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Theory and application of shapelets to the analysis of surface self-assembly imaging
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A method for quantitative analysis of local pattern strength and defects in surface self-assembly imaging is
presented and applied to images of stripe and hexagonal ordered domains. The presented method uses “shapelet”
functions which were originally developed for quantitative analysis of images of galaxies (∝ 1020m). In this
work, they are used instead to quantify the presence of translational order in surface self-assembled films
(∝ 10−9m) through reformulation into “steerable” filters. The resulting method is computationally efficient
(with respect to the number of filter evaluations), robust to variation in pattern feature shape, and, unlike
previous approaches, is applicable to a wide variety of pattern types. An application of the method is
presented which uses a nearest-neighbor analysis to distinguish between uniform (defect-free) and nonuniform
(strained, defect-containing) regions within imaged self-assembled domains, both with striped and hexagonal
patterns.
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I. INTRODUCTION

Modern microscopy techniques are producing an ever-
increasing amount of high-resolution imaging data of self-
assembled materials. There are thousands of images of such
films in the self-assembly literature alone. One grand challenge
in this area is to relate the structure and dynamics of materials
as captured by imaging data to desired physical and chemical
properties. To date, researchers have predominantly relied
on purely qualitative techniques (e.g., visual inspection) or
simple heuristic algorithms to interpret imaging data with
this end goal in mind. However, such techniques (i) cannot
provide a quantitative description of the relationship between
the imaging data and material properties and (ii) do not scale
to large amounts of data. Effectively using large amounts of
imaging data to infer material properties requires quantitative
characterization methods for the patterns in microscopy
images (uniform regions, defects, etc.) that characterize the
physical structure of the surface.

Recently developed methods for quantitative character-
ization, as shown in Figs. 1(a) and 1(b), have yielded
key fundamental insights into universality of self-assembly
dynamics [1–4]. The methods use bond-orientational order
theory [5] and have been applied predominantly to studies of
block copolymer (BCP) self-assembly on surfaces [1,2,6,7].
They represent first steps toward solving the grand challenge.
Figure 1(b) shows an example of such a method: Given an
image with both a known pattern (hexagonal) and convex
pattern features, the method finds orientational relationships
among these pattern features. These relationships then can be
used in conjunction with bond-orientational order theory [5]
to approximate local pattern orientation and identify defects.
This type of quantification of surface order has been vital to
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the identification of pattern evolution mechanisms and defect
kinetics [1–4,6]. Furthermore, relationships resulting from
this type of analysis have since been shown to imply that
pattern dynamics are universal, i.e., they are invariant with
respect to chemical structure and physical interactions that
drive pattern formation [3,4]. Besides furthering fundamental
understanding of self-assembly, these methods will be key
enablers of the ultimate goal of controlling self-assembly to
produce task-optimized material properties [8].

Despite its advantages, the bond-orientational order ap-
proach to self-assembly pattern analysis has several key
limitations:

(a) Resolution: Bond-orientational order theory quantifies
order at the pattern “feature” level, where pattern features are
subdomains which repeat in an ordered way. Typically, these
features are larger than the resolution of the image, as is the
case in Fig. 1(a), which results in a coarse resolution of local
pattern order as shown in Fig. 1(b) where interpolation is used.

(b) Convexity: In order to compute unique nearest-
neighbor relations or “bonds” between pattern features, the
features must be convex. This precludes the use of the method
on stripe patterns and patterns in which features vary greatly
in character (strained patterns).

(c) Uncertainty: In order to compute nearest-neighbor
“bonds” between pattern features, features must be uniquely
identifiable. Typical experimental images of self-assembly
phenomena involve nanoscale features which result in sig-
nificant measurement uncertainty.

Furthermore, images frequently contain multiple regions
that may or may not contain patterns and that sometimes
contain multiple patterns. Thus there is a clear need for
robust, automated approaches to pattern recognition (“Is a
pattern present in this image? Where within the image?”)
and classification (“What type of pattern is present?”) for
self-assembly imaging [10], in addition to a more detailed
characterization (“How is the pattern oriented? Where are the
defects?”) once these initial questions have been answered.
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(b)(a)

FIG. 1. (Color online) (a) Example of a (simulated) hexagonal
self-assembled film from past work [9] where the field shows the
surface coverage of a species ranging from 0 → 1 (black→ white);
(b) local hexagonal pattern strength or order resulting from applying
the bond orientational order method to (a) where pattern strength
ranges from no hexagonal order (black) to perfect hexagonal order
(white). The length scale (both images) is 256 nm.

This work presents and demonstrates an analysis method
for self-assembled surface imaging that fundamentally differs
from past approaches for BCPs and that addresses the
limitations described above. The basis of the method is a
family of localized functions called shapelets [11]. Shapelets
were originally developed to characterize images of galaxies
(∝ 1020m) [11]; they are used here to characterize images
of nanopatterned surfaces (∝ 10−9m). It is demonstrated
that, using simulation data of self-assembled surfaces, the
presented approach is able to robustly determine local pattern
characteristics using an appropriate subset of shapelets [11,12]
and steerable filter theory [13].

II. BACKGROUND

The presented pattern analysis method determines global
pattern information through usage of the discrete Fourier
transform. Local pattern information is determined through
shapelet filters in a rotation-invariant way using steerable filter
theory. Fourier analysis, shapelets, and steerable filter theory
are reviewed below.

Image data are represented by an intensity function
f (xi,yj ) which is defined on a discrete two-dimensional
domain with equally spaced points (pixels) x ∈ {i�x} and
y ∈ {j�y}, where �x = �y and i,j ∈ Z . For clarity, discrete
two-dimensional coordinates will be implied by f (x,y), as
appropriate.

A. Fourier analysis

The discrete Fourier transform (DFT) is a standard image
analysis technique that can be used to quantify the presence
of patterns or periodicity in an image. Given an image with
intensity function f (x,y), the DFT of f is

F{f }(u,v) =
X−1∑
x=0

Y−1∑
y=0

f (x,y) exp −ı

(
2πux

X
+ 2πvy

Y

)
,

(1)
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FIG. 2. (Color online) (a) Two-dimensional spectral density plot
from the DFT of Fig. 1(a) with the origin at the center of the image;
(b) radially averaged spectral density from (a).

which transforms the image from the spatial domain to the
frequency domain. The resulting coefficients F{f }(u,v) of
the Fourier modes over a discrete set of wave vectors indexed
by u and v characterize both wavelength and orientation [14]
of all periodic image patterns. While the DFT can be computed
efficiently, the coefficients provide only global information in
the sense that the Fourier modes span the whole spatial domain,
i.e., they are not localized in space. Thus, this decomposition
can only determine the presence of domainwide periodic
components in the image and recover their characteristic
wavelengths.

Figure 2(a) shows the resulting frequency domain represen-
tation of the image from Fig. 1(a) and Fig. 2(b) shows the radi-
ally averaged spectral density. For images of simple uniformly
ordered domains (e.g., those with a single orientation) the
DFT provides sufficient information about the type of pattern
and its orientation to fully characterize the pattern. However,
this simple case is rarely observed in experimental imaging of
self-assembled surfaces. In domains that are not well ordered,
the output of the DFT reveals only the presence of periodic
structure within the image and characteristic length scales of
that structure; it does not reveal local pattern structure. For
example, the peaks in the radially averaged spectral density
visible in Fig. 2(b) reveal length scales of periodic patterns in
Fig. 1(a), but neither they nor the full DFT in Fig. 2(a) reveal
the location of defects or grain boundaries.

B. Shapelets

Shapelets are a recently developed family of orthogonal
basis functions [11,12] which have been used for image
analysis and are particularly suited to characterizing local
pattern features. Shapelet functions have fixed scale and
varying shape, shown in Fig. 3. As with the windowed Fourier
transform and wavelet decompositions [15], shapelet analysis
[11] involves a linear decomposition of an image obtained by
projecting it onto a set of localized orthogonal basis functions
(Fig. 3). Polar shapelets [12] are of particular interest as they
possess rotational symmetries that are also present in images
of self-assembled materials. They are given by

B�
n,m(r,θ ; β) = β−1χn,m(β−1r) exp −ımθ, (2)
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FIG. 3. Surface plots of the real (top row) and imaginary (bottom row) components of polar shapelet functions [Eq. (2)] with n = 0 and
m = 1 → 8. Image length scale is normalized to 1 and β = 0.55.

where n and m are non-negative integers and β is a character-
istic length scale. The function χn,m is given by

χn,m(r) = cn,mrmLm
n (r2) exp

−r2

2
, (3)

where cn,m = (
∫ ∞

0 χn,m(r)dr)−1 are constants, and Lm
n (r) =

r−mer

n!
dn

drn (rm+ne−r ) are the associated Laguerre polynomials
[16]. Examples for n = 0 and m from 0 through 8 are shown
in Fig. 3. Note that for m > 0 a polar shapelet has a real part and
an imaginary part that is equal to a rotation of the real part by
an angle of −π/(2m). It is natural to define polar shapelets
in polar coordinates; however, for convenience, we define
B⊥

n,m(x,y; β) � B�
n,m[

√
x2 + y2, tan−1(y,x); β] since images

are expressed in Cartesian coordinates.
Standard shapelet analysis of an image is similar to

that of other discrete transforms such as the Fourier and
wavelet transforms. The image is decomposed into a linear
combination of the basis functions,

f (x,y) =
N∑

n=0

M∑
m=0

wn,mB⊥
n,m(x,y; β), (4)

where each weighting coefficient wn,m is given by a discrete
inner product or correlation of its corresponding shapelet
B⊥

n,m(x,y; β),

wn,m = f � B⊥
n,m �

∑
x ′

∑
y ′

f (x ′,y ′)B⊥
n,m(x ′,y ′; β). (5)

The real (imaginary) part of coefficient wn,m can be interpreted
as a measure of similarity between the image and the real
(imaginary) part of B⊥

n,m. The coefficient wn,m is referred to
as the response for shapelet B⊥

n,m. Because the shapelets are
spatially localized functions, different translated versions of
a shapelet have different responses. It is therefore natural to
consider response as a function of image coordinates x and y,

wn,m(x,y) =
∑
x ′

∑
y ′

f (x ′,y ′)B⊥
n,m(x ′ − x,y ′ − y; β), (6)

which gives the similarity between the image and a shapelet
whose origin has been translated to image location (x,y).

C. Steerable filter theory

Given a (typically real-valued) filter F (x,y) expressed in
Cartesian coordinates, it is often useful to know how that

filter would respond if it (or the image) were rotated with
respect to each other. Consider a version of the filter that
has been rotated clockwise by a phase angle ϕ, F (x,y; ϕ) =
F (x cos ϕ − y sin ϕ,x sin ϕ + y cos ϕ). It is particularly useful
to know the ϕ for which the filter response is maximal, as this
angle contains information about pattern orientation: It gives
the angle by which the pattern (or the filter) must be rotated in
order to achieve maximum similarity between the pattern and
the filter. Freeman [13] shows if a filter is steerable, any rotated
version of the filter can be expressed as a linear combination
of a finite (and typically small) set of basis filters. This allows
exact computation of the ϕ for which the filter response
is maximal much more efficiently than through brute-force
techniques, which must explicitly compute a large number of
filter orientations [17].

III. RESULTS AND DISCUSSION

The successful shapelet-based analysis of self-assembly
image data requires methods for determining an appropriate
subset of shapelets, the optimal orientation of the shapelets,
and the appropriate scales for the selected shapelets. Section
III A develops methods for each of these tasks, and Sec. III B
demonstrates the use of the developed methods on self-
assembly data.

A. Sets of steerable, scale-optimized shapelets

In order to use shapelets for pattern analysis, appropriate
shapelet sets and optimal scales are first determined based
on “prototypical” uniform patterns that approximate real
surface self-assembly imaging data but that have a convenient
parametric form. The uniform patterns are expressed in terms
of a two-dimensional Fourier series [18],

ρ(x) =
N∑

n=0

an exp (ikn · x), (7)

where the constants an are related to the magnitude of the
pattern modulation and kn are the basis vectors of the pattern.
For one-mode approximations of stripe and hexagonal patterns
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FIG. 4. Plots of one-mode approximations of a (a) stripe (a1 = 1) and (b) hexagonal (a1 = a2 = a3 = 1) pattern using Eqs. (7) and (8); (c)
schematic of rotations of a shapelet applied to a nonuniform stripe pattern.

the basis vectors are [18]

k1 = 2π

λ
e2

k2 = 2π

λ

(√
3

2
e1 − 1

2
e2

)

k3 = 2π

λ

(−√
3

2
e1 − 1

2
e2

)
. (8)

where e1 = [1,0]T and e2 = [0,1]T. For a stripe pattern a1 	= 0,
a2 = a3 = 0 and for a hexagonal pattern a1 = a2 = a3 	= 0.
The quantity ||ki ||2 is the wave number for the pattern length
scale (wavelength) λ, which corresponds to the peaks shown
in Fig. 2(b).

In order to select a minimal set of shapelets that respond
strongly when applied to uniform stripe and hexagonal
patterns, or in general any surface pattern, a subset of shapelets
should have the following properties:

(1) It should contain shapelets with the same fundamental
rotational symmetries as the pattern of interest. Stripe patterns
have subregions with one- and twofold symmetry; hexagonal
patterns have subregions with one-, two-, three-, and sixfold
symmetry.

(2) The response magnitude of the shapelets should be
invariant with respect to rotations of the pattern.

(3) The shapelets should respond most strongly to the
dominant pattern length scales.

1. Pattern symmetries

Referring to Fig. 3, a convenient property of shapelets of
order (m,n) with n = 0 and m > 0 is that they have s-fold
rotational symmetries for s corresponding to all numbers that
divide m. Thus, at minimum, shapelets up to and including
order m = 2 are necessary for analysis of stripe patterns,
and shapelets up to order m = 6 are necessary for hexagonal
patterns. For simplicity, shapelets up to order m = 6 are used
in all example analyses, which form an overcomplete set of
shapelets for stripe patterns and a minimal set for hexagonal
patterns. The “redundant” information that this set provides in
the striped pattern case did not prove to be problematic.

2. Rotational invariance

In order to produce an analysis that is invariant to pattern
rotations, for each shapelet in the set, the rotation of the
shapelet that produces the largest response is determined.
This is illustrated in Fig. 4(c). The brute-force, and thus
computationally inefficient, approximate approach to finding
the optimal rotation would be to determine the shapelet
response for a large number of rotations of the shapelet and
then select the rotation with the maximal response. This has
two drawbacks: (i) the large number of shapelet responses must
be evaluated at each pixel and (ii) the solution is not exact.

Rather than solve for the optimal rotation approximately,
an exact solution is derived from the fact that the shapelets are
steerable.

Lemma 1: Let B⊥
n,m(x,y; β,ϕ) = B⊥

n,m(x cos ϕ − y sin ϕ,

x sin ϕ + y cos ϕ; β) be a shapelet as defined in (2) that has
been rotated clockwise through a phase angle ϕ as described
in Sec. II C. Then

Re[B⊥
n,m(x,y; β,ϕ)] = cos (mϕ)Re[B⊥

n,m(x,y; β)]

+ sin (mϕ)Im[B⊥
n,m(x,y; β)]. (9)

Proof. (Sketch) Note from the polar form of shapelets that
B�

n,m(r,θ ; β) is of the form h(r)e−ımθ and that a version rotated
by an angle ϕ is of the form h(r)e−ım(θ+ϕ). The lemma follows
from applying standard trigonometric identities to the complex
exponential part of B� and simplifying [19]. �

Steerable forms of each shapelet were formulated using
Lemma 1 [Eq. (9)], which are shown for ϕ = 0 in Fig. 3
(top row). The steerable forms were then used to determine
the optimal rotation angle for each shapelet at each image
location.

Lemma 2: Let w0,i=f � B⊥
0,i(·,·; β), and define ϕ

opt
0,i = arg

maxϕ Re[f �B⊥
0,i(·,·; β,ϕ)] and w

opt
0,i =Re[f � B⊥

0,i(·,·; β,ϕ
opt
0,i )].

Then

ϕ
opt
0,i = arg w0,i , w

opt
0,i = |w0,i |. (10)

Proof. (Sketch.) Since Re[B⊥
n,m(x,y; β,ϕ)] is continuous in

ϕ, it suffices to take the derivative, equate it to zero, and check
second-order optimality conditions to find the optimal rotation
and magnitude. Note that arg w0,i is one of a countably infinite
set of solutions to the optimal rotation problem [19].
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(m, n) = (1, 0)
(m, n) = (2, 0)
(m, n) = (3, 0)
(m, n) = (4, 0)
(m, n) = (5, 0)
(m, n) = (6, 0)

FIG. 5. (Color online) Shapelet filter response wopt
n,m versus pattern length-scale parameter λ (a) with β = λ and (b) β = Cλ (Table I).

Responses shown are correlations with the uniform hexagonal pattern given by Eqs. (7) and (8) with a1 = a2 = a3 = 1 and λ

�x
= 20.

Here ϕ
opt
0,i is the shapelet orientation at which the real part

of the steered shapelet response is maximal and w
opt
0,i is the

value of the response at that orientation. In the above, the
dependence of ϕ

opt
0,i and w

opt
0,i on x, y, and β is suppressed in

the notation for clarity, but the lemma immediately applies to
translated and scaled versions of shapelets as well. As desired,
the rotation-optimized response w

opt
0,i is invariant to rotations

of the pattern.

3. Scaling

The scale of a shapelet, given by the parameter β, also
affects shapelet response. In order to ensure that the selected
shapelets respond strongly to the pattern of interest and
therefore do not respond strongly to pattern defects, their
length scales are tuned to the dominant pattern frequency.
Fixing a pattern, location (x,y), and optimal orientation ϕopt

of a shapelet, the shapelet response is given by the correlation
of the shapelet with the image function f ,

wopt
n,m(β) = f � Re[B⊥

n,m(·,·; β,ϕopt)]

�
∑
x ′

∑
y ′

f (x ′,y ′)Re[B⊥
n,m(x ′,y ′; β,ϕopt)], (11)

which is only a function of β; examples for different (n,m) are
shown in Fig. 5.

In order to ensure that the chosen shapelets respond
optimally to the target pattern of interest, β is chosen so as
to maximize the function w

opt
C1

(and w
opt
C2

and so on) for a given
value of λ. The maximal shapelet response was found to not be
at β = λ, but rather at β = Cλ, with C depending on the order
of the shapelet. Appropriate constants C were found for each
shapelet numerically; these are given in Table I. All analysis
that follows uses this rescaling.

Figure 6 shows rotation-optimized local pattern response
values resulting from application of the scale-optimized
steerable shapelets to uniform (i) stripe and (ii) hexagonal
patterns using the uniform pattern given by Eq. (7). The
shapelet responses shown in Fig. 6(a) and Fig. 6(b) reveal
the locations in the pattern that have different rotational
symmetries. For example, the m = 1 shapelet applied to the
striped pattern reveals where the pattern has only onefold

symmetry: This occurs at the boundaries between stripes. At
such locations, the pattern is only self-similar for a 2π rotation.
The m = 2 shapelet, on the other hand, responds at peaks and
troughs in the stripe pattern, where a rotation of π results
in a self-similar pattern. As the shapelet order is increased
beyond m = 2, almost no new local pattern information is
extracted; the rotation-optimized responses of the shapelets
with higher-order symmetry are very similar to the m = 1 or
m = 2 case.

The m = 1 response applied to the hexagonal pattern
responds at locations near the “edge” of a pattern feature,
which have only onefold symmetry. The m = 2 and m = 4
shapelets respond strongly to areas that are midway along a
line joining two pattern features; these locations have twofold
symmetry. The m = 3 shapelet responds very strongly to the
threefold symmetry at “saddle points,” that is, at points in
the pattern that are equidistant from three nearest-neighbor
features, and, finally, the m = 6 shapelet responds strongly
at pattern modes where there is sixfold rotational symmetry.
Note that the hexagonal pattern lacks any fivefold symmetry;
thus the m = 5 shapelet, which has only fivefold and onefold
symmetry responds only at pattern locations with onefold
symmetry which are also identified by the m = 1 shapelet.

The next section explains how the responses of different
shapelets can be combined into a useful quantitative analysis
of the underlying image [19].

B. Application to self-assembly imaging

Surface self-assembly imaging typically involves surfaces
with patterns that are nonuniform and pattern features that are
not well approximated using a one-mode assumption. Figures

TABLE I. Coefficient values for β = Cλ for shapelets up to
order 6.

(m,n) C (m,n) C

(1,0) 1.418 (2,0) 1.725
(3,0) 2.003 (4,0) 2.224
(5,0) 2.439 (6,0) 2.640

033307-5



SUDERMAN, LIZOTTE, AND ABUKHDEIR PHYSICAL REVIEW E 91, 033307 (2015)

FIG. 6. (Color online) Responses of steerable polar shapelet filters applied to uniform one-mode approximations of a (a) stripe and (b)
hexagonal pattern from Eqs. (7) and (8). Optimal filter responses (above, gray-scale intensity) and orientations (below, see the colorbar) are
shown for each pattern with steerable shapelets with n = 0 and m = 1 → 6 (left to right).

7 and 8 shows example images of two-dimensional surface
self-assembly where nonuniform stripe and hexagonal patterns
are present (taken from Ref. [9]). In Fig. 7 the pattern features
themselves vary in shape. In Figs. 8(a) and 8(d) multiple
quasiuniform subdomains, or “grains,” are present with defect

regions (grain boundaries) at the interface between them. In
order to test the presented shapelet-based method on these
realistic patterns, a guided machine learning approach [19]
was used to classify regions with uniform patterns from those
with defects.

FIG. 7. (Color online) Examples of hexagonal surface self-assembly with features of varying character: (a) sharp interface, (b) semidiffuse
interface, and (c) diffuse interface. Figures taken from Ref. [9].
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FIG. 8. (Color online) Examples of nonuniform (a) stripe and (d) hexagonal patterns from simulations of surface self-assembly (taken from
Ref. [9]). Local pattern response distance resulting from applying the guided machine learning algorithm to the (b) stripe and (e) hexagonal
patterns where the response distance [Eq. (13)] was normalized to range from 0 (black) to 1 (white) and the user-specified set of pixels are
highlighted in (a) and (d). [(c) and (f)] Overlay of the pattern response distance onto the original patterns with normalized pattern response
distance varying from 0 (red) to 1 (green).

The response space is defined as r ∈ Rp where p is the
number of steerable shapelet filters used to quantify the pattern.
Thus at each point in the image (x,y), a response vector r is
computed,

r(x,y) =
[
w

opt
0,1(x,y),wopt

0,2(x,y), . . . ,wopt
0,p(x,y)

]T

∥∥[
w

opt
0,1(x,y),wopt

0,2(x,y), . . . ,wopt
0,p(x,y)

]∥∥
2

, (12)

consisting of the shapelet responses w
opt
0,i (x,y) under the

optimal orientation for image location (x,y) from Eq. (10).
Given a user-specified set of coordinate pairs (i.e., pixel
locations) R of a defect-free subdomain of the image, at any
location of interest (x ′,y ′) in the image the response distance
may be defined from the pixel (x ′,y ′) to the reference set,

dr ((x ′,y ′),R) = min
(x,y)∈R

||r(x ′,y ′) − r(x,y)||2, (13)

where dr ((x ′,y ′),R) is the Euclidean distance between the
response vector at the location of interest and the closest
response vector in the reference set.

The response distance encapsulates how different the image
is at location (x ′,y ′) from the reference set in terms of the
relative shapelet responses. It serves to highlight areas in the
image where defects are present or where no pattern is present.

Such areas have response vectors that have larger dr ((x ′,y ′),R)
from those where no defects are present.

This application of the steerable shapelets method was
applied to the stripe and hexagonal self-assembled domain
images shown in Fig. 8. The characteristic pattern wavelength
λ was determined through identifying the maximum peak
of the spectral density. Figures 8(b) and 8(e) illustrate the
normalized Euclidean distance of the response vectors at each
pixel with respect to the response vector of a user-selected
uniform subdomain shown in Figs. 8(a) and 8(d) (highlighted
in red). In Figs. 8(b) and 8(e), intensity is inversely proportional
to dr (·,R) for the given quasiuniform reference set, which
clearly reveals the locations of defects in the image. Note that
response distance is invariant to pattern rotations, because
the elements of the response vectors are invariant to pattern
rotations.

Pattern defects are of two general types: translational and
orientational. These are referred to as dislocation and discli-
nation defects [20]. In stripe patterns, dislocations correspond
to regions where a stripe feature begins (+) or ends (−). In
hexagonal patterns, dislocations correspond to the beginning
(+) or end (−) of a row of hexagonal features. Orientational
defects, disclinations, are manifested in a rapid transition
from one pattern orientation to another. In stripe patterns, the
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majority of disclinations involve a π
2 rotation and, in hexagonal

patterns, they involve a π
6 rotation.

The steerable shapelets method results show a direct
relation between areas of strong response and quasiuniform
areas in the original pattern images. Figures 8(c) and 8(f)
show an overlay of the local pattern response distance onto
the original pattern images. Areas where response is minimal
corresponds to one of three localized cases: (i) the presence
of defects, (ii) large strain of the pattern (stripe curvature and
or dilation or compression), and (iii) deviation of the pattern
feature from the one-mode approximation.

With respect to defects present in both images, the image
analysis results show good agreement with visual inspection
of local topology in the original image. In areas of large
strain of the pattern, which are typically also in the locality of
defects, the shapelet response both decays and exhibits spatial
modulation. The decay of the response is expected in these
areas of the image where the degree of order with respect
to the pattern is low. One possible drawback of the method
is that there is no distinction between defect “core” regions
and the region of strain surrounding the core, similar to the
bond-orientational order method. Alternatively, resolving the
entirety of the region influenced by a single defect, or cluster
of defects, likely has some significance in relating the pattern
quality to material properties. Finally, in both images there
are pattern features that strongly deviate from the one-mode
approximation of the pattern. In the stripe pattern there are
regions with convex circular shape and in the hexagonal pattern
there are regions with lamellar-like features. The method is
both robust in the presence of these features and strongly
responds to their presence.

IV. CONCLUSIONS

A method for quantitative analysis of surface self-assembly
imaging was presented and applied [19] to images of stripe and
hexagonal ordered domains. A set of orthogonal functions,
shapelets, was shown to be useful as filters which respond
optimally to surface patterns with n-fold symmetry, where
n is the order of the shapelet. Steerable formulations of the
shapelet functions were derived using steerable filter theory
and used to efficiently compute the filter rotation which
yields maximal response. The utility of the steerable shapelet
filter approach was demonstrated on uniform stripe and
hexagonal patterns. Furthermore, realistic nonuniform surface
patterns were analyzed using the presented steerable shapelet
method through guided machine learning. This approach is
able to quantitatively distinguish between uniform (defect-
free) and nonuniform (strained, defects) regions within the
imaged self-assembled domains. The presented method is both
computationally efficient, requiring only two filter evaluations
per steerable shapelet, and robust in the presence of variation
in pattern feature shape. Finally, the shapelet-based method
provides significantly enhanced resolution (pixel level)
compared to the bond-orientational order method (feature
level).
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