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Fokker-Planck model of hydrodynamics
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We present a phenomenological description of the hydrodynamics in terms of the Fokker-Planck (FP) equation
for one-particle distribution function. Similar to the Boltzmann equation or the Bhatnager-Gross-Krook (BGK)
model, this approach is thermodynamically consistent and has the H theorem. In this model, transport coefficients
as well as the equation of state can be provided independently. This approach can be used as an alternate to
BGK-based methods as well as the direct simulation Monte Carlo method for the gaseous flows.
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I. INTRODUCTION

Recent years have seen the emergence of a set of new
algorithms termed as mesoscale fluid simulations tools. A few
examples of such methods are the lattice Boltzmann model
(LBM), multiparticle collision dynamics, and dissipative
particle dynamics [1–4]. All of them share a common theme
of simplified kinetic theory with model collision terms such as
Boltzmann BGK, FP, stochastic rotation dynamics, etc. [1–4].
These simplified and computationally attractive microscopic
dynamics are quite local in nature, and therefore, ensure better
parallel efficiency. These methods are rapidly evolving in terms
of their capability to handle applied and fundamental problems
in engineering and science [5,6].

A recent addition to mesoscale approaches is direct
discretization of the phase space description in terms of
the Fokker-Planck equation. In this regard, it was pointed
out that a computationally attractive option is to solve the
Fokker-Planck collision model via the associated Langevin
equation [7–9]. The computational motivation behind the FP
approach is that unlike the direct simulation Monte Carlo
(DSMC) method [10,11], collision dynamics is simpler and
the associated Langevin dynamics is highly computationally
efficient [12,13]. The basic model in this approach is that of
Lebowitz et al. [14], where the Boltzmann collision operator
was the model as diffusive Fokker-Planck dynamics in velocity
space. Although this model has the correct hydrodynamic
limit, this approach leads to the Prandtl number Pr = 3/2.
Here, we remember that the Boltzmann equation predicts the
Prandtl number of gas to be Pr = 2/3, while the BGK model
predicts the Prandtl number to be Pr = 1.

In the present work, we propose a Fokker-Planck model of
hydrodynamics which can describe fluid flow for an arbitrary
Prandtl number. In addition, similar to the phenomenological
hydrodynamic description in terms of Navier-Stoke-Fourier
dynamics, in the current description equation of state can
also be provided independently. This model is based on
Ref. [15], where it was shown that adding a correction
term to the free flight of the Boltzmann equation provides
an alternate route to tune the equation of state as well as
transport coefficients. We show that this approach, when
coupled with the Fokker-Planck approach, leads to a simple
but quite accurate model with a flexible Prandtl number
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(Pr). The resulting hydrodynamics equation has the correct
hydrodynamic limit and is thermodynamically consistent.

The work is organized as follows: In Sec. II, important
aspects of Boltzmann and Enskog collision operators are
discussed. In Sec. III, Lebowitz ’s et al. [14] approach to
the Fokker-Planck approximation of the Boltzmann equation
is reviewed and the H theorem is proved for this model. In
Sec. IV, a phenomenological Fokker-Planck model is proposed
and the H theorem is proved for it. Furthermore, transport
coefficients and the hydrodynamic limit of this model is
discussed in the same section. In Sec. V, the present model
is contrasted with the literature and a numerical method for
rarified gas flow simulation is provided.

II. KINETIC DESCRIPTION AND PROPERTIES OF
COLLISION TERMS

In the kinetic description of fluid, the fundamental quantity
of interest is the single-particle distribution function f , where
f (x,c,t)dc provides the probability of finding a particle
at location x with velocity in the range c to c + dc. The
macroscopic quantities such as mass density ρ, momentum
density j = ρu, and energy density E = ρu2/2 + e (e is the
internal energy) can be obtained as the lower order moment of
f defined by the relation,

ρ = 〈1,f 〉, ρu = 〈c,f 〉, e =
〈
ξ 2

2
,f

〉
, (1)

where ξ = c − u is the peculiar velocity and u represents
the mean velocity and the angular bracket denotes the inner
product defined as

〈φ1(c),φ2(c)〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dcφ1 φ2. (2)

The temperature T of the gas can be defined in terms of the
internal energy as e = 3 kBT/(2m), where kB is the Boltzmann
constant and m is the mass of a gaseous particle. In the
dilute limit, the dynamics of single-particle distribution f is
governed by the Boltzmann equation:

∂tf + cα∂αf = �B(f,f ), (3)

where �B is a bi-linear function of f as follows.
(1) Collisional invariants. The mass, the momentum, and

the energy are not altered by collision term (�B), which implies

〈�B,{1,cα,c2}〉 = 0. (4)

1539-3755/2015/91(3)/033303(7) 033303-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.033303


S. K. SINGH AND SANTOSH ANSUMALI PHYSICAL REVIEW E 91, 033303 (2015)

(2) Zero of collision. The Maxwell-Boltzmann distribution
(f MB),

f MB = ρ

(
m

2πkB T

)3/2

exp

(
− m

2 kBT
(c − u)2

)
, (5)

is zero of the collision term, i.e.,

�B(f,f ) = 0 ⇒ f = f MB. (6)

(3) H theorem. The Boltzmann collision term is such that

〈�B, ln f 〉 � 0. (7)

Thus, the H function, defined as

H ID =
∫

dc(f ln f − f ), (8)

is the nonequilibrium generalization of the entropy. This can
be seen by writing the evolution equation for the H function,

∂tH
ID + ∂αJ H,ID

α = −σ (B), (9)

where the entropy flux term and production term are

J H,ID
α =

∫
dccα(f ln f − f ), σ (B) = −〈�B, ln f 〉, (10)

and Eq. (9) is obtained by multiplying Eq. (3) with ln f

and integrating with respect to velocity space (c). Thus,
the Boltzmann equation ensures that the entropy production
σ (B) � 0 and is zero only when f = f MB.

(4) Conservation laws. By taking the appropriate moments
of the Boltzmann equation [Eq. (3)], it is evident that
macroscopic conservation laws have an expected form:

∂tρ + ∂αjα = 0,

∂t jα + ∂β(ρuαuβ + pδαβ) + ∂βσαβ = 0,

∂tE + ∂α((E + p)uα + σαγ uγ ) + ∂αqα = 0,

(11)

where the pressure term p = pID with pID = ρkBT/m, stress
tensor σαβ = σ

(K)
αβ , and heat flux qα = q(K)

α and the kinetic
contribution to stress and heat flux are defined as

σ
(K)
αβ = 〈ξα ξβ〉, q(K)

α =
〈
ξα

ξ 2

2

〉
, (12)

where for any second-order tensor Aαβ , its traceless part Aαβ

is

Aαβ = 1

2
(Aαβ + Aβα) − 1

D
Aγγ δαβ. (13)

The reason for this distinction between kinetic contribution and
total contribution to stress and heat flux would be apparent in
the next section, where a more general framework is used.

Due to the complexity of the Boltzmann collision operator, a
simplified description in terms of the BGK collision term [16],

�BGK = 1

τBGK

(
f MB − f

)
, (14)

is often used and where τBGK is the mean free time. This
model preserves all of the above mentioned properties of the
collision operator, and thus provides a qualitatively correct
representation of the Boltzmann equation and is widely used
in the applications. However, quantitative comparison is often

not possible due to the fact that this model predicts the Prandtl
number of the monatomic gas to be Pr = 1 instead of Pr = 2/3.

For an arbitrary kinetic model, whenever the collision term
conserves mass, momentum, and energy irrespective of the
form of the collision term, the conservation laws [Eq. (11)]
remain the same. Thus, in the case of dense gases, where
dynamics is well described by the Enskog model and its
revised form [17], the conservation laws do not change. For the
Enskog collision model, too, the collisional invariants remain
the same and in the space-independent case, the equilibrium
distribution is Maxwell-Boltzmann. However, the H function
for the Enskog model ([18]) is

H = H ID − snID(ρ)

kB
, (15)

where H ID is given by Eq. (8) and the nonideal part of entropy
(snID) is a function of density only in this description. The
evolution of the H function is of the form,

∂tH + ∂αJ H
α = −σ (E), (16)

with entropy production σ (E) � 0 and the flux of entropy
J H

α is different from the Boltzmann equation due to the
nonlocal nature of the collision [18,19]. Thus the model has
the H theorem and the minimum of the H function remains
Maxwell-Boltzmann only. Thus, a phenomenological model
of the hydrodynamics at the kinetic level must satisfy all of the
above mentioned restrictions on the collision model and should
have a valid H theorem for the H function in the Enskog form
[Eq. (15)].

III. FOKKER-PLANCK MODEL FOR
BOLTZMANN EQUATION

An alternate to the BGK model is the Fokker-Planck model
[14], where the Boltzmann collision term is approximated as

�FP = 1

τ
∂cα

(
Aαf + D

∂f

∂cα

)
, (17)

where τ−1 is the friction constant, Aα is the drift term, and D

is the diffusion term. For Lebowitz’s model,

Aα = ξα, D = kBT

m
. (18)

It is evident that the collision invariants for this model are the
same as the Boltzmann description and zero of the collision is
the Maxwell-Boltzmann distribution. Thus, the conservation
laws are the same as Eq. (11). The model is thermodynamic
consistent, provided the entropy production term σ (FP),

σ (FP) = −〈�FP, ln f 〉 = 1

τ

∫
dc

(
ξα + 1

f

kBT

m

∂f

∂cα

)
∂f

∂cα

,

(19)

is positive, i.e., σ (FP) � 0. To show that, the entropy production
term can be written as

σ (FP) = −3ρ

τ
+ kBT

m τ

∫
dξ

1

f

∂f

∂ξα

∂f

∂ξα

= kBT

m τ

∫
dξ f

(
∂ ln

(
f

f MB

)
∂ξα

)2

� 0, (20)
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where we have used the identity,∫
dξ f

(
∂ ln

(
f

f MB

)
∂ξα

)2

=
∫

dξ

[
1

f

∂f

∂ξα

∂f

∂ξα

+ f
∂ ln f MB

∂ξα

∂ ln f MB

∂ξα

− 2
∂f

∂ξα

∂ ln f MB

∂ξα

]

=
∫

dξ

[
1

f

∂f

∂ξα

∂f

∂ξα

+ f
m2 ξ 2

k2
BT 2

+ 2
∂f

∂ξα

m ξα

kBT

]

= −3 ρm

kBT
+

∫
dξ

1

f

∂f

∂ξα

∂f

∂ξα

. (21)

Furthermore, in this model every higher order moment has its own relaxation rate (a feature shared with the Boltzmann equation).
In particular, the evolution equations for stress and heat flux are

∂tσαβ + ∂γ (σαβuγ ) + 2p∂αuβ + 2σαγ ∂γ uβ + ∂γ Qαβγ + 4

D + 2
∂αqβ = − 2

τ
σαβ, (22)

∂tqα + ∂β

(
qαuβ + Rαβ

2
+ R′δαβ

2D

)
+ (D + 2)

2
p∂α

p

ρ
+ 2

D + 2
(qγ ∂αuγ + qα∂βuβ)

− σαβ∂βp

ρ
+ D + 4

D + 2
qβ∂βuα + Qαβγ ∂βuγ − (D + 2)p

2ρ
∂βσαβ − σακ∂βσκβ

ρ
= − 3

τ
qα, (23)

where the higher order moments are defined as

Qαβγ =
∫

dcf ξαξβξγ , R′ =
∫

dcf ξ 2ξ 2 − 15
p2

ρ
, Rαβ =

∫
dcf ξ 2ξαξβ, (24)

with

ξαξβξγ = 1

3
(ξαξβξγ + ξβξγ ξα + ξγ ξαξβ) − 1

D + 2
(ξ 2ξαδβγ + ξ 2ξβδγα + ξ 2ξγ δαβ).

From Eq. (22) and Eq. (23), it is evident that the Prandtl
number (Pr) for this model is 3/2. Furthermore, one can make
a correspondence between this model and BGK via setting
τ = 2τBGK.

IV. FOKKER-PLANCK MODEL FOR TUNABLE
TRANSPORT COEFFICIENT AND EQUATION OF STATE

Recently, an extension to the BGK model was developed
[15], where similar to the hydrodynamic description of
Navier-Stokes-Fourier, the equation of state and all transport
coefficients (viscosity η, and thermal conductivity κ) can be
specified independently. The key new idea in this work was
that a phenomenological kinetic description can be given in
terms of the modified streaming step. In particular, this work
suggested that in the streaming step, the shift in trajectory �xiα

for the ith molecule with velocity ciα should be of the form,

�xiα = ciατ + τχ (ρ)(ciα − uα)

− τ 2

2
λq

(
ξ 2 − 3kBT

m

)
∂α ln T , (25)

where τ is mean free time and λq is a positive constant related
to the Prandtl number and χ (ρ) is the compressibility factor
defined as

χ = p m

ρkBT
− 1 ≡ m

ρkB

(
snID − ρ

∂snID

∂ρ

)
, (26)

which is a monotonically increasing function of the density
with reference value χ (ρ = 0) = 0 and snID(ρ) is the excess
entropy. Adopting this description, we propose the following

extension of the Fokker-Planck model for the hydrodynamics:

∂tf + ∂α [ĉαf ] = �FP, (27)

where �FP is the Fokker-Planck collision operator [Eq. (17)]
and the apparent streaming velocity ĉα is

ĉα = cα + χ (ρ)(cα − uα) − τ

2
λq

(
ξ 2 − 3kBT

m

)
∂α ln T︸ ︷︷ ︸

Bα

,

(28)

where the correction to the advection velocity is orthogonal
to the mass conservation, thus the added correction term does
not change the continuity equation. By taking the appropriate
moment of Eq. (27), it is evident that the form of conservation
law is still given by Eq. (11) with pressure as p = pID(1 + χ ).
Thus, we see that the conservation laws are consistent with
dense gas models such as the Enskog equation. As expected,
the term with χ as prefactor contributes the nonideal part of
the pressure in the momentum conservation. Furthermore, due
to the change in the free flight rule, the expression for the stress
tensor and heat flux modifies as

σαβ = (1 + χ ) σ K
αβ − τλq qβ ∂α ln T ,

qα = qK
α (1 + χ ) − 3

2
τ

(
kBT

m

)2

λq∂α ln T − τ

4
λqR′∂α ln T ,

(29)

which shows that the last term in Bα adds a term to energy
conservation which is related to the Prandtl number and does
not contribute to momentum conservation.
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The H function for this model is the same as the Enskog
equation and it is given by Eq. (15). The evolution equation
for H ID is

∂tH
ID + ∂α

∫
dc[ĉαf (ln f −1)] −

⎛
⎜⎜⎝−∂αjα +

∫
dcĉα∂αf︸ ︷︷ ︸

I

⎞
⎟⎟⎠

= −kBT

m τ

∫
dξ f

(
∂ ln

(
f

f MB

)
∂ξα

)2

, (30)

where the entropy production due to collision is the same as
Eq. (20) and the term I can be further simplified as

I = ∂α

(
msnID

kB
uα

)
− m

kB

(
uα∂αsnID + ρ

∂snID

∂ρ
∂αuα

)

− τ

2
λq

(
3ρkBT

m

)
(∂α ln T )2 . (31)

However, using the continuity equation, we have

∂t

(
msnID

kB

)
+ m

kB

∂snID

∂ρ
∂αjα = 0. (32)

Substituting for I from Eq. (31) into Eq. (30), and using
Eq. (32), the evolution equation for H can be written as

∂tH + ∂αJH
α = −

(
kBT

m τ

∫
dξ f

(
∂ ln

(
f

f MB

)
∂ξα

)2

+ τ

2
λq

(
3ρkBT

m

)
(∂α ln T )2

)
, (33)

where it is evident that the right-hand side of Eq. (33) is
negative definite and

JH
α = −

(
msnIDuα

kB

)
+

∫
dcĉαf (ln f − 1). (34)

Thus, similar to the Enskog equation, we have the evolution
equation for H as

∂tH + ∂αJH
α � 0, (35)

which confirms that H theorem for the new model, too. From
Eq. (34), it is evident that only the flux term gets affected
due to the nonideal equation of state and there is no extra
source term for nonideal entropy due to modified streaming
velocity. Thus, as expected from a model of repulsive core, the
current model does not change entropy production but only
changes the entropy flux [18,19]. Similarly, Eq. (33) shows
that as expected the change in the Prandtl number manifests
itself only in the change of entropy production. Finally, in the
space homogenous case the equilibrium distribution remains
as the Maxwell-Boltzmann distribution because the collision
term is the same as that of Boltzmann.

The physical rationale behind this model can be understood
by considering the motion of a tagged particle. According to
Eq. (25), when a tagged particle is moving faster than the
local average velocity, it gets more displacement. Thus, the
tagged particle can avoid joining the locally dense region.
Conversely, if a particle is moving slower than the local
velocity its speed reduces and thus cluster formation is avoided
once again. Thus, on an average, this modification captures the
effects of the strong repulsive core of a molecule which does
not allow molecules to come very close to each other or to
form a cluster. Similarly, if the tagged particle finds itself in
a nonhomogenous temperature field, it will get a correction
in velocity depending on the local temperature gradient and
whether it will move faster or slower than the original
velocity will be decided by the sign of the local temperature
gradient.

A. Moment chain and hydrodynamics

The transport coefficient expressions for this model can be
derived by writing the evolution equations for the stress tensor
σ

(K)
αβ , and the heat flux q(K)

α , which, using Eq. (27), are

∂tσ
K
αβ + ∂γ

(
σ K

αβuγ

) + 2p∂αuβ + 2σαγ ∂γ uβ + ∂γ (1 + χ )Qαβγ + 4

D + 2
∂α(1 + χ )qK

β

−1

2
∂k

(
λqτ (∂k ln T )

(
Rαβ − 3kBT

m
σ K

αβ

) )
− (τλq∂k ln T )qK

β ∂kuα = −2σ K
αβ

τ
, (36)

∂tq
K
α + ∂β

(
qK

α uβ + (1 + χ )Rαβ

2
+ (1 + χ )R′δαβ

2D

)
+ (D + 2)

2
p∂α

pID

ρ
+ 2(1 + χ )

D + 2

(
qK

γ ∂αuγ + qK
α ∂βuβ

)
− σ K

αβ∂βp

ρ
+ (D + 4)(1 + χ )

D + 2
qK

β ∂βuα + (1 + χ )Qαβγ ∂βuγ − (D + 2)pID

2ρ
∂βσαβ − σ K

ακ∂βσκβ

ρ

− 1

4
∂k

(
λqτ (∂k ln T )

(
�α − 6

pID

ρ
qK

α

) )
− 1

4
(τλq∂β ln T )

(
R′ + 6(pID)2

ρ

)
∂βuα

− 1

4
(τλq∂β ln T )

(
Rαk + R′δαk

D
+ 2(pID)2δαk

ρ
− 3pIDσ K

αk

ρ

)
∂βuk = −3qK

α

τ
, (37)

where �α = ∫
dcf ξ 2ξ 2ξα . To understand the hydrodynamic

limit, we use the Chapman-Enskog expansion procedure,
in which the distribution function is expanded in terms of

relaxation time τ as

f = f MB(ρ,u,T ) + τf (1) + τ 2f (2) + · · · , (38)
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where conserved moments are left unexpanded. Furthermore,
the time derivative of any quantity φ is also expanded as

∂tφ = ∂
(0)
t φ + τ∂

(1)
t φ + τ 2∂

(2)
t φ + · · · , (39)

and the time derivatives at every order are defined via
conservation laws [Eq. (11)] [20].

Thus, the kinetic parts of the stress tensor and the heat flux
(which correspond to moments of the distribution function)
can be written as

σ K
αβ = τσ

(K,1)
αβ + τ 2σ

(K,2)
αβ ......,

(40)
qK

α = τq
(K,1)
β + τ 2q

(K,2)
β ......

Using Eqs. (39) and (40) in Eqs. (36) and (37) and considering
terms up to first order in relaxation time τ , we have

σ K
αβ = −τpID(1 + χ )∂αuβ,

(41)

qK
α = −τ

D + 2

6
pID(1 + χ )∂α

pID

ρ
.

Using Eq. (41) in Eq. (29) and taking terms up to first order in
τ , we obtain

σαβ = −2

(
τpID(1 + χ )2

2

)
∂αuβ,

qα = −τ

(
D + 2

6
pID(1 + χ )2∂α

pID

ρ
(42)

+ 3

2
ρ

(
kB

m

)2

T λq∂αT

)
.

Thus, we have the viscosity coefficient (μ) and heat conduc-
tivity (κ) as

μ = τpID(1 + χ )2

2
,

(43)

κ = τ

(
D + 2

6
pID(1 + χ )2 + 3

2
ρ

(
kB

m

)2

T λq

)
,

which implies that the Prandtl number is

Pr = 3(1 + χ )2Cp

2(1 + χ )2Cp + 9λq(kB/m)
, (44)

where Cp is specific heat at constant pressure. Equation (44)
allows us to set the Prandtl number independently in interval
(0, 3

2 ].

V. OUTLOOK

To conclude, the Fokker-Planck approach of [14] was
extended so that the Prandtl number and equation of state

can be provided as an input to the kinetic description. Such a
framework is quite useful for numerical implementation and
may provide an alternate to methods such as DSMC or the
recent set of works where a nonlinear extension to Ref. [14]
was proposed for dilute gases [7–9]. In particular, our model
needs to be contrasted with Ref. [8] where the Fokker-Planck
model was extended to have the Prandtl number Pr = 2/3 by
using a nonlinear cubic drift term,

Aα = cαβξβ + yα

(
ξ 2 − 3kBT

m

)
+ �

(
ξ 2ξα − 2qα

ρ

)
,

(45)

where cαβ , yα , and � are the macroscopic coefficients.
Although the nonlinear extension of the drift term in the
Fokker-Planck model is a good computational tool, one cannot
show the H theorem and the existence of Maxwell-Boltzmann
as the equilibrium solution in the space-independent case.
Thus, the current model is preferable over Ref. [8] (at
least for theoretical consistency reasons) as an approxima-
tion for the Boltzmann equation with the correct Prandtl
number 2/3.

Furthermore, similar to Ref. [8], we do expect the current
approach to be numerically efficient. This can be seen by
writing equivalent Langevin stochastic differential equations
for the Fokker-Planck equation [Eq. (27)],

dxα

dt
= cα + χ (cα − uα) − τ

2
λq(∂α ln T )

(
ξ 2 − D

kBT

m

)
,

(46)

dcα

dt
= −Aα

τ
+

√
2 D

dWα

dt
, (47)

where Aα and D are the same as the Lebowitz’s Fokker-
Planck model and dW (t) is the standard Weiner process,
which is a rapidly varying random force with 〈dWα〉 = 0
and 〈dWαdWβ〉 = dtδαβ . Here, we want to point out that
unlike Ref. [8], we have the linear Langevin equation for the
velocity update. It is essential to note that the change in the
internal energy due to the drift term is statistically matched
with change in the internal energy due to the diffusion term
for all time. To solve the Langevin equations [Eqs. (46) and
(47)], the stochastic version of the Verlet algorithm ([21])
can be used. As an illustration, we consider the case of
dilute gas where χ = 0. In this case, the stochastic Verlet

TABLE I. Algorithm for implementation of current scheme.

1. Computational domain is divided into the finite number of cells with cell size similar to mean free path.
2. In each cell based on local density a finite number of particles is introduced with random location and

velocity distributed according to the Maxwell-Boltzmann distribution.
3. In every cell, compute cell average velocity, temperature, and number density.
4. Update position and velocity of each particle using Eq. (48) and diffusive boundary condition.
5. Sort the particles in different cells based on their new location.
6. Repeat steps 3–5 until desired final time is achieved.

033303-5



S. K. SINGH AND SANTOSH ANSUMALI PHYSICAL REVIEW E 91, 033303 (2015)

0 10 20 30 40 50 60 70 80 90 100
0.9

0.92

0.94

0.96

0.98

1

t(τ)

E
(t

)/
E

(0
)

 

 

ϑ = 0.0035 
ϑ = 0.0071
ϑ = 0.0354

FIG. 1. (Color online) Energy with time.

algorithm is
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where ϑ = �t
τ

and random noise φt is normal distributed with
mean 0 and variance 1. This scheme works efficiently for the
small time step, i.e., ϑ < 0.01.

An algorithmic overview of this method is provided in
Table I. To check the accuracy of the above scheme for
the proposed Fokker-Planck approximation to the Boltzmann
equation, we have initialized 105 gaseous particles with
random Maxwellian velocities in a single cubic box with
periodic wall conditions and no external force is applied.
Figure 1 depicts the ability of the Verlet scheme to conserve
the energy for the small time step.

Finally, to present accuracy of the current scheme,
poiseuille flow is simulated using the stochastic Verlet scheme.
For this setup, Yudistiawan et al. [22] had analytically solved
a discrete velocity model solved by higher order LBM and
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FIG. 2. (Color online) Poiseuille flow.

obtained an expression for the dimensionless flow rate (Q) as

Q = 0.166667

Kn
+ 1.08152 + 2Kn

− 0.17096 + 2.06084Kn + 6.21071Kn2

1 + 1.0433 coth
(

0.248039
Kn

) , (49)

where Knudsen number for a channel of height L is defined as

Kn = τ

L

√
kBT0

2m
= τBGK

L

√
2kBT0

m
. (50)

In Fig. 2, we contrast FP results with semianalytical results
of BGK, NSF solution, as well as this approximate expres-
sion. It is evident that this algorithm provides quite good
results even in the transitional regime (0.1 � Kn � 5) as
compared to LBM and NSF and the Knudsen minimum effect
predicted by this model matches quite well with the BGK
results ([23]).

To conclude, we have developed a Fokker-Planck-based
kinetic model which allows for an independent transport
coefficient and a nonideal equation of state. The model has
the correct hydrodynamic limit and H theorem. It is expected
that the present model can be used as a numerical tool for
solving kinetic equations. In subsequent works, we will present
a detailed comparison of the present model and DSMC for the
finite Knudsen regime.
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