〉3
(1 − 3ψ1) + O

(
1

N2

)
,

ζ 4
e = N3 ∂4S(Ue)

∂U 4
= −ψ2

N3

〈δU 2〉3
+ O

(
1

N

)
, (24)

where ψ2 = 12
5 ε2 + 41

15ε1. Ideas behind derivation of this pro-
cedure are discussed in the Appendix, Sec. A 1. Applicability
of these formulas is subject to applicability of Gaussian
approximation for describing system fluctuating behavior
within the Gaussian ensemble (15). This means that its control
parameters (Us,βs,λs) must be carefully chosen to guarantee
applicability of the Gaussian approximation.
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Roughly speaking, the MC estimation procedure (20) to
obtain microcanonical caloric curve β(U ) of a given system
resembles practical measurements of this dependence. The
statistical ensemble that is employed in this type of MC
simulation mimics thermodynamical influence of a measuring
instrument, e.g., a thermometer. This procedure is always
subjected to statistical uncertainties that could be reduced
but never eliminated at all [28]. According to approximation
(21), statistical uncertainties for a simultaneous determination
energy and its inverse temperature can be estimated in terms
of microcanonical curvature κe as follows:

〈δU 2〉 � N

κe + λs

and
〈
δβ2

ω

〉 � 1

N

λ2
s

κe + λs

. (25)

Accordingly, statistical uncertainty of the energy can be
reduced by increasing the value of parameter λs . However,
this procedure also implies an increasing of statistical uncer-
tainty of its inverse temperature. Therefore, it is absolutely
necessary to establish a compromise between these statistical
uncertainties, for example, to minimize the total dispersion
�2

T :

�2
T =

〈
1

N
δU 2 + Nδβ2

ω

〉
� 1 + λ2

s

κe + λs

. (26)

This criterion leads to the following optimal value of the
control parameter λs :

λs = λ� (κe) =
√

1 + κ2
e − κe and min

(
�2

T

) = 2λ�.

(27)

According to first-order approximation δβω = β2δU/Cω em-
ployed in derivation of fluctuation relation (5), the parameter
λs of Gaussian ensemble (15) corresponds to the heat capacity
Cω of the bath as λs ↔ Nβ2/Cω. This way, one obtains the
optimal value for the heat capacity C

opt
ω of the bath (or the

thermometer):

Copt
ω = Nβ2

[√
1 +

(
Nβ2

C

)2

+ Nβ2

C

]
(28)

that reduces as low as possible the statistical uncertainties
during a determination of the microcanonical caloric curve of a
given system. It is noteworthy that this last result concerns both
its practical determination [24] as well as its theoretical MC
estimation. The fulfillment of this optimization criterion is the
best way to force applicability of the Gaussian approximation
for energy distributions, which is a requirement for the
application of point statistical estimation formulas (22)–(24).
This criterion also leads to a considerable reduction of finite
size effects. This fact is shown in Fig. 2 for a model system of
relative small size. As clearly evidenced, the Gaussian shape
of energy distribution is a very good approximation regardless
that its maximum is located inside the region with negative
heat capacities.

The number M of MC steps that is necessary to reach a
convergence of microcanonical caloric curve β(U ) and the
curvature κ(U ) with an accuracy N〈δβ2〉 + 〈δU 2〉/N � a2

and 〈δκ2〉 < a2 can be estimated as follows:

M � η/Na2 and M � 2
(
1 + κ2

e

)
τ/a2, (29)

TABLE I. Dynamic critical exponents wτ and wη associated
with the size dependencies of decorrelation time τ (N ) ∝ Nwτ and
efficiency factor η(N ) ∝ Nwη at temperature of PT of the four-state
Potts model on the square lattice L × L with periodic boundary
conditions, with N = L2 (after [9]).

MC method wτ wη

Metropolis 1.06 ± 0.01 1.42 ± 0.01
Extended Metropolis 0.777 ± 0.006 0.790 ± 0.008
Swendsen-Wang 0.432 ± 0.007 0.792 ± 0.008
Extended Swendsen-Wang 0.098 ± 0.004 0.117 ± 0.004
Wolff 0.474 ± 0.005 0.833 ± 0.007
Extended Wolff 0.094 ± 0.006 0.103 ± 0.006

where τ is the decorrelation time and η the so-called efficiency
factor [9]:

η = τ�2
T . (30)

Decorrelation time τ is the minimum number of MC steps
needed to generate effectively independent, identically dis-
tributed samples in the Markov chain [12]. This quantity
crucially depends on the concrete MC algorithm employed
in simulations and it is widely regarded as a measure of
its efficiency. However, the estimation of microcanonical
caloric curve using the present MC methodology is better
characterized by the efficiency factor (30), which also includes
the incidence of the system fluctuating behavior. The simplest
way to improve the convergence of a given extended canonical
MC algorithm is to minimize the total dispersion �2

T . As
clearly evidenced in Table I, this criterion also involves
a sensible improvement of behavior of decorrelation time
τ [9]. Since the efficiency factor η for a given extended
canonical MC method crucially depends on control parameters
θ = (Us,βs,λs) of Gaussian ensemble (15) and the energy
value of interest, it is recommended to employ a variable
number M of MC moves for calculating each point estimation
of microcanonical dependencies (19).

C. Multicanonical MC methods

Microcanonical entropy S(U ) of a system of interest can
be estimated from reweighting MC methods that implement
multicanonical ensemble [6], as the case of the Wang-Landau
method [7]. Roughly speaking, the essential idea of these MC
methods is to carry out a progressive reconstruction of a certain
probabilistic weight ωM (U ) that guarantees the existence of
flat energy histograms:

ωM (U )W (U ) = const, (31)

which allows a direct estimation Ŵ (U ) of density of states
W (U ). Once an estimation for microcanonical entropy Ŝ(U ) =
ln Ŵ (U ) is obtained, this information can be employed to
calculate any statistical expectation value in any desirable
statistical ensemble with probability weight ω(U ) as follows:

〈a〉 =
∑
U

a(U )ω(U ) exp[Ŝ(U )]. (32)

The many advantages of this type of methodology have
been extensively reviewed by Landau and Binder in their book
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[12]: its capacity to enhance rare events and obtain a complete
information about density states in a single simulation run
[7]; its feasibility to describe systems with complex energy
landscapes [37,38] as well as quantum systems [39,40]. A
comparison between the present MC methodology and the
above reweighting techniques is possible. However, we find it
more useful to discuss how their different working principles
could be combined to enhance their respective potentialities.
The application of a reweighting technique to improve the
accuracy of microcanonical calculations will be discussed in
the next section. Therefore, let us restrict here to discuss how
arguments employed in the present MC methodology could
be employed to improve some aspects of reweighting MC
methods.

The point statistical estimates of microcanonical depen-
dencies (19) can be easily employed to provide a piecewise
estimation for microcanonical entropy S(U ) using numerical
integration and interpolation methods. This idea was already
employed by Viana Lopes and co-workers to develop a pro-
gressive piecewise reconstruction of the probabilistic weight
of multicanonical ensemble [41]

ω
(n)
M (U ) = A exp[−S(n)(U )]. (33)

Here, S(n)(U ) is a polynomial interpolation of microcanonical
entropy inside a previous explored region Un+1 < U < U0:

S
(n)
V L(U ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0U, U > U0

b0 + β0�U0 − �U 2
0 /2σ 2

0 , U1 < U < U0
...

...
bn + βn�Un − �U 2

n /2σ 2
n , Un+1 < U < Un

bn+1 + βn+1�Un+1, U < Un+1

(34)

plus a linear extrapolation outside this region. Here, �Ui ≡
U − Ui , the parameters (bj ,βj ,Uj ) are obtained as follows:

Uj+1 = Uj − ασj , βj+1 = βj + α/σj ,
(35)

bj+1 = βjUj+1 − α2/2,

where the step parameter α � 2–4. The parameters βi and σi

are point estimates of microcanonical inverse temperature and
the energy statistical dispersion within canonical ensemble at
the energy Ui :

dS(Ui)

dU
= βi and − d2S(Ui)

dU 2
� 1

σ 2
i

. (36)

External linear extrapolation in (34) enables the exploration
of unknown energy region U < Un+1 at constant inverse tem-
perature, which is employed to estimate statistical dispersion
σ 2

n+1 using the rule

σ 2
n+1 = 〈(U − Un+1)2�(Un+1 − U )〉, (37)

with �(x) being the Heaviside step function. According to
these authors, piecewise estimations (33) and (34) reduce
tunneling times of multicanonical MC dynamics [41].

A clear limitation of the above procedure is that the
microcanonical entropy S(U ) is assumed to be a concave
function everywhere. This means that this method cannot be
applied to systems with negative heat capacities. A simple

way to overcome this limitation is to employ the following
piecewise formula:

S
(n)
G (U ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β0U, U > U0

b0 + β0�U0 − κ0
�U 2

0
2N

, U1 < U < U0
...

...

bn + βn�Un − κn
�U 2

n

2N
, Un+1 < U < Un

bn+1 + φ(U |θn+1), U < Un+1

(38)

where the use of statistical dispersions σ 2
i was replaced by the

microcanonical curvature κi . Moreover, the linear branch of
Eq. (34) for energies U < Un+1 is now replaced by the function
φ(U |θn+1) of Gaussian ensemble (15) with control parameters
θn+1 = (Un+1,βn+1,λs). The optimal value of parameter λs

can be estimated from expression (27) using the previous
value of microcanonical curvature κe � κn. The values of
the energy Un+1 and its corresponding microcanonical inverse
temperature βn+1 can be estimated as follows:

Un+1 = Un − ασn, βn+1 = βn + ακnσn/N, (39)

while the value of constant parameters bj+1 is obtained by the
continuity condition

bj+1 = bj + βj�j − κj�
2
j /2N, (40)

where �j = −ασj and b0 = β0U0. Statistical dispersion σ 2
n+1

is also obtained from the rule (37), which can be employed
to estimate microcanonical curvature κn+1 using the Gaussian
approximation

κn+1 � N/σ 2
n+1 − λs. (41)

As expected, polynomial interpolation (38) is now able to
describe convex regions of microcanonical entropy. The use
of Gaussian ensemble in the unexplored energy region U <

Un+1 enables the access to regions with negative values of
microcanonical curvature curve κ(U ).

Procedures of numerical integration or interpolation, such
as (32) and (38), do not produce a significant enhancement of
statistical uncertainties of any MC estimation of the entropy
using reweighting techniques or the point statistical estimation
of microcanonical dependencies (19). However, statistical
uncertainties turn significant when one is interested in the
calculation of entropy derivatives using MC estimation Ŝ(U ).
Although they are small, statistical errors introduce consid-
erable affectation during a direct numerical differentiation
of entropy estimation Ŝ(U ). A particular demonstration of
this problem is shown in Fig. 5, where entropy estimation
Ŝ(U ) of the four-state Potts model on the square lattice
32 × 32 obtained from the Wang-Landau MC method was
employed to estimate microcanonical caloric curve β̂(U ) by
direct numerical differentiation [9].

One can employ different criteria to reduce roughness of
numerical derivatives, such as adjacent averaging or Savitzky-
Golay filter [42]. To our knowledge, the previous methods do
not follow specific statistical criteria to deal with data obtained
from MC simulations. We think that a more suitable criterion to
obtain smoothly derivatives for MC estimates of entropy Ŝ(U )
is the use of point statistical estimation formulas (22)–(24).
Statistical expectation values of this procedure can be obtained
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 direct numerical differentiation
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FIG. 5. (Color online) Entropy per site s(u) and microcanonical
inverse temperature β(u) of 2D four-state Potts model estimated
from the Wang-Landau multicanonical algorithm. Here, the variable
u denotes the energy per site u = U/N , with N = L2.

from the application of the formula (32). This procedure was
already employed in our previous work [9], whose results are
also shown here in Fig. 5. Although these estimations are still
affected by incidence of finite size effects, the same ones are
very small (see comparative study shown in Fig. 3 of Ref. [2]).
Moreover, the same procedure provides a direct estimation for
entropy derivatives of higher order. In addition, one can still
obtain better improvements of formulas (22)–(24) by including
higher-order correlations of the system fluctuating behavior
(see additional comments in the Appendix, Sec. A 1).

For comparison purposes, we show in Fig. 6 different
estimations of microcanonical caloric curve of this same
model system using the extended versions of canonical MC
algorithms of Metropolis importance sampling, and cluster
algorithms of Swendsen-Wang and Wolff, as well as two runs
of the Wang-Landau method of different lengths.2 According
to results shown in the main panel of this figure, the agreement
among all these MC methods is very good. Nevertheless,
one can verify the existence of small discrepancies in the
inset panel. In principle, the results obtained from all these
MC methods should converge among them. Therefore, the
observed discrepancies reveal an insufficient convergence of
these MC simulations. It is noteworthy that the existing
discrepancies are more significant inside the energy region
that contains PT of this model system, which is not a casual
fact. According to Eq. (27) for the minimal total dispersion
�2

T , statistical uncertainties during determination of micro-
canonical caloric curve β(U ) are larger where microcanonical
curvature curve κ(U ) = −N∂2S(U )/∂U 2 exhibits its lower

2For implementing the Wang-Landau multicanonical method, we
have considered a minimum entry of 95% of the mean value for
histogram of energies visited. First simulation run with M = 2 ×
107 steps was extended until parameter f reaches the value f =
exp(10−7). Second simulation run with M = 1.1 × 108 steps was
extended until parameter f reaches the value f = exp(10−8).
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1.06
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β
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 Wang-Landau (M=2x10 )
 Wang-Landau (M=1.1x10 )
 extended Metropolis
 extended Swendsen-Wang
 extended Wolff

FIG. 6. (Color online) Microcanonical caloric curve of the four-
state Potts model system on the square lattice 32 × 32 with periodic
boundary conditions, which was estimated from two different
realizations of the Wang-Landau method and extended versions of
canonical MC algorithms of the Metropolis importance sample and
Wang-Landau and Wolff cluster algorithms (after [9]). The agreement
among all these MC methods is very good, although some small
discrepancies are clearly evidenced in the inset panel, where these
same dependencies were represented with lower energy and inverse
temperature scales in order to appreciate better the mathematical
behavior of these curves near PT.

values. In other words, statistical uncertainties associated with
estimation of microcanonical caloric curve are nonuniform.

Extended canonical MC algorithms explore a small energy
region in each simulation run because of the use of Gaussian
ensemble (15) with optimal parameters. Consequently, the
length of simulations can locally be increased to achieve the
necessary accuracy for each energy region. Such a goal can
be fulfilled using estimation (29) for the number M of MC
steps. The increase of the length of simulations using the
Wang-Landau method involves an increase in the number
of visits in regions where convergence of point statistical
estimations (22) was already achieved. Perhaps, the exigency
of flat energy histograms (31) should be replaced by another
mathematical form that increases the number of visits in those
energy regions where microcanonical curvature curve κ(U )
exhibits its lower values. For example, such a goal can be
achieved by the following ansatz:

H (U ) ∝ fκ (U ) = 1 + [
√

1 + κ2(U ) − κ(U )]2, (42)

where fκ (U ) arises as a redistribution factor in the probabilis-
tic weight of multicanonical ensemble

ωκ (U ) = A exp [−S(U )] fκ (U ). (43)

Unfortunately, a complete analysis and implementation of this
type of modifications is beyond the scope of this work. By
themselves, these questions deserve a more comprehensive
analysis in future works.
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III. IMPROVING ACCURACY

A. Application of the multihistograms method

A main goal of the multihistograms method is the estima-
tion of the number of states W (U ). Originally, this method
was proposed to extract information of histograms obtained
from MC simulations based on the canonical ensemble [13].
However, its relevant expressions admit a direct extension
for any probability weight. The energy distribution pG(U |θ )
associated with Gaussian ensemble (15) is given by

pG(U |θ ) = ωG(U |θ )W (U ). (44)

Formally, the number of states W (U ) is obtained from the
energy distribution pG(U |θ ) as follows:

W (U ) = pG(U |θ )/ωG(U |θ ). (45)

The probability distribution pG(U |θ ) can be estimated using
the energy histogram p̂G(U |θ ) of a given simulation:

pG(U |θ ) � p̂G(U |θ ) = H (U |θ )/M, (46)

where H (U |θ ) is the number of MC moves with final energy
U , and M = ∑

U H (U |θ ) is the total number of MC moves.
The energy histogram p̂G(U |θ ) is a random quantity with the
following mean and variance [13]:

〈p̂G(U |θ )〉 = pG(U |θ ) and
〈
δp̂2(U |θ )

〉 = pG(U |θ )/N ,

(47)

where N = M/τ is the effective number of independent MC
moves, with τ being the decorrelation time [12]. According to
the relative error

�pG(U |θ )

pG(U |θ )
= 1√

NpG(U |θ )
, (48)

this procedure only allows a reliable estimation of pG(U |θ ) for
a small region near most probable energy Ue. This difficulty is
avoided combining the information of independent MC runs
with different values of control parameters θ . One can employ
the estimator Ŵ (U ):

Ŵ (U ) = H(U )/W(U ) (49)

for the number of states W (U ), while its error can be evaluated
as

〈δW 2(U )〉 � H(U )/W2(U ). (50)

Here, we have considered the superposition functions of
probabilistic weights W(U ):

W(U ) =
∑

n

NkωG(U |θk) (51)

and the energy histograms H(U ):

H(U ) =
∑

k

Nkp̂G(U |θk), (52)

where Nk is the effective number of independent MC moves
for kth simulation run. As expected, normalization function
fk = f (θk) of Gaussian ensemble (15) with control parameters

θk should be obtained by self-consistency:

exp(−fk) =
∑
U

exp [−φ(U |θk)] Ŵ (U ). (53)

Numerical resolution of problem (53) can be carried out using
some type of scheme of successive iterations, such as the one
described in the Appendix, Sec. A 2.

The success of the present methodology relies on a fine
tuning of control parameters (Us,βs,λs) of Gaussian ensemble
(15). As already commented, their optimal values depend
on microcanonical estimates (Ue,βe,κe), whose calculation is
precisely the goal of MC simulation. A practical recipe is to
use the microcanonical estimates (Uj

e ,β
j
e ,κ

j
e ) obtained from

a previous MC simulation run, whose energy Ui
e is close to

energy value of interest U
j+1
e . We shall employ the following

iterative scheme [9]:

Uj+1
s = Uj

e + εj ;
(54)

βj+1
s = βj

e − κj
e εj and λj+1

s = λ�

(
κj

e

)
,

with εj being a variable small energy step. The initial values
of the control parameters (Us,βs,λs) could be estimated from
any canonical MC algorithm far enough from the region of
temperature-driven PT. On the other hand, the success of the
multihistograms method crucially depends on full coverage
of region of interest by energy histograms. To guarantee
the overlap between neighboring energy histograms, one can
employ the energy dispersion �U =

√
〈δU 2〉 of the previous

MC simulation εj = ν�Uj , where ν is a fraction in the interval
0 < ν < 2.

Once the estimation of the number of states Ŵ (U ) is
obtained, microcanonical entropy S(U ) can be evaluated using
Boltzmann definition Ŝ(U ) = ln Ŵ (U ). The calculation of
microcanonical dependencies (19) can be performed using
the point statistical estimation formulas (22) and (23), where
expectation values are evaluated using expression (32). Calcu-
lation of microcanonical dependencies (19) demands a good
choice of control parameters θ for each energy. A simple
way to achieve this goal is using a simple recalculation
procedure. Essentially, roughly values of microcanonical
estimates (Uj

e ,β
j
e ,κ

j
e ) are considered to provide new values

for control parameters θj :

Uj+1
s = Uj

e , βj+1
s = βj

e , and λj+1
s = λ�

(
κj

e

)
. (55)

The control parameters θj are employed to provide a new
estimation of microcanonical estimates (Uj+1

e ,β
j+1
e ,κ

j+1
e ).

This procedure is repeated until microcanonical estimates
reach the convergence with a sufficient accuracy. Final values
(Ue,βe,κe) of this procedure are employed to provide a rough
estimation of control parameters for other energy values of
interest using the scheme (54), where energy step ε is small
but arbitrary. This procedure is repeated until we obtain a
smooth estimation of microcanonical dependencies (19) along
the energy region of interest.

Maragakis and co-workers have employed in Ref. [44]
a superposition of Gaussian functions similar to expression
(51) in the framework of Gaussian-mixture umbrella sampling
method. However, such a superposition of Gaussians was
proposed to estimate a probability distribution using the
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reweighted statistics from several previous simulations. The
result of this fitting procedure is employed to introduce the so-
called biasing potential. In contrast, superposition of Gaussian
functions (51) naturally arises here as a consequence of the
multihistograms method, specifically, when one combines
histograms obtained from independent MC simulations that
implement Gaussian ensemble (15). Its introduction does
not involve any fitting procedure because of the number of
Gaussian weights and their respective control parameters θk

were already prefixed by simulations. Only normalization
functions fk of Gaussian ensemble (15) are determined
during application of the multihistograms method, but their
estimation obeys a self-consistent requirement (53). Gaussian-
mixture umbrella sampling was introduced to reconstruct free
energy landscapes, while the main purpose of the present
methodology is to estimate first derivatives of microcanonical
entropy (19).

B. An application example

We consider the q-state Potts model [4]

H = −
∑
(i,j )

δσiσj
(56)

defined on the square lattice L × L with periodic boundary
conditions, where σi = (1,2, . . . ,q) is the spin variable of the
ith site, while the sum in (56) runs over all nearest neighbors.
This family of toy models undergoes both continuous and
discontinuous PT at βs = ln(1 + √

q) in the thermodynamic
limit L → ∞. Their MC study can be performed using
different canonical MC algorithms, such as the Metropolis
importance sample and Swendsen-Wang and Wolff cluster
algorithms [3–5], which enable us to perform a comparative
study among them. Additionally, we have also considered
the Wang-Landau multicanonical MC method [7], whose
results are employed here as reference to compare with other
microcanonical calculations.

To test the accuracy of the present improvements of
Velazquez and Curilef methodology, let us reconsider the study
of the same model system of our previous work: the four-state
Potts model [9]. According to Baxter’s exact results [20], this
model undergoes a temperature-driven continuous PT at βc �
1.0986 in thermodynamic limit L → +∞. For the sake of
simplicity, let us restrict this discussion to the cases of extended
Wolff cluster algorithm [9] and the usual canonical Swendsen-
Wang cluster algorithm. We have considered a variable number
of MC steps for each calculated point: M = 9.8 × 104η

(extended Wolff) and M = 4.0 × 104τ (Swendsen-Wang),
with η and τ being efficiency factor and correlation time a
given run, respectively. Typical values for fraction ν in control
parameters scheme (54): ν = 0.05 for L = 16–22 and ν = 0.5
for L = 32–90.

We show in Fig. 7 results of MC simulations for the
particular case of lattice size L = 32. We have also included
microcanonical estimates obtained from the Wang-Landau
method using the same data shown in Fig. 6 for M =
1.1 × 108. According to dependencies shown in Fig. 7(d),
the extended Wolff algorithm exhibits the lower values of
efficiency factor η and correlation time τ for the whole energy
region considered in this study. This extended canonical MC

algorithm exhibits a greater performance in regard to the usual
Swendsen-Wang cluster algorithm. Although the canonical
ensemble is a particular case of Gaussian ensemble with
λs = 0, any MC methods based on the canonical ensemble
fails to predict microcanonical dependencies β(u) and κ(u)
near a critical point using point statistical estimation (22).
This fact is clearly shown in Figs. 7(a) and 7(b). These
systematic deviations of microcanonical estimates obtained
from the Swendsen-Wang MC method rely on the failure of
Gaussian approximation of canonical energy distributions near
a critical point. Such a non-Gaussian behavior of canonical
distributions is observed in energy histograms obtained from
the Swendsen-Wang MC method, which is shown in Fig. 7(c).
On the contrary, Gaussian approximation is fulfilled when
one employs Gaussian ensemble (15) with optimal values of
control parameters θ = (Us,βs,λs). This fact is also shown
in Fig. 7(c) throughout Gaussian shape of energy distribution
obtained from the extended Wolff cluster algorithm.

All energy distribution (or histograms) obtained from the
extended Wolff and usual Swendsen-Wang MC algorithms
were combined using multihistograms method to estimate
microcanonical entropy per site s(u). Additionally, we have
considered estimation ŝ(u) of microcanonical entropy per
site obtained from the Wang-Landau method. All these
estimations were combined with recalculation procedure to
obtain microcanonical dependencies β(u) = ∂s(u)/∂u and
κ(u) = −∂2s(u)/∂u2. As clearly evidenced in Figs. 7(a) and
7(b), one observes a full agreement among microcanonical
dependencies obtained from the multihistograms method,
the point statistical estimates using the extended Wolff
algorithm, as well as estimations obtained from the Wang-
Landau method. According to the inset panel of Fig. 7(a),
the greater discrepancies among all these MC estimations
of microcanonical caloric curve β(u) are observed near the
inverse temperature of PT, which are of order �β � 10−4.

Curiously, all these MC estimations are consistent in
predicting an S bend of microcanonical caloric curve of
this model system outside the thermodynamic limit. This
mathematical behavior indicates the existence of a small
region where microcanonical curvature κ(u) = −∂2s(u)/∂u2

is negative, that is, the existence of an energy region with
negative heat capacities. The Wang-Landau method fails to
predict the branch with negative values of microcanonical
curvature curve using direct point statistical estimation (22),
while its associated microcanonical caloric curve evidences
the S bend. Although the observed deviation is very small,
this inconsistency suggests that the Wang-Landau estimation
of entropy per site ŝ(u) does not fulfill the necessary ac-
curacy to obtain a more precise point statistical estimation
of microcanonical curvature. In fact, we have obtained a
better estimation of this last dependency by applying a
direct numerical differentiation on its microcanonical caloric
curve β(u) = ∂s(u)/∂u. This second procedure now predicts
a branch with negative values of microcanonical curvature
curve and its results exhibit a better agreement with estimates
obtained from the multihistograms method.

As discussed elsewhere [17], the existence of a branch with
negative heat capacity is a typical behavior of finite systems
that undergo a temperature-driven discontinuous PT. In fact,
this mathematical behavior of microcanonical dependencies
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FIG. 7. (Color online) Comparison among results obtained from MC simulations using extended Wolff and usual Swendsen-Wang cluster
algorithms. Results from the Wang-Landau method are employed here as reference. (a), (b) Microcanonical dependencies β(u) = ∂s(u)/∂u

and κ(u) = −∂2s(u)/∂u2 estimated using point statistical estimation (22), where u = U/N and s = S/N are energy and entropy per site,
respectively. Squares and circles are the punctual values of these dependencies using a single energy histogram, while solid and dashed-dotted
lines are smooth estimations using recalculation procedure once obtained microcanonical entropy per site ŝ(u) derived from the multihistograms
method. To check prediction of the multihistograms method for states with minimum curvature, the blue star point corresponds to a point
statistical estimation using a single histogram obtained from a very long simulation run with M = 8.1 × 107 MC steps using extended Wolff
algorithm. Additionally, we have included an estimation of microcanonical curvature by direct numerical differentiation of microcanonical
caloric curve estimated from the Wang-Landau method in (a). (c) Energy histograms near critical point for each MC method. (d) Decorrelation
time τ (open squares and circles) and efficiency factor η = τ�2

T (solid squares and circles) vs the most likely value of energy per particle ue

for each simulation run.

is unambiguously observed in all cases of q-state Potts
models on the square lattice L × L with q > 4 outside the
thermodynamic limit [1,2,9]. To verify the accuracy of this
prediction, we have reobtained a point statistical estimation
of microcanonical inverse temperature and curvature at the
energy with minimal value of microcanonical curvature curve.
For this purpose, we have considered a single histogram
obtained from a very large simulation with M = 8.1 × 107 ≡
8.8 × 106η MC steps using the extended Wolff algorithm.
Control parameters of Gaussian ensemble (15) for this par-
ticular calculation were prefixed using the microcanonical
estimates of this notable point us = 0.545, βs = 1.0911, and
κs = −0.0549, which were previously estimated from the
multihistograms method. Point statistical estimation obtained
from this new simulation [the blue star point in Fig. 7(b)]

is in full agreement with results already obtained from the
multihistograms method.3 According to estimations (29),
statistical uncertainties in microcanonical caloric curve are
of order �β < 10−5, while the ones of curvature are �κ <

3According to results shown in Fig. 7(d), the efficiency factor
η of extended Wolff algorithm for L = 32 varies from 2.9 up to
9.2 in this energy region. Therefore, the number of steps Mk of
individual simulations using this cluster algorithm ranges as Mk =
(2.8 − 9.0) × 105 steps, with a total sum

∑
Mk = 1.4 × 107. The

very large simulation with M = 8.1 × 107 steps was not considered
for calculations using the multihistograms method. This run was only
employed to recalculate microcanonical quantities at the energy with
minimum curvature u � 0.545.
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FIG. 8. (Color online) Some microcanonical dependencies of the four-state Potts model on the square lattice L × L with different L, which
were estimated considering the multihistograms method combined with extended Wolff algorithm. (a) Microcanonical inverse temperature
β(u) = ∂s(u)/∂u. (b) Dependency s∗(u) = s(u) − βcu − sc obtained from entropy per site s(u) and inverse temperature βc corresponding to
the temperature-driven PT. This auxiliary function reveals better the existence of a convex intruder for entropy per site s(u), which is directly
related to the existence of a branch with negative curvature κ(u) = −∂2s(u)/∂u2 or, equivalently, states with negative heat capacities C < 0.
Typical energies (u1,u2,u3) and entropy defect �s = s∗(u1) − s∗(u2) are employed to characterize this convex intruder region, in particular, to
estimate the latent heat per site qL = u3 − u1.

3.2 × 10−4. This precision allows us to claim that the existence
of this S bend of microcanonical caloric curve cannot be
attributed to a poor convergence of the data.

For a better understanding, microcanonical dependencies
(19) were calculated for different values of the lattice size
L. Because of our modest computational resources, we have
restricted here to MC simulations with lattice sizes L =
22–90 using the extended Wolff algorithm and multihistogram
method. Microcanonical dependencies of inverse temperature
β(u) and entropy per site s(u) are shown in Fig. 8. Again,
these results confirm the existence of a branch with negative
heat capacities in the four-state Potts model on the square
lattice L × L outside the thermodynamic limit. As usual, the
inverse temperature βc corresponding to this type of PT was
estimated using the Maxwell area rule [30]∫ u3

u1

[β(u) − βc] du = 0 → s(u3) − s(u1) = βc (u3 − u1)

(57)
in conjunction with conditions

β(u1) = β(u2) = β(u3) = βc. (58)

Actually, dependence of entropy per site s(u) was replaced
in Fig. 9 by the auxiliary function s∗(u) = s(u) − βcu − sc,
where sc is suitable constant. This auxiliary function reveals the
existence of a convex intruder of microcanonical entropy per
site s(u). This energy region of convexity can be characterized
by the three relevant energies (u1,u2,u3) and entropy defect
�s = s∗(u1) − s∗(u2). The latent heat per site qL is evaluated
as qL = u3 − u1. These notable values are reported in Table II.
Size dependencies of inverse temperature βc of the PT and
latent heat per site qL are shown in Fig. 9.

At first glance, the present results are quite confusing.
Baxter has demonstrated in the past [20] that latent heat of this

model system vanishes. However, one can realize that there
is no contradiction. Baxter’s exact result only concerns the
four-state Potts model on the square lattice in thermodynamic
limit L → +∞. By itself, this result does not forbid the
existence of macrostates with negative heat capacities for
finite systems as the cases analyzed in this MC study. In
fact, monotonous decreasing of the latent heat per site qL is
compatible with an eventual vanishing of this quantity when
L → +∞. Our MC estimations of latent heat per site qL are
consistent with a power-law dependence qL(L) ∝ (1/L)z with
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FIG. 9. (Color online) Dependence of inverse temperature βc

(black circles) corresponding to temperature-driven PT and latent
heat per site qL (red open circles) on the inverse lattice size
1/L. Additionally, we have shown the extrapolation of these data
when 1/L → 0 using polynomial fits (black line) for the inverse
temperature βc(L) and a power-law fit for latent heat per site as
qL(L) ∝ (1/L)z with z = 0.26 ± 0.02, which is also shown in the
inset panel using the log - log scale.
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TABLE II. Size dependence of some thermodynamic parameters
that characterize the convex intruder of entropy per site s(u) shown
in Fig. 8(b).

L βc u1 u2 u3 qL �s × 106

22 1.0861 0.5176 0.5553 0.5929 0.075 2.37
32 1.0912 0.5088 0.5437 0.5772 0.068 2.18
45 1.0939 0.5040 0.5365 0.5675 0.063 2.11
64 1.0957 0.4990 0.5293 0.5575 0.058 1.94
90 1.0968 0.4963 0.5216 0.5477 0.051 1.70
∞ 1.0986 0.000 0.00

z = 0.26 ± 0.02. Of course, it would be desirable to extend
the present microcanonical MC estimations for systems with
larger lattice sizes L > 90, which is beyond our computational
capability.

As already demonstrated by Baxter himself [20], the four-
state Potts model on the infinite square lattice is a marginal
case: cases with q > 4 exhibit a temperature-driven discon-
tinuous PT, while cases with q � 4 undergo a continuous PT.
According to our results, ambiguities in some behaviors can
appear for the marginal case q = 4 outside the thermodynamic
limit. For example, multimodal character of canonical energy
distributions during the phase coexistence phenomenon (see
example in Fig. 1) leads to an exponential dependence
of decorrelation times τ (N ) ∝ exp(γN ) with system size
N = L2 during MC simulations [12]. For the particular case
of the four-state Potts model on the square lattice L × L,
canonical MC algorithms exhibit a power-law dependency of
decorrelation times τ (N ) ∝ Nwτ , whose critical exponents wτ

were already shown in Table I. As expected, such a power-law
dependency of decorrelation times is a typical behavior of
finite systems at critical temperature of continuous PT [12].
According to our results, the non-Gaussian form of canonical
energy distribution at transition inverse temperature βc, as
the one shown in Fig. 7(c), is explained by the superposition
of two close Gaussian peaks. The widths of these peaks are
sufficiently large to hide the existence of a bimodal character
of energy histogram within canonical ensemble. This behavior
cannot be distinguished in canonical energy distribution of
this figure because of defect �s of entropy convex intruder
is very small. The proximity of these peaks is the reason
why canonical MC algorithms do not follow an exponential
dependence of decorrelation time τ (N ) ∝ exp(γN ).

Barkema and de Boer presented in the past [45] an
interesting Monte Carlo study about a dynamical model with
parameters (d∗,q∗) that resembles d-dimensional q-state Potts
models for noninteger values. Curiously, these authors also
reported a nonvanishing latent heat per site qL for the case
d∗ = 2 and q∗ = 4 considering MC simulations with lattice
size L = 128. Their estimated value qL = 0.019 seems to be
compatible with this study.4 However, these authors do not
attempt to analyze this particular finding because they were
more interested in behavior of latent heat for noninteger values
of parameter q∗ in the thermodynamic limit.

4A simple extrapolation of numerical results of Table II using power
law qL(L) ∝ (1/L)z suggests the value qL � 0.048 for L = 128.

IV. FINAL REMARKS

We have combined the extended canonical MC algorithms
with the multihistograms method [13], which enable us
to improve accuracy of microcanonical calculations using
point statistical estimation formulas (22)–(24). The resulting
technique is sufficiently accurate to detect subtle thermody-
namical behaviors during MC simulations. As an example
of application, we have applied this method to reveal the
existence of a very small latent heat during occurrence of
temperature-driven PT of the four-state Potts model on the
square lattice L × L outside the thermodynamic limit. Our
MC estimates of latent heat per site qL are consistent with a
power-law dependence qL(L) ∝ (1/L)z with z = 0.26 ± 0.02,
which predicts a vanishing of this quantity when L → +∞.
Accordingly, the present results are compatible with Baxter’s
exact result about continuous character of temperature-driven
phase transition of this model in the thermodynamic limit
L → +∞.

Velazquez and Curilef methodology [1,2,9] admits other
improvements to increase the performance of extended canon-
ical MC methods. A next step is the combination with
rejection-free algorithms [46]. If possible, resulting algorithms
could exhibit much greater performance. This methodology
can also be extended to perform a MC study of systems with
several control parameters besides energy and temperature.
An important step to achieve this purpose was already done
in Ref. [26], where equilibrium fluctuation relation (1) was
extended to situations with several thermodynamic variables.
As already discussed in this work, some arguments of this
methodology could be useful to enhance potentialities of
other MC methods, such as the multicanonical method and
its variants [6–8]. Some of these questions will be discussed
in forthcoming works.
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APPENDIX: ADDITIONAL DISCUSSIONS

1. About point statistical estimation

Formally speaking, the point statistical estimation formulas
(22)–(24) is an inference procedure to determine best guess for
first entropy derivatives [43]. To fix some ideas, let us consider
an energy histogram H (U ) obtained from a MC simulation
based on the Gaussian ensemble (15):

H (U ) ∝ ωG(U |θ ) exp [S(U )] . (A1)

Entropy difference S(U ) − S(Ue) around the most likely
value of energy Ue can be approximated by the following
polynomial:

Pe(U ) = βe�Ue − κe

�U 2
e

2N
+ ζ 3

e

�U 3
e

6N2
+ ζ 4

e

�U 4
e

24N3
(A2)
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with �Ue ≡ U − Ue, which is the Taylor power expansion
of entropy difference up to four orders of approximation. By
definition, the energy Ue obeys the stationary condition

βω(Ue) = βe, (A3)

where βω(U ) is given by the linear ansatz of Gaussian ensem-
ble (14). Accordingly, the microcanonical inverse temperature
parameter βe is fully determined by the knowledge of the
energy Ue. Mathematical form of energy histograms H (U )
can be approximated by the following distribution:

H (U ) � A(θ,χe) exp [−Q(U |θ,χe)] , (A4)

where A(θ,χe) is a normalization constant and Q(U |θ,χe) is
the four-order polynomial

Q(U |θ,χe) = φ(U |θ ) − Pe(U ). (A5)

As naturally expected, parametric distribution (A4) improves
Gaussian approximation of energy distributions by including
finite size 1/N effects. The unknown microcanonical param-
eters χe = (Ue,κe,ζ

3
e ,ζ 4

e ) can be obtained using suitable esti-
mators [43]. In particular, point statistical estimation formulas
(22)–(24) follow from the application of the known method of
moments combined with a perturbative 1/N expansion. The
idea is to perform calculation of energy moments of n order:

μn = E
(
Un

) =
∑

U Un exp [−Q(U |θ,χe)]∑
U exp [−Q(U |θ,χe)]

= fn(χe|θ )

(A6)

with n = 1–4. Afterwards, the concrete analytical expressions
of functions fn(χe|θ ) are inverted as follows:

μn = fn(χe|θ ) → χe = ge(μ1,μ2,μ3,μ4|θ ). (A7)

Finally, the estimators χ̂e of microcanonical parameters χe are
obtained replacing μn by the sample moments

μ̂n =
∑

U UnH (U )∑
U H (U )

. (A8)

Further details about this procedure are discussed in the
appendix of Ref. [2].

2. Iterative scheme

First, it is convenient to notice that normalization functions
fk’s in self-consistent problem (53) are undetermined by
an additive term. If the set of values f = {fk} represents
a solution of this problem, the set f ∗ = {f ∗

k } with f ∗
k =

fk + C also represents a solution. This fact implies that
the estimator Ŵ (U ) is undetermined by a constant factor
Ŵ ∗(U ) = Ŵ (U ) exp(−C). This arbitrariness is not a problem
because only entropy change S(U ) = ln W (U ) for different
energies is thermodynamically relevant. Anyway, we shall
impose the following constraint∑

k

fk = 0 (A9)

to avoid this arbitrariness. Self-consistent problem (53) is
solved in this work using the following scheme of successive
iterations:

(1) A rough estimation f n = {f n
k } is employed to obtain

an estimation for number of states Ŵ n(U ).
(2) A tentative set of values f̌ n = {f̌ n

k } is obtained from
normalization condition

exp
(−f̌ n

k

) =
∑
U

Ak exp [−φ(U |θk)] Ŵ n(U ). (A10)

(3) The set f̌ n is displaced as follows:

f̃ n
k = f̌ n

k − 1

Q

∑
n

f̌ n
n (A11)

to guarantee imposition of constraint (A9), with Q being the
number of histograms.

(4) A new approximation f n+1 = {f n+1
k } is obtained as

follows:

f n+1
k = f n

k + ε
(
f̃ n

k − f n
k

)
, (A12)

where ε is a small positive number.
The present iterative scheme is repeated until the conver-

gence error δn,

δn =
√

1

Q

∑
k

(
f̃ n

k − f n
k

)2
, (A13)

reaches a desirable accuracy. Typically, we have employed the
values ε = 0.1 and δn < 10−6.
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