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In this paper a conjugate interface method is developed by performing extrapolations along the normal
direction. Compared to other existing conjugate models, our method has several technical advantages, including
the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any
interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating
the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a
circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective
analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface,
i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical
usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling
process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy
into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the
cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical
principles, the confirming results demonstrates the application potential of our method in more complex systems.
In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily
extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer
systems.
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I. INTRODUCTION

Conjugate heat and mass transfer between two materials
(typically one solid and one flowing fluid) with different
transport properties is a common phenomenon in many natural
processes and industrial systems, including heat exchangers,
jet engines, nuclear reactors, combustion chambers, and micro-
fuidic devices [1–3]. In addition to the continuity requirement
for the transport scalar (temperature for heat transfer or
concentration for mass transfer) at the conjugate interface,
the heat or mass transport flux across the interface must
be balanced according to the energy or mass conservation
principle. In recent years, the lattice Boltzmann method (LBM)
has become a useful choice for computational simulations of
various flow and transport systems [4,5]. Compared to other
conventional numerical methods, LBM is advantageous in
parallel computation and treating complex boundary geometry.
Although various numerical schemes for conjugate interfaces
have been developed for traditional numerical methods [6],
these schemes were designed for their particular differential
equation solvers (including numerical algorithms and mesh
structures), and it is difficult to adopt them in LBM directly.
In addition, iterative calculations are usually required in these
conventional methods, and such iterative schemes may become
difficult to implement and computational costly for complex
interface geometry [7].

The first attempt of using LBM to simulate conjugate heat
transfer was conducted by Wang et al. [8], where a half-lattice-
division scheme (i.e., the conjugate interface locates on the
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middle point between two lattice nodes in different domains)
was proposed. On-node schemes have also been developed
where the conjugate interface is placed on lattice nodes [9,10].
Alternatively, Zhao et al. [11] simulated the conjugate heat
transfer process in porous wick by simply assigning different
thermal diffusivity values to lattice nodes on each side of
the conjugate interface. This approach is easy to implement
and no particular treatments at the interface is required;
however, the volume thermal capacities (product of density
and specific heat capacity) in different domains must be the
same [11]. In addition, Yoshida et al. [12] employed a variable
weight coefficient in the equilibrium distribution expression
to account different thermal transport coefficients across an
interface and scaled the density distributions if crossing the
interface. Again, the spatial resolution is limited to the lattice
resolution since the exact boundary location is not considered.
Furthermore, Karani and Huber [13] mathematically examined
the difference in the thermal conduction and mass diffusion
equations and added a source term to the diffusion equation
to mimic the conduction equation. The source term requires
the calculation of the spatial gradient of the reciprocal of
the volume thermal capacity, and they have assumed that
the interface is located halfway along the intersecting lattice
links.

These LBM conjugate models above have not considered
the exact interface location, and, therefore, for a curved
interface, the interface shape can only be approximated
by a series of stairlike segments with a spatial resolution
of the lattice grid unit, and technical difficulties could be
encountered at corner nodes. Li et al. [7] have extended
their boundary method for thermal LBM simulations [14]
to conjugate interfaces and arbitrary interface geometry can
be accurately modeled. Both steady and unsteady, as well
as flat and circular, interfaces have been examined, and the
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algorithm exhibit a second-order accuracy in transport scalar
value and a first-order accuracy in interface flux [7]. However,
the mathematical formulation is relatively complicated even
for the simplest D2Q5 (two-dimensional, five lattice velocities)
lattice model (see Eqs. (19)–(21) and Table 1 in Ref. [7]).
Such a complicated treatment could affect the computational
efficiency, for example, in particulate or porous systems,
where a large amount of solid-fluid interface nodes needs
to be treated. Moreover, the general algorithm (Eq. (19) in
Ref. [7]) cannot be applied at a location where the interface
is approximately parallel or perpendicular to the underlying
lattice grid lines, since in such situations the transverse
intersection points (x′

ss and x′
ff there) may belong to a

same domain. Special treatments (for example, switch to the
decoupled scheme Eq. (26) in Ref. [7]) could be adopted to
overpass this problem; however, this will make the interface
method less efficient and less consistent (e.g., when simulating
moving particles in particulate flows). Another concern is that
only the gradient (flux) component along the intersecting link
is available (Eq. (23) in Ref. [7]) but not that in the transverse
direction. As a result, the normal mass or heat flux across
the interface cannot be calculated directly, and this poses
inconvenience in computational heat and mass transfer. For
example, without the normal flux available, we even cannot
calculate the local Nusselt number, which is an important
parameter in heat transfer [15,16].

In this paper, we propose a counter-extrapolation approach
for conjugate problems. Considering the physical principles
at the interface, we are able to determine the transport scalar
value at the interface by extrapolations from the two separate
domains toward the interface along the normal direction. Once
the scalar value at the interface is available, the conjugate
interface has been transferred to a Dirichlet boundary to each
domain, and appropriate Dirichlet boundary methods can be
readily applied. Compared to the coupled method in Ref. [7],
our method originates from a clear and straightforward math-
ematical layout and possesses a simple numerical algorithm.
The above-mentioned technical difficulty also disappears, and
the same interface algorithm can be applied for any interface-
lattice relative orientation. The normal interfacial gradient is
also directly available for calculations of the transport flux
across the interface. Validation simulations are performed
to examine the correctness and accuracy of our model by
comparing LBM results to analytical solutions for flat and
curved interfaces, and at last the cooling process of a hot
cylinder in a cold flow is presented as a demonstration example
for the potential usefulness of our model. Although in this
paper the model description and simulations are presented
using the D2Q5 lattice structure for simplicity, the interface
treatment developed here can be readily applied to other lattice
structures and even other numerical methods (such as the
finite-difference method and the finite-volume method) of
computational heat and mass transfer.

II. THEORY AND METHODS

A. Governing equations

Considering an interface � separating two domains �1 and
�2 with different transport parameters. The spatial distribution
and temporal evolution of a transport scalar property φ (φ

can be taken as the temperature T for heat transfer or the
concentration C for mass transfer) is governed by the following
differential convection-diffusion equation:

∂φ/∂t + u · ∇φ = D1∇2φ + G, in �1,

∂φ/∂t + u · ∇φ = D2∇2φ + G, in �2. (1)

Here t is time, u is the velocity, G is the source term, and
D1 and D2 are the thermal or mass diffusivities in domains
�1 and �2, respectively. At the conjugate interface �, the
transport scalar φ needs to be continuous (i.e., not jump across
the interface) and the heat or mass flux has to be balanced
according to the conservation law of energy and mass:

φ1,int = φ2,int, (2)

D1(∂φ/∂n)1,int = σD2(∂φ/∂n)2,int. (3)

Here subscript “int” is used to indicate that the variable or its
gradient is measured at the interface, and subscripts “1” and
“2” denote on which side of the interface these properties are
evaluated. ∂/∂n represents the derivative in the local normal
direction n, pointing from domain �1 toward domain �2. The
parameter σ is constant 1 for mass transfer and is the volume
heat capacity ratio, i.e., σ = (ρcp)2/(ρcp)1, with ρ the density
and cp the specific heat.

B. LBM model for transport phenomenon

To solve the convection-diffusion equation Eq. (1), we
employ the multiple-relaxation-time (MRT) LBM model
as in Ref. [7]. The distribution function gi(x,t) (x is the
lattice node location and the subscript i denotes the lattice
direction) evolves according to the following lattice Boltzmann
equation [7]:

gi(x + ciδt,t + δt) − gi(x,t) = 	i + ωiG(x,t)δt, (4)

where δt is the time step and 	i is the collision operator.
For the D2Q5 lattice structure [Fig. 1(a)] employed in this
study, the lattice velocity ci and lattice weight ωi are given as:
c0 = [0,0], c1 = [δx/δt,0], c2 = [−δx/δt,0], c3 = [0,δx/δt],
c4 = [0, −δx/δt], ω0 = 1/3, and ω1−4 = 1/6. In MRT LBM
models, the collision operator 	i is usually written in matrix
expressions as:

	 = [	0,	1,	2,	3,	4]T = −M−1S[m(x,t) − meq(x,t)],

(5)

where the transformation matrix M and the relaxation matrix
S for the D2Q5 lattice structure are given as:

M =

⎡
⎢⎢⎢⎣

1 1 1 1 1
0 1 −1 0 0
0 0 0 1 −1
4 −1 −1 −1 −1
0 1 1 −1 −1

⎤
⎥⎥⎥⎦ , (6)

S =

⎡
⎢⎢⎢⎣

τ0 0 0 0 0
0 τ1 0 0 0
0 0 τ2 0 0
0 0 0 τ3 0
0 0 0 0 τ4

⎤
⎥⎥⎥⎦

−1

. (7)
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FIG. 1. Schematic illustrations for (a) the D2Q5 lattice structure, (b) the counter-extrapolation method for conjugate interfaces, and (c) the
bilinear interpolation operation for estimating the property at an arbitrary position x from its four neighboring lattice nodes.

For the isotropic diffusion systems concerned in the present
study, the elements τ1 and τ2 in matrix S are related to the
diffusion coefficients D1 and D2 in Eq. (1) as:

τ1 = τ2 = 1

2
+ 3D1δt

(δx)2
, in �1, (8)

τ1 = τ2 = 1

2
+ 3D2δt

(δx)2
, in �2. (9)

The relaxation coefficient τ0 does not affect the numerical
solution, and the components τ3 and τ4 have no effect on the
leading-order terms in the resulted convection-diffusion equa-
tion from the LBM algorithm. The off-diagonal components
in the relaxation matrix S can also be set to nonzero values for
anisotropic diffusion systems. In this study, we only consider
isotropic situations and use τ0 = τ3 = τ4 = 1 [17].

The vector m in Eq. (5) is related to the distribution
functions gi via the transformation matrix M:

m = [m0,m1,m2,m3,m4]T = M[g0,g1,g2,g3,g4]T . (10)

With the equilibrium distribution functions given as

g
eq
i = ωiφ(1 + 3ci · u), (11)

and the transport scalar

φ =
∑

i

gi, (12)

it is ready to obtain the following expression for the equilib-
rium counterpart for vector m:

meq = [
m

eq
0 ,m

eq
1 ,m

eq
2 ,m

eq
3 ,m

eq
4

]T

= M
[
g

eq
0 ,g

eq
1 ,g

eq
2 ,g

eq
3 ,g

eq
4

]T

= [T ,uT ,vT ,2T/3,0]T , (13)

where u and v are the components of velocity u in the x

and y directions, respectively. The superscript T denote the
transpose of a vector.

C. The counter-extrapolation method for conjugate interface

For our convenience, the lattice Boltzmann equation
Eq. (A1) is split into two steps: the collision step:

ḡi(x,t) = gi(x,t) + 	i + ωiG(x,t)δt ; (14)

and the propagation step:

gi(x + ciδt,t + δt) = ḡi(x,t). (15)

The intermediate distribution function ḡi is called the post-
collision distribution function. We now consider a general
curved interface � separating domains �1 and �2 as shown in
Fig. 1(b). At a certain time step t , we have all the distribution
functions gi at each lattice node, and the postcollision
distribution functions ḡi can be calculated from Eq. (14).
However, the propagation process cannot be performed as
usual for lattice links crossing the interface, such as that
connecting node x1 in domain �1 and node x2 in domain �2

[Fig. 1(b)]. We label the intersecting position as xint. Inspired
by our recent work on Neumann and mixed Robin boundary
conditions [18,19], we draw a line at point xint perpendicular to
the interface. On this line we find points x′

1 and x′′
1 in domain �1

and points x′
2 and x′′

2 in domain �2. The distance between two
adjacent points along the perpendicular line is kept constant δ:

|x′′
1 − x′

1| = |x′
1 − xint| = |xint − x′

2| = |x′
2 − x′′

2| = δ. (16)

The φ values at points x′′
1, x′

1, x′
2, and x′′

2 can be obtained from
neighboring lattice nodes in their individual domain via, for
example, bilinear interpolations:

φ(x) ≈ Anwφ(xse) + Aneφ(xsw) + Aswφ(xne) + Aseφ(xnw)

(δx)2
,

(17)

where xnw, xne, xsw, and xse are the four nearest lattice nodes
and Anw, Ane, Asw, and Ase are the four fractional areas
in the lattice square [Fig. 1(c)]. By assuming second-order
polynomial variations along the perpendicular line in both
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domains, the normal gradient on each domain side at the
intersecting point xint can be expressed as:

(∂φ/∂n)1,int ≈ 3φ(xint) − 4φ(x′
1) + φ(x′′

1)

2δ
, (18)

(∂φ/∂n)2,int ≈ −3φ(xint) − 4φ(x′
2) + φ(x′′

2)

2δ
. (19)

The conjugate boundary condition Eq. (3) is then used in
combination with Eqs. (18) and (19) to solve the interface
value φ(xint):

φint = φ(xint)

= D1[4φ(x′
1) − φ(x′′

1)] + σD2[4φ(x′
2) − φ(x′′

2)]

3(D1 + σD2)
. (20)

Once the interface value φint is available, the original conjugate
interface problem has been converted to a Dirichlet boundary
problem for each domain, and an appropriate boundary method
for the Dirichlet condition can be used. Here we adopt the
midpoint bounce-back scheme for its simple algorithm and
good numerical accuracy [18]:

gī(x1,t + δt) = −ḡi(x1,t) + 2ωiφ
m
1 , (21)

gi(x2,t + δt) = −ḡī(x2,t) + 2ωīφ
m
2 . (22)

Here the lattice direction i is from node x1 to node x2 and the
lattice direction ī is the reverse direction. For the particular
situation in Fig. 1(b), we have i = 1 and ī = 2. Parameters φm

1
and φm

2 are the estimated φ values at the midpoint xm = (x1 +
x2)/2 via interpolation or extrapolation from each domain side,
respectively [18,20]:

φm
1 = φint + (1 − 2�)φ(x1)

2(1 − �)
, � � 1/2, (23)

φm
1 = 3φint − (2� − 1)φ(x∗

1)

2(2 − �)
, � > 1/2, (24)

φm
2 = φint − (1 − 2�)φ(x2)

2�
, � � 1/2, (25)

φm
2 = 3φint − (1 − 2�)φ(x∗

2)

2(1 − �)
, � > 1/2. (26)

In these equations, x∗
1 and x∗

2 are the second lattice nodes
along the intersecting lattice link from the interface into each
domain, and � is the fraction in domain �1 of the lattice link
connecting x1 and x2 [Fig. 1(b)]:

� = |xint − x1|
|x2 − x1| . (27)

The counter-extrapolation method described above per-
forms extrapolations of φ along the local normal direction
of the conjugate interface. This efficiently avoids the technical
difficulty in Ref. [7] at locations where the interface is parallel
or perpendicular to the underlying lattice grid lines. With a
properly selected extrapolation interval δ (δ = 1.5δx in this
study) [19], all the extrapolation control points x′′

1, x′
1, x′

2, and
x′′

2 are well defined in their respective domains; unless the local
curvature radius is very small (for example, a circular interface
with a radius R < 2δx), and such a situation should be avoided

anyway for the low spatial resolution. With the scalar value
φint at the interface from Eq. (20), the normal gradients on both
sides of the interface or the transport flux across the interface
can be readily obtained via Eqs. (18) and (19).

III. VALIDATION AND DEMONSTRATION SIMULATIONS

In this section, we perform validation simulations to exam-
ine the correctness and accuracy of the counter-extrapolation
method by comparing calculation results to analytical solu-
tions. The systems considered are taken from Ref. [7] for the
good coverage of steady and unsteady situations as well as flat
and curved interfaces. We also simulate the cooling process
of a hot cylinder in a cold flow as a demonstration example
to illustrate potential applications of our conjugate interface
treatment.

A. Steady and unsteady convection-diffusion processes
with a flat interface

1. Model description and analytical solution

First we consider the system shown in Fig. 2 with a flat,
horizontal interface. In this study, we limit ourselves to square
systems with the interface in the middle, i.e., L = H and h =
H/2. The relative position of the interface to the underlying
lattice mesh lines is represented by the interface-lattice offset
�. The variable φ values at the top and bottom walls are
specified by:

φ(x,y = 0) = φ(x,y = H ) = cos(kx + ωt), (28)

Ω
1

Ω
2

ΓH

L

h
δx

Δδx

y

x0

FIG. 2. The schematic for the flat interface system for steady and
unsteady convection-diffusion simulations. The horizontal interface
� at y = h separates the two rectangular domains (�1 for 0 < y <

h and �2 for h < y < H ), and different transport coefficients can
be assigned to them. The relative position of the interface to the
underlying lattice grid is denoted by the distance from the interface
to the first row of lattice nodes in domain �1. In addition, a uniform
velocity U0 exists over the entire simulation domain, and the boundary
condition at y = 0 and y = H is given by Eq. (28). In this study we
keep L = H and h = H/2 as in Ref. [7].
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FIG. 3. (Color online) The φ distributions (a), the φ profiles along x/L = 0.0625, 0.25, 0.5, and 0.75 (b), the φint variation along the
interface (c), and the (∂φ/∂y)1,int variation along the interface (d) for the steady convection-diffusion system with a flat interface. In (a) the
background color patches are from our LBM calculation and the black contour lines are from the analytical solution. In (b)–(d) the symbols
are LBM results and the underlying curves are theoretical predictions. The dashed lines in (a) and (b) indicate the interface location.

where k = 2π/L is the wave number and ω is the temporal
frequency. The midpoint bounce-back boundary method [18]
is utilized for this Dirichlet boundary problem for each domain,
and periodic boundary conditions [4] are implemented at
the left and right boundaries. In addition, a uniform flow
u(x,y) = (U0,0) (U0 is a constant) is applied over the entire
computational domain. The analytical solution of this system
is [7]

φex(x,y,t) = Re{ei(kx+ωt)[γ1e
−λ1y + (1 − γ1)eλ1y]},

0 � y � h, (29)

φex(x,y,t) = Re{ei(kx+ωt)[γ2e
−λ2y

+ (1 − γ2e
−λ2H )e−λ2(H−y)]}, h � y � H,

with relevant parameters defined as below:

γ1 = λ1
(
a2

3 − a2
2

) + κσλ2
(
2a1a2a3 − a2

2 − a2
3

)
(λ1 + κσλ2)

(
a2

1a
2
3 − a2

2

) − (λ1 − κσλ2)
(
a2

1a
2
2 − a2

3

) ,

(30)

γ2 = λ1
(
a2

1a3 + a3 − 2a1a2
) + κσλ2

(
a2

1 − 1
)
a3

(λ1 + κσλ2)
(
a2

1a
2
3 − a2

2

) − (λ1 − κσλ2)
(
a2

1a
2
2 − a2

3

) ,

(31)

a1 = e−λ1h, a2 = e−λ2h, a3 = e−λ2H , (32)

λ1 = k

√
1 + i

ω + kU0

k2D1
, λ2 = k

√
1 + i

ω + kU0

k2D2
, (33)

κ = D2/D1. (34)

2. Steady simulation

By setting ω = 0, the temporal variational effect disappears,
and the system becomes steady. Here, following Ref. [7], we
use D1 = 1/60, D2 = 1/6, σ = 1, and the Peclet number
Pe = U0H/D1 = 20 for the steady simulations. Figure 3
compares the LBM results to those from Eq. (29) for the case
with H = 64 and the interface-lattice offset � = 0.5δx. In
Fig. 3(a), we plot the iso-φ contours from our LBM calculation
(the background color patches) and the analytical solution
Eq. (29) (the black lines). Here we have a visually perfect
match in the contours. Actually, if we plot the LBM and
theoretical results both in contour lines, we will not be able
to see any difference between them. For a more quantitative
comparison, Fig. 3(b) displays the φ distribution profiles along
four constant-x lattice lines, with the symbols from our LBM
simulation and the curves from Eq. (29). Again excellent
agreement is observed here. As the main purpose of this study
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FIG. 4. (Color online) The variations of the φ values in separate domains (a) and the interfacial scalar (b) and gradient (c) values with
simulation time for the unsteady convection-diffusion system with a flat interface. The symbols are LBM results and the underlying curves are
from analytical solutions.

is the conjugate interface treatment, one may be interested in
the performance of our method along the interface. It should
be noticed that the value and flux continuity requirements in
Eqs. (2) and (3) have been already considered in the derivation
of Eq. (20) for φint. Thus, in Figs. 3(c) and 3(d), we only plot
φint and (∂φ/∂y)1 along the interface, with symbols from our
simulation [using Eqs. (20) and (18)] on top of the curves
from Eq. (29). The agreement in φint is excellent in Fig. 3(c),
while some small deviations can be noticed for the interfacial
gradient in Fig. 3(d).

3. Unsteady simulation

Following Ref. [7], we next examine the performance of
our counter-extrapolation method in dealing with unsteady
problems. The system in Fig. 2 is employed again, however,
with a dynamic boundary condition. The frequency ω in

Eq. (28) is set from the Stokes number St =
√

H 2ω
2πD1

= 1 [7].
The ratio σ is set to 10 to represent more general cases, for
example, the heat transfer between two media with different
volume heat capacities. All other parameters are kept the
same as in the previous steady case. For simplicity, we
start the simulation with a uniform gi(x,y,t = 0) = 0 initial
condition. We monitor the φ values at two locations away
from the interface and boundaries (one at x/L = y/H = 0.25

in domain 1 and another at x/L = y/H = 0.75 in domain
2) and the φ values and its gradients on two interfacial lo-
cations (x/L = 0,y/H = 0.5, and x/L = y/H = 0.5). Their
revolutions with simulation time (normalized by the variation
period 2π/ω) are displayed in Fig. 4. The figure shows
that all recorded variables (symbols) quickly start to follow
their individual analytical solutions (curves), and within 1/10
of the imposed variation period, the simulated results have
already matched the theoretical predictions with no evident
deviations. Also, as for the steady case, we compare the overall
φ distributions [Fig. 5(a)], the φ profiles along constant-x
lattice lines [Fig. 5(b)], and the φ values and its gradient
variations along the interface [Figs. 5(c) and 5(d)] at time
instant t = 4π/ω (i.e., two periods after the simulation starts).
In general, good agreement between the LBM results and the
exact solutions is observed.

4. Accuracy analysis

The accuracy of our method for flat conjugate interfaces
is examined by varying the plate-plate distance H from
16δx to 128δx with keeping L = H and h = H/2. To
measure the numerical accuracy of our counter-extrapolation
algorithm in the entire computation domain (L × H )
and along the interface, the following relative errors are
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FIG. 5. (Color online) The φ distributions (a); the φ profiles along x/L = 0.0625, 0.25, 0.5, and 0.75 (b); the φint variation along the
interface (c); and the (∂φ/∂y)1,int variation along the interface (d) for the unsteady convection-diffusion system with a flat interface. In (a) the
background color patches are from our LBM calculation and the black contour lines are from the analytical solution. In (b)–(d) the symbols
are LBM results and the underlying curves are theoretical predictions. The dashed lines in (a) and (b) indicate the interface location.

calculated [7]:

E2 =
∑

�1+�2
(φLBM − φex)2∑
�1+�2

φ2
ex

, (35)

E2,int =
∑

�(φint,LBM − φint,ex)2∑
� φ2

int,ex

, (36)

E2,qint =
∑

�[(∂φ/∂y)1,int,LBM − (∂φ/∂y)1,int,ex]2∑
�[(∂φ/∂y)1,int,ex]2

. (37)

Here subscripts “LBM” and “ex” are used to denote the
properties obtained either from LBM simulations or the exact
analytical solution Eq. (29). For the unsteady simulations, the
above defined errors also vary with time, and periodicity can
be observed shortly after a simulation starts. The periodical
variations of the errors have much shorter periods (compared
to the imposed boundary value variation period 2π/ω) and
small amplitudes. For these situations, we use the averaged
error values over a complete error variation period for our
following analysis.

In Fig. 6 we collect all the error data for E2 (top panels),
E2,int (middle panels), and E2,qint (low panels) from our steady
(left panels) and unsteady (right panels) simulations and plot
them versus the reciprocal of the domain height H with
logarithm scales for both axes. For steady cases, different

interface-lattice offset � = 0.01δx (black circles), 0.5δx (blue
squares), and 0.75δx (red diamonds) are considered; and for
unsteady situations, the effect of the ratio σ is examined
using σ = 0.1 (black circles), 1 (blue squares), and 10 (red
diamonds). Overall, the interface offset � and the ratio σ do
not have significant influence on the accuracy performance.
Based on the cases studied, the slopes in Figs. 6(c) and 6(c′)
appear sensitive to the � and σ values, with a higher accuracy
order from a lower � or a larger σ value. For all relative
errors, the accuracy orders are in the range between 1 and
2. Similar accuracy orders have been reported in previous
LBM simulations when finite-difference approximations are
involved [18,19,21]; however, the exact origin of the decrease
from the second-order accuracy of the LBM algorithm is
not clear, and our recent study has indicated that the overall
numerical accuracy order and magnitude could be affected by
several factors, including the system geometry [18]. We have
tested the nine-node Lagrange quadratic interpolation [22] in
place of the bilinear interpolation scheme in Eq. (17), and not
much of an improvement is observed in the relative errors and
the results are presented. Also there is no significant difference
noticed either in error magnitude or in accuracy order between
the steady and unsteady cases.

The error magnitudes are larger and the accuracy orders are
lower than those reported in Ref. [7] for the same systems. It
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FIG. 6. (Color online) The relative errors E2 [(a) and (a′)], E2,int [(b) and (b′)], and E2,qint [(c) and (c′)] for the steady [(a), (b), and (c)]
and unsteady [(a′), (b′), and (c′)] convection-diffusion systems with a flat interface. For the steady systems, different interface-lattice offsets
� = 0.01, 0.5, and 0.75 are simulated with the volume heat capacity ratio σ = 1, while for the unsteady systems, different heat capacity ratios
σ = 0.1, 1, and 10 are considered with the interface-lattice offset � = 0.5. The straight lines are liner fittings of the LBM data points (symbols)
in the log-log plots, and the line slopes are displayed in the figure labels.

should be pointed out that in Ref. [7] a different decoupled
algorithm was developed for flat interfaces and utilized
for these simulations by taking advantage of the particular
interface shape and orientation. Also for the unsteady cases,
special attention had been paid on the initial condition. These
efforts might be helpful to improve the accuracy characteristics
(reducing error magnitudes and increasing accuracy orders);
however, these treatments are limited to these special situations
(flat interfaces, aligned along lattice lines, and exact solutions
available), and they cannot be applied to general systems.
The better accuracy performance with these special treatments
implemented may not reflect the real feature of the algorithm
either. For example, in Ref. [7], E2,qint behaves similarly to
E2 and E2,int for flat interface systems, but it has much larger
magnitudes and exhibits only a first-order accuracy for circular
interface systems. This large difference could be from the dif-
ferent interface algorithms utilized for flat and interfaces there.

B. Steady diffusion system with curved interface

For a more general case, we next consider the diffusion
system illustrated in Fig. 7, with domain �1 in the central

region of r < R1 and domain �2 in the surrounding ring region
of R1 < r < R2. For this case, only the steady situation is
simulated and the boundary φ value on the outer edge r = R2

is specified by [7]:

φ(r = R2) = cos(nθ ), (38)

where θ is the polar angle and n is an integer. The analytical
solution of this system is given by [7]:

φ(r,θ ) = b1r
n cos(nθ ), 0 � r � R1,

φ(r,θ ) = (b2r
n + b3r

−n) cos(nθ ), R1 � r � R2, (39)

and the parameters b1, b2, and b3 are given as:

b1 = 2σ (D2/D1)R−2n
1 R−n

2

(σD2/D1 + 1)R−2n
1 + (σD2/D1 − 1)R−2n

2

,

b2 = (σD2/D1 + 1)R−2n
1 R−n

2

(σD2/D1 + 1)R−2n
1 + (σD2/D1 − 1)R−2n

2

, (40)

b3 = (σD2/D1 − 1)R−n
2

(σD2/D1 + 1)R−2n
1 + (σD2/D1 − 1)R−2n

2

.
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FIG. 7. The schematic of the steady diffusion system with
a circular interface at r = R1, which separates the two coaxial
domains �1 for r < R1 and �2 for R1 < r < R2. Different transport
parameters are assigned to the two domains, and a steady but
nonuniform boundary condition as given by Eq. (38) is imposed
at the outer boundary at r = R2.

In our simulations, we maintain n=4, R2/R1=2, D2/D1=10,
and σ = 1. This set of parameters are taken exactly from
Ref. [7] for the convenience of a direct comparison.

In Fig. 8, the LBM results for the case with R2 = 2R1 =
32.5δx are compared to the exact solution in Eq. (39). Similarly
to Figs. 3 and 5, here we display the φ distribution contours
[Fig. 8(a); only a quarter of the system is shown for system
symmetry], the φ radial profiles along θ = 0 and θ = π/4
[Fig. 8(b)], and the interfacial φ value and normal gradient
variations along the interface r = R1 [Figs. 8(c) and 8(d)].
Again there is no visual difference observed in the distribution
contours, except at the center, where the φ = 0 contour line
does not reach the domain center radially but turns back near
it. We believe this is from the plotting software, since the
φ magnitude is very small near the center (φ = 0 at r = 0)
and the plotting program may not be able to tell such tiny
difference in this region. Nevertheless, this is for the contour
line from the exact solution, and our LBM calculation has
captured the local φ distribution to a reasonable accuracy [see
the color patches in Fig. 8(a)]. The overall agreement between
LBM data and theory in Figs. 8(b)–8(d) is excellent. Slight
deviations can be seen at the peaks and valleys of φint and
(∂φ/∂r)1 in [Figs. 8(c) and 8(d)], and this is reasonable since
larger errors may be introduced from the bilinear interpolations
and normal extrapolations in such regions. Compared to
Ref. [7], the gradient (∂φ/∂r)1,int from our model matches
the theoretical solution much better than the φ gradients in
lattice directions in Ref. [7], especially at the peak and valley
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FIG. 8. (Color online) The φ distributions (a), the φ profiles along θ = 0 and π/4 (b), the φint variation along the interface (c), and the
(∂φ/∂y)1,int variation along the interface (d) for the steady diffusion system with a circular interface. In (a) the background color patches
are from our LBM calculation and the black contour lines are from the analytical solution. In (b)–(d) the symbols are LBM results and the
underlying curves are theoretical predictions. The dashed arc in (a) and the dashed vertical line in (b) indicate the interface location.
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FIG. 9. (Color online) The relative errors E2 (a), E2,int (b), and E2,qint (c) for the steady diffusion system with a circular interface. The
straight lines are liner fittings of our LBM data points (filled squares) in the log-log plots, and the line slopes are displayed in the figure labels.
The error data read from Ref. [7] are also displayed as open symbols for comparison.

locations [see Fig. 8(d) here and Fig. 18(b) there]. These
large deviations there may be due to the technical difficulty
we mentioned above, which occurs when the interface is
parallel or perpendicular to the lattice directions. In addition,
it should be mentioned that only the gradient component
along the intersecting lattice link is available in Ref. [7]
[Eq. (23) there] but not the transverse gradient component.
A direct consequence of this incompleteness is that we cannot
calculate the mass or heat flux across the interface and other
important parameters such as the local Nusselt number directly
without extra effort. For our counter-extrapolation method, the
extrapolations are performed along the local normal direction,
and the consistent algorithm produces relatively uniform
agreement along the interface for both the interfacial value
and normal gradient.

The accuracy performance of our model for this circular
interface system is also investigated by changing the system
size, and the relative errors calculated from Eqs. (35)–(37)

are plotted in Fig. 9 as filled symbols in comparison to those
reported in Ref. [7] as open symbols. One can see that the errors
in φ value over the entire domain (E2) and along the interface
(E2,int) from our model are of similar magnitudes as those in
Ref. [7]. The respective converging orders, as indicated in the
figure labels in Figs. 9(a) and 9(b), are 1.527 and 1.398, which
are between those from the half-lattice division scheme [8] and
the coupled model by Li et al. [7]. The relatively low accuracy
orders might be from the finite-different approximations to
obtain the φ values at the extrapolation control points, as
reported in previous studies [18,19,21]. However, this should
not be a serious concern for practical applications. As seen in
Figs. 9(a) and 9(b), even at a high resolution of R1 = 64δx,
the E2 and E2,int errors are still of similar magnitudes to those
from the coupled method in Ref. [7]. If a finer resolution,
for example, R1 = 128δx is employed, the errors estimated
by following the converging trends are E2 ≈ 10−4 and
E2,int ≈ 8 × 10−4 for our method, and E2 ≈ 5 ∼ 8 × 10−5
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FIG. 10. The schematic for simulations of the cooling processes of a hot cylinder in a cold flow. Initially, the solid cylinder has a uniform
temperature Ts , and the fluid is at rest with temperature T0 < Ts . When the simulation starts, fluid enters at the left of the simulation domain
with density ρ0, velocity U0, and temperature T0, and the flow and temperature in both the fluid and solid domains are recorded. See text for
detailed descriptions of the boundary conditions.

and E2,int ≈ 4 ∼ 8 × 10−4 for the method from Ref. [7]. The
improvement in accuracy is relatively limited (of the order of
10−5 ∼ 10−4), but the increase in computational cost could be
significant (quadrupled in two-dimensional and eight-folded
in three-dimensional systems). The better performance in
interfacial gradient of our method observed before in Fig. 8(d)
is reconfirmed in Fig. 9(c). The E2,qint magnitudes are smaller
and the accuracy order (slope) is similar to those from Ref. [7].
The better accuracy in interfacial gradient could be favorable
for applications where the transport flux across the interface

is important (for example, the calculation of the local Nusselt
number [16]). In addition, with a uniform treatment for flat
and curved interfaces, we observe a consistent error change
trend in Figs. 6 and 9: larger error magnitudes and lower
accuracy orders for interfacial errors E2,int and E2,qint than
those for the global error E2. This is reasonable since the
interfacial treatment, although carefully developed, is still an
artificial disruption to the regular LBM iteration, and relatively
large errors are usually expected in such boundary or interface
regions where the artificial disruption is injected [19,23].

FIG. 11. (Color online) The distributions of flow vorticity (top panel) and temperature (lower three panels, one for each case simulated) at
three representative time instants, t∗ = 0.5 (left panels), 5 (middle panels), and 50 (right panels), during the cooling processes of the system in
Fig. 10. All three simulations start from the same initial condition with the fluid at rest and the solid cylinder of a same higher temperature. The
fluid and cylinder in Case 1 (second row) have the same heat capacity and heat conduction coefficient and this case serves as the control case
for comparison. The solid cylinder in Case 2 (third row) has a larger heat capacity and thus the cylinder has more thermal energy to release. In
Case 3 (last row) the solid cylinder has a better thermal conduction, which facilitates the heat conduction inside of the cylinder and therefore
speeds up the overall cooling process.
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FIG. 12. (Color online) The temperature distributions along the system centerline for the three cases studied. Compared to Case 1 (black
solid curves), the high temperature in the cylinder lasts longer and also the downstream fluid temperature is higher since there is more thermal
energy in the cylinder in Case 2 (dashed red curves). On the other hand, the cooling process in Case 3 (blue dash-dotted curves) is faster due
to the better thermal conduction of the cylinder. The gray area indicates the solid region of the cylinder.

C. Cooling process of a hot cylinder in a cold flow

At last, we simulate the cooling process of a hot cylinder
with a cold fluid flowing over. The system involves unsteady
flows and curved interface, and it can be considered an
example to demonstrate potential usefulness of our model
in conjugate heat transfer systems. The transport scalar φ

is replaced with temperature T in the following discussion.
Figure 10 provides a schematic description of the system
setup, and we use subscripts f and s to distinguish properties
of the fluid and the solid cylinder, respectively. At the left inlet
(x = 0), we impose a uniform flow with constant velocity
U0, density ρ0, and temperature T0. For the top (y = H )and
bottom (y = 0) boundaries and the right exit (x = L), we
apply the following no-gradient conditions: (∂u/∂y)y=0 =
(∂u/∂y)y=H = 0, (∂ρ/∂y)y=0 = (∂ρ/∂y)y=H = 0 (ρ is
the fluid density), (∂T /∂y)y=0 = (∂T /∂y)y=H = 0,
(∂u/∂x)x=L = (∂v/∂x)x=L = 0, (∂ρ/∂x)x=L = 0, and
(∂T /∂x)x=L = 0. Also the transverse velocity v is set to
zero at y = 0 and y = H : v(y = 0) = v(y = H ) = 0. The
flow field is solved using the standard single-relaxation-time
LBM model with the D2Q9 (two-dimensional, nine lattice
velocities) lattice structure (see the appendix), and the no-slip
boundary condition over the cylinder surface is achieved with
the midpoint boundary method by Yin and Zhang [20]. The

flow velocity from the flow calculation is then utilized in the
calculation of temperature field, in particular, via Eq. (13).
For simplicity, we assume that the fluid properties (density,
viscosity, and heat capacity) are not changing with the fluid
temperature, and the pressure compression work and viscous
heat dissipation are neglected for the incompressible flow
considered here [24]. Before starting the simulation, we
set the fluid with a constant density ρ(t = 0) = ρ0 and no
flow velocity u(t = 0) = (0,0) and T (t = 0) = Ts in the
cylinder and T (t = 0) = Tf in fluid. These boundary and
initial conditions are typical in computational studies of flows
over objects, and a more detailed description of the flow
calculation can be found in the literature [16]. In our following
simulations, we use R = 20δx, L = 1600δx, H = 640δx,
l = 300δx, ρ0 = 1, U0 = 0.05, T0 = Tf = 0, and Ts = 1. The
fluid kinematic viscosity ν (and then the relaxation parameter
in the D2Q9 LBM flow calculation, see the appendix) is
obtained from the Reynolds number Re = 2U0R/ν = 100,
and, similarly, the fluid heat diffusivity Df is calculated from
the Prandlt number Pr = ν/Df = 2. For the heat transfer
properties of the cylinder, we consider the following three
cases to examine their effects on the cooling process:

Case 1. κ = Ds/Df = 1 and σ = (ρcp)s/(ρcp)f = 1
(control case);

033306-12



COUNTER-EXTRAPOLATION METHOD FOR CONJUGATE . . . PHYSICAL REVIEW E 91, 033306 (2015)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

t*

T
av

g

Case 1: κ = 1, σ = 1
Case 2: κ = 1, σ = 5
Case 3: κ = 5, σ = 1

FIG. 13. (Color online) The changes of the average temperature of the cylinder during the cooling process for the three cases studied.
Starting with a same value T0 = 1, the cylinder temperature decreases slower in Case 2 (red dashed curve) due to the higher heat capacity and
it drops faster in Case 3 (blue dash-dotted curve) due to the better thermal conduction of the solid.

Case 2. κ = Ds/Df = 1 and σ = (ρcp)s/(ρcp)f = 5
(larger solid heat capacity);

Case 3. κ = Ds/Df = 5 (better solid heat conduction) and
σ = (ρcp)s/(ρcp)f = 1.

Figure 11 shows the distributions of flow vorticity (Row
1) and temperature (Row 2 for Case 1, Row 3 for Case 2,
and Row 4 for Case 3) at normalized time t∗ = tU0/2R =
0.5 (Column 1), 5 (column 2), and 50 (Column 3). The flow
field is the same for all three cases under our assumptions
described above. At t∗ = 0.5, the flow is still in the early
development stage and an approximately symmetric vorticity
pattern is observed. The symmetric structure is then quickly
destroyed as time processes, and the unsteady nature of this
moderate Reynolds number flow becomes dominant at t∗ = 5.
At t∗ = 50, the well-known Karman vortex street pattern has
been established behind the cylinder. These flow patterns are
consistent to results reported in previous studies [16]. The
temperature field is clearly associated with the flow structure
for this convection-dominant system with the Peclet number
Pe = RePr = 200.

The heat transfer parameters of the solid cylinder also play
important roles. The cooling of the cylinder is much slower
and the downstream fluid is much hotter in Case 2 compared to
Case 1, since a larger solid heat capacity in Case 2 means more
heat energy is stored in the hot cylinder. On the other hand, the
better heat conduction in Case 3 facilitates the heat transfer
inside of the cylinder and thus speeds up the heat release
from the cylinder surface to fluid. For a more quantitative
comparison, the temperature distributions along the system
centerline y = H/2 are plotted in Fig. 12. Here we also notice
that the hottest spot in the cylinder is shifting from the cylinder
center toward the rear edge during the cooling process. This
is understandable by considering the following fact: The front
edge of the cylinder is directly exposed to the incoming cold
stream, while the rear part surface is in contact with somewhat
warmed fluid. As a result, the heat release flux is greater and the

temperature drops faster in the front part than in the rear part.
We also plot the average cylinder temperature over simulation
time in Fig. 13, which clearly shows the effects of solid heat
capacities and conduction coefficient on the overall cooling
process in a same fluid flow.

IV. SUMMARY AND CONCLUDING REMARKS

We have developed a conjugate interface method for LBM
simulations of convection-diffusion systems between two
materials with different transport properties. The novelty of
this method lies in that we look at the variation of the transport
scalar along the normal direction of the local interface, and
the scalar and flux continuity requirements at the conjugate
interface can be directly utilized to determine the interfacial
scalar value. With the interfacial scalar value obtained, the
original conjugate problem can be solved as two boundary
value systems with an appropriate method for the Dirichlet
boundary conditions. Our counter-extrapolation method is
advantageous over other existing LBM conjugate models
in several aspects, including the simple and straightforward
algorithm, accurate representation of the interface geometry,
applicability to any interface-lattice relative orientation, and
availability of the normal gradient. Validation simulations
of steady and unsteady convection-diffusion systems with
flat interfaces and steady diffusion systems with circular
interfaces have been conducted, and the LBM results show
good agreement with theoretical predictions. In addition, the
cooling process of a hot cylinder in a cold flow, which involves
unsteady convection and diffusion and a curved interface, has
been studied to demonstrate the potential applications of our
model in complex systems. Although all the model description
and simulations in this paper are based on the MRT LBM
model with the D2Q5 lattice structure, there should be no tech-
nical difficulty to extend this method to other LBM models or
lattice structures. The basic idea of our counter-extrapolation
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method can also be useful in other computational methods
such as the finite-element or finite-volume methods for heat
and mass transfer simulations.

We have not considered the spatial motion of the interface
in this study for simplicity. When the interface moves in the
domain, a lattice node near the interface may switch its status
from an �1 node to an �2 node or vice versa. At such a
node, the distribution functions for the flow and temperature
(concentration) fields in the new domain do not exist, since this
node has just entered into this domain. One possible technique
is to approximate the missing distribution values at such nodes
via extrapolations from existing neighboring nodes in this
domain. This method has been used in our recent study for the
diffusion-convection process of a cylinder moving in a straight
channel and satisfactory results have been observed there [18].
The interface shapes in this study are either planar or circular,
and therefore the local normal direction is readily available.
For general interfaces with arbitrary shapes, extra efforts are
necessary: For example, one can discretize the interface into
small surface elements [line segments in two-dimensional
(2D) systems and triangular elements in 3D systems] and use
the normal direction of the surface element (which can be
efficiently calculated from the element node coordinates) as
an approximation of the local normal direction. Furthermore,
for systems with large interface areas such as porous media, in
particular in 3D simulations, the interfacial treatment could be-
come demanding in computational resources and less efficient.
Also, the extrapolation operation in this method also poses a
requirement for the gap distance between two close interfaces,
while such close gaps are frequently encountered in situations
like particulate flows. Possible remedies include replacing
the second-order extrapolation scheme in Eqs. (18)–(20)
with their first-order counterparts, local lattice refinement, or
adopting a simpler method with less spatial accuracy. These
concerns are common for inter- or extrapolation-based bound-
ary methods, and users should balance the calculation accuracy
and efficiency according to their particular applications when
choosing numerical models.
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APPENDIX: THE D2Q9 SINGLE-RELAXATION-TIME
LATTICE BOLTZMANN MODEL FOR FLUID FLOW

In LBM models for fluid flows, the density distribution
fi(x,t) is governed by the following lattice Boltzmann
equation:

fi(x + ciδt,t + δt) = fi(x,t) + �i(f ), (A1)

which can be considered as a discrete version of the Boltzmann
equation in classical statistical physics [25]. Here δt is the time
step, and �i is the collision operator incorporating the change
in fi due to the particle collisions. The collision operator can be
further expressed as following with the single-relaxation-time
(SRT) approximation [25],

�i(f ) = −fi(x,t) − f
eq
i (x,t)

τf

, (A2)

and here τf is a relaxation parameter. The equilibrium
distribution f

eq
i is typically given as

f
eq
i = ραi

[
1 + u · ci

c2
s

+ 1

2

(
u · ci

c2
s

)2

− u2

2c2
s

]
. (A3)

Here ρ = ∑
i fi is the fluid density and u = ∑

i fici/ρ is the
fluid velocity. Other parameters, including the lattice sound
speed cs and weight factors αi , depend on the lattice structure
employed. Through the Chapman-Enskog expansion [25],
one can recover the macroscopic continuity and momentum
(Navier-Stokes) equations from the above-defined LBM algo-
rithm:

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + μ

ρ
∇2u, (A4)

where μ = (2τf − 1)c2
s δt/2ρ is the fluid viscosity and P =

c2
s ρ is the fluid pressure. For the D2Q9 lattice model utilized

in our current study, the nine lattice velocities are

c0 = [0,0],

ci =
[

cos
(i − 1)π

2
, sin

(i − 1)π

2

]
δx

δt
, i = 1 − 4, (A5)

ci =
[

cos
(2i − 9)π

4
, sin

(2i − 9)π

4

]
δx

δt
, i = 5 − 8,

with δx as the lattice grid spacing. The lattice weight factors for
the D2Q9 model are α0 = 4/9, α1−4 = 1/9, and α5−8 = 1/36;
and the lattice sound speed is cs = (1/

√
3)δx/δt .
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