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In this paper, a modified momentum exchange method for fluid-particle interactions is proposed based
on the finite-volume lattice Boltzmann method. The idea of the improvement is to remove the restriction
that the boundary points must be set as the midpoints of the grid lines or the intersection of the grid lines
with the solid boundaries. The particle surface is represented by a set of arc (area) elements, and the interior
fluid is used which the geometric conservation law is naturally satisfied. The interactions between fluid and
arc (area) elements of particle boundary are considered using the momentum exchange method, and the mass
of the fluid particles which collide with an arc (area) element is obtained by means of numerical integration
in the control volume. The fluid field is corrected with the help of the smooth kernel function. Moreover,
a generalized explicit time marching scheme is introduced to resolve the motion of particle in the problems
with the ratio of particle density to fluid density is close to or less than 1. Finally, some numerical case
studies of particle sedimentation are carried out to validate the present method. The corresponding results have
a good agreement with the previous literature, which strongly demonstrates the capability of the improved
method.
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I. INTRODUCTION

The fluid-particle interaction phenomenon exists widely
in many fields ranging from chemical and environmental
engineering processes to natural applications. However, our
understanding of the interaction mechanism inside is very lim-
ited. With the help of the development of computer science, it
is possible to investigate the complex fluid-particle interaction
problem using computational fluid dynamics (CFD) methods.
In recent years, the lattice Boltzmann method (LBM), which is
derived from lattice automata, has received great attention due
to its computational efficiency and convenience in program-
ming. Compared with the conventional CFD methods, such as
the arbitrary Lagrangian-Eulerian finite element method, LBM
has unique advantages in treating fluid-particle interaction
problems because the fluid is treated as particles. This feature
enables the adoption of the momentum exchange method to
calculate the coupling force without numerical integration or
differentiation.

The pioneering work on the momentum exchange method
in LBM was done by Ladd in 1994 [1,2]. In Ladd’s model,
the solid particle is treated as a thin shell, and the interior
of the particle is assumed to be full of fluid. Similar to the
exterior fluid, the density distribution function of the interior
fluid is also updated after the collision or stream step. In
other words, both exterior fluid and interior fluid are updated
during the simulation in Ladd’s method. So this model can
be viewed as a shell model. The interaction between particle
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and fluid is implemented using the half-way bounce-back rule.
The force act on the particle is computed by the momentum
exchange method. The fluid field is updated automatically
during implementing the bounce-back rule. The advantage
of this method is that it can ensure the local conservation
of mass and momentum. Compared with the point-particle
models, this method can obtain more details of the flow field
and has been adopted to simulate a variety of fluid-structure
interaction problems successfully [1–3]. However, there exist
two drawbacks in the shell model. One is that the particle
boundary is represented by a series of the center points
of the grid lines. This stepwise approximation would cause
errors when the grid is coarse. Another drawback is that the
computational procedure is not stable due to an explicit update
of the particle velocity. When the ratio of particle density
and fluid density is close to or less than 1, the numerical
stability is more prominent. Since Ladd’s pioneering work on
the momentum exchange method in LBM, many subsequent
researches have been conducted by many scholars. Aidun
et al. proposed an improved momentum exchange method
which involves only the exterior fluid [4]. In this model,
a wide range of density ratio between particle and fluid
can be simulated. However, this method involves complex
local construction when the particle boundaries move. The
geometric conservation law cannot satisfied either. So an
impulse force technique which lack a detailed interpretation
must be adopted to obtain correct particle dynamics [5,6]. Qi
et al. developed another improved method by considering the
advantages of models of Ladd and Aidun et al. [7]. Lorenz
et al. analyzed the Galilean invariance in a conventional
momentum exchange method. They proposed an approach
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which can preserve Galilean invariance in relevant orders
and improve the physical behavior of the particle-suspension
system [8].

In order to simulate the particle motion with a real curve
surface, many treatments have been proposed in recent years.
Filippova et al. proposed a scheme to resolve the gas-particle
flow with irregular shapes of the surfaces [9]. Later Mei et al.
developed an accurate curved boundary method in the lattice
Bhatnagar-Gross-Krook (BGK) model. It is worthwhile men-
tioning that this approach can work well when the relaxation
time is close to 0.5 [10]. Bouzidi et al. analyzed the momentum
transfer when dealing with curved boundaries in LBM [11].
Guo et al. proposed a boundary treatment for curved walls with
well-behaved stability characteristics using the extrapolation
method [12]. Lallemand et al. presented a technique to treat
moving boundary problems by coupling the simple bounce-
back scheme and interpolation methods [13]. Ginzburg and
d’Humières provided a general framework (multireflection
approach) for previously proposed boundary condition [14].
Later, Ginzburg extended the multireflection technique to treat
arbitrarily shaped surfaces [15]. Wen et al. developed a lattice
type-dependent momentum-exchange method to compute the
hydrodynamics force for moving boundaries. This method can
preserve the advantages of conventional method [5]. Chen et al.
considered the initial momentum of the net mass transfer at
each time step and proposed another corrected momentum
exchange method [6]. Moreover, for the sake of ensuring the
stability of the particle motion algorithm, an implicit update
scheme had been proposed by Lowe et al. [16]. However, the
computational cost increases although the stability restriction
is relaxed. The idea of momentum exchange is also extended
to construct the immersed boundary scheme. A key formula is
dimensionally inconsistent in the initial studies [17–19], and
the correct form can be found in Ref. [20].

The main purpose of this paper is to construct a simple,
efficient, robust, and easy implementing momentum exchange
method. The lattice BGK model based on the view of
finite volume method is used to solve the fluid flow fields.
Meanwhile, in Ladd’s initial method, both the interior and
exterior fluids are used when treating the solid boundaries.
Different from the previous momentum exchange methods
and interpolation-based curved boundary treatment methods,
the marker points which represent the curved boundary can be
collocated more freely. With the help of the control volume
method, the momentum change of the arc(area) element in
the particle surface can be computed. Then the force acting
on the fluid nodes is obtained using the kernel function,
which is commonly employed in many particle simulation
methods. Since we do not need to distinguish the exterior
fluid nodes and interior fluid nodes in the present method,
the coding implementation is very easy. Moreover, based
on the work of Feng and Michaelides [21], we propose a
time stepping scheme which can treat the problems when the

ratio of particle density and fluid density is close to or
less than 1. Some numerical examples, including single-
circular-particle sedimentation, single-elliptical-particle sed-
imentation, and two-particle sedimentation, are simulated to
verify the present scheme.

II. NUMERICAL METHODOLOGY

A. Lattice Boltzmann method

The LBM can be regarded as an alternative technique
of the Navier-Stokes fluid field solver, and it is a very
popular kinetic scheme in recent years. In this paper, the
lattice Boltzmann model based on view of finite-volume
method is used. In other words, the density distribution
function which is discussed in the present study is the local
volume average value. The evolution equations of lattice
Boltzmann model with an external force term are written as
follows:

fα(x + eα�t,t + �t) − fα(x,t)

= − 1

τ

[
fα(x,t) − f eq

α (x,t)
] + Fα�t, (1)

where fα(x,t) is the density distribution function for the
discrete velocity eα , �t is the time step, and f

eq
α (x,t) is the

local equilibrium density distribution function, which can be
computed by

f eq
α (x,t) = ωαρ

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u2

2c2
s

]
, (2)

where cs is the lattice sound speed and ωα is the weight
coefficient, which depends on the lattice velocity model. τ

is the dimensionless relaxation time of velocity field, which
can be obtained as follows:

τ = ν

c2
s �t

+ 0.5, (3)

where ν is the kinematic viscosity.
In this study, three lattice models (D2Q9, D3Q15, D3Q19)

are used, and the velocity sets are defined as

eα =

⎧⎪⎨
⎪⎩

(0,0), α = 0(
cos

[
(α − 1)π

2

]
, sin

[
(α − 1)π

2

])
c, α = 1 ∼ 4(

cos
[
(2α − 1)π

4

]
, sin

[
(2α − 1)π

4

])
c, α = 5 ∼ 8

(4)

eα =
⎧⎨
⎩

(0,0), α = 0
(±1,0,0)c,(0,±1,0)c,(0,0,±1)c, α = 1 ∼ 6

(±1,±1,±1)c, α = 7 ∼ 14,

(5)

and

eα =

⎧⎪⎨
⎪⎩

(0,0), α = 0

(±1,0,0)c,(0,±1,0)c,(0,0,±1)c, α = 1 ∼ 6

(±1,±1,0)c,(0,±1,±1)c,(±1,0,±1)c, α = 7 ∼ 18,

(6)
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where c = �x/�t , �x is the lattice spacing. Further, c =√
3cs . In the case of �x = �t , c is taken as 1. The

corresponding weight coefficients are given as

ωα =

⎧⎪⎨
⎪⎩

4
9 , α = 0
1
9 , α = 1 ∼ 4
1

36 , α = 5 ∼ 8,

(7)

ωα =

⎧⎪⎨
⎪⎩

2
9 , α = 0
1
9 , α = 1 ∼ 6
1

72 , α = 7 ∼ 14,

(8)

and

ωα =

⎧⎪⎨
⎪⎩

1
3 , α = 0
1

18 , α = 1 ∼ 6
1

36 , α = 7 ∼ 18.

(9)

The force term Fα is obtained using the Guo-Zheng-Shi
model [22]:

Fα =
(

1 − 1

2τ

)
ωα

(
eα − u

c2
s

+ eα · u
c4
s

eα

)
· f. (10)

The macro density and velocity are given by

ρ =
∑

α

fα, (11)

u =
(∑

α

eαfα + 0.5f�t

) /
ρ. (12)

B. Modified momentum exchange method

In the present method, the boundary of the solid particle
is represented by a series of movable control arc (area)
elements, and the maker points are located in the center
of the control arc (area) element. This technique has been
widely used in immersed boundary method and front tracking
method [23,24]. Different from the conventional momentum
exchange method based on the midway bounce-back boundary
condition [1–3], the maker points are located at the real
curved boundary in the present method. This treatment can
avoid some discrete boundary errors in the original method.
Compared with the momentum exchange method based on
curved boundary conditions, the number of mark points is
conserved. In Ref. [25], Seo and Mittal identify the primary
cause of spurious oscillations in the sharp-interface immersed
boundary method to be a lack of the geometric conservation
law near the boundary. Although the momentum exchange
method based on curved boundary conditions is different from
the sharp-interface method, when dealing with the moving
boundary problems, the number of points which represent the
boundary is variable in the two methods. So violation of the
geometric conservation law may be one of reasons which lead
to the force oscillation.

Now we consider the interaction between the arc (area)
element and the fluid. In Fig. 1 it can be seen that the
fluid particles which are located in the interior domain and
exterior domain with different discrete velocity will collide
with the solid boundary element. As shown in Fig. 2, in the
time interval [tn− 1

2
,tn+ 1

2
] = [(n − 1

2 )�t,(n + 1
2 )�t], the fluid

FIG. 1. A schematic illustration of the local grid.

particles with discrete velocity eα at the time tn−1 within
only a curved edge parallelogram could collide with the
solid surface element. It is observed that the area (volume)
of the curved edge parallelogram approximately is equal to
�Vα = |�t�sBeα · nB |. Here sB,nB are the length (area) of
the arc (area) element and the normal vector at point XB

respectively. Moreover, the total mass in this parallelogram
is

∫
�Vα

fαdV . Of course, the solid particle moves over time,
so the area (volume) of fluid particles which hit the arc (area)
element is computed using an time averaging approach. X(tn)
is selected as an average position of the solid particle in the
time interval [tn− 1

2
,tn+ 1

2
].

Now we can understand the basic difference of computing
strategy of the mass of fluid particles which hit the solid
particle between the present method and the conventional
methods. In the original methods, the mass of the fluid particles
which collide with the solid particle can be obtained by
means of summing the contribution over all relevant discrete
velocity directions. However, the mass of the fluid particles
which collide with the arc (area) element are computed by
an integration method in a control volume. Moreover, we

FIG. 2. A schematic illustration of control volume of the fluid
particles at time tn− 1

2
.

033301-3



YANG HU, DECAI LI, SHI SHU, AND XIAODONG NIU PHYSICAL REVIEW E 91, 033301 (2015)

FIG. 3. A schematic illustration of control volume of the fluid
particles at time tn+ 1

2
.

notice that the force evaluation in conventional methods is
discrete velocity dependence. However, in the present method,
all discrete velocities are used to compute the fluid-particle
interaction force. In Ref. [26] the force oscillation in the
previous momentum exchange is explained by the discrete
velocity dependence.

Figures 2 and 3 show the state of fluid particles at time
tn− 1

2
and tn+ 1

2
. During the collision of fluid particles and solid

particles, the momentum of fluid particles will change. The
change of the momentum of the fluid particles which collide
with the arc (area) element is given by

�P−α = e−α

∫
Vα

f−α

(
tn+ 1

2

)
dV − eα

∫
Vα

fα

(
tn− 1

2

)
dV, (13)

where −α means the opposite direction of α, namely, eα =
−e−α . The above integration in a parallelogram can be
computed using a numerical technique. The Newton-Cotes
quadrature rule or Gauss quadrature formula can be selected.
In this paper, a simple formula with single integration point is
selected:∫

�Vα

fα dV ∼= fα

(
XB − eα

�t

2
,tn− 1

2

)
�Vα, (14)

∫
�Vα

f−α dV ∼= f−α

(
XB − eα

�t

2
,tn+ 1

2

)
�Vα. (15)

Using the bounce-back rule, we have

f−α

(
XB − eα

�t

2
,tn+ 1

2

)

= fα

(
XB − eα

�t

2
,tn− 1

2

)
− 2ω−αρ

e−α · U(XB,tn)

c2
s

. (16)

Applying the stream rule, we have

fα

(
XB − eα

�t

2
,tn− 1

2

)
= fα(XB,tn). (17)

We can get

�P−α
∼= e−α

[
f−α

(
XB − eα

�t

2
,tn+ 1

2

)

+ fα

(
XB − eα

�t

2
,tn− 1

2

)]
Vα

= 2e−α

[
fα

(
XB − eα

�t

2
,tn− 1

2

)

−ω−αρ
e−α · U(XB,tn)

c2
s

]
Vα

= 2e−α

[
fα(XB,tn) − ω−αρ

e−α · U(XB,tn)

c2
s

]
Vα. (18)

Then the change of momentum of the fluid particles can be
obtained using the density distribution function at the time
level n. Since point XB may be not located at any fixed grid
points, an extra interpolation procedure is needed:

fα(XB,tn) =
∑

xi∈S(XB ,α)

Ai,αfα(xi ,tn), (19)

where S(XB,α) is the interpolation stencil for the point XB

and the direction α. Ai is the interpolation coefficient for the
corresponding interpolation stencil. In this paper, a second-
order upwind interpolation is adopted. This interpolation
scheme had been applied in the interpolation-supplemented
LBM [27]. The closest grid point for XB is noted as (xm,yn),
and we set

dx = xm − XB, dy = yn − YB. (20)

We have

S(XB,α) = (xm+k·md,yn+l·nd ), (21)

where

md = sgn(1,dx), nd = sgn(1,dy), (22)

where sgn is the sign function. Once the interpolation stencil
is selected, the interpolation coefficients are computed using
the Lagrangian formula.

Therefore, the present method slightly increases the com-
putational cost. Moreover, as same as the Ladd’s approach, the
internal area of the solid is also treated as the computational
domain. Compared with the ALD method, the present version
is very simple and easy coding. It is worthy noting that
Rohde et al. developed a volumetric method to deal with
moving boundaries, and the computing strategy of mass of
fluid particles which hit the particle boundary is similar as the
present method [28]. However, the exterior fluid is used only
in this method. So a complex local reconstruction procedure is
needed. Moreover, the geometric conservation law is difficult
to guarantee.

The coupling force which the fluid impose in the particle
boundary point XB can be obtained by

F(XB,tn) ≈
∫ t

n+ 1
2

t
n− 1

2

F(XB,t) dt

�t
= −

∑
α �P−α(XB,tn)

�t

= Fin(XB,tn) + Fout(XB,tn), (23)

where Fin(XB,tn) and Fout(XB,tn) are the forces which come
from the exterior fluid and interior fluid, respectively, and the
moment can be computed as follows:

T(XB,tn) = (XB − Xc) × F(XB,tn)

= Tin(XB,tn) + Tout(XB,tn), (24)
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where Xc is the centroid coordinate of the particle, and
Tin(XB,tn), Tout(XB,tn) denote the moments which come from
the exterior fluid and interior fluid, respectively.

Therefore, the forces and moment which acted on the
particle cab be written as

Fpf (tn) =
∑
XB

F(XB,tn) = Fin
pf (tn) + Fout

pf (tn), (25)

Tpf (tn) =
∑
XB

T(XB,tn) = Tin
pf (tn) + Tout

pf (tn). (26)

For the conventional momentum exchange method, the
density distribution function will be updated automatically
after the fluid-solid particle collision. However, in the present
method, the positions of the fluid particles may be not
located at the fixed Eulerian points. Certainly, there exists
many local reconstructions to deal with this problem. In
the present study, we introduce the force correction method
using the smoothed kernel function. This technique is usu-
ally used in meshless particle method, immersed bound-
ary method, and front track method. In this paper, the
smoothed delta function is used to distribute the physical
quantities to the neighboring fixed nodes. As shown in
Fig. 4, the following one-dimensional discrete delta function is
selected [29]:

W1(x)= 1

h
φ(r)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8 + π

32 − r2

4 ,|r| � 0.5,

1
4 + 1−|r|

8

√
−2 + 8|r| − 4r2

− 1
8 arcsin(

√
2(|r| − 1)),0.5 � |r| � 0.5,

17
16 − π

64 − 3|r|
4 + r2

8

+|r|−2
16

√
−14 + 16|r| − 4r2

+ 1
16 arcsin

√
2(|r| − 2),1.5 � |r| � 2.5,

0,2.5 � |r|.
(27)

where r = x/h.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

r

W
1(r

)

FIG. 4. (Color online) Discrete delta function used in the present
study.

The corresponding two- and three-dimensional discrete
delta functions can be expressed as

W2(x) = 1

h2
φ

(
x

h

)
φ

(
y

h

)
, (28)

W3(x) = 1

h3
φ

(
x

h

)
φ

(
y

h

)
φ

(
z

h

)
, (29)

where x = (x,y) or (x,y,z).
In fact, once the bounce-back scheme is applied, the

coupling force F(XB) at time level n can be utilized to correct
the fluid field. Based on Newton’s third law, the force acting
on the fluid field is expressed as

f(x,tn) = −
∑
XB

F (XB,tn)w(x − XB). (30)

Once we get the above force, the fluid field can be corrected
using Eq. (12):

u(x,tn) =
[∑

α

eαfα(x,tn) + 0.5f(x,tn)�t

]/
ρ. (31)

C. Particle dynamics

In addition to the force which comes from the fluid, some
other forces must be considered. It is critical to compute the
particle-particle or wall interaction forces correctly. In this
paper, the Lennard-Jones potential is selected, which has been
used in Ref. [17] for solving the DKT problem. The particle-
particle repulsive force can be expressed as follows:

Fp

i,j =

⎧⎪⎨
⎪⎩

0, Ri,j > Ri + Rj + ζ ,

2.4ε
∑

j �=i

[
2
(Ri+Rj

Ri,j

)14 − (Ri+Rj

Ri,j

)8] Ri−Rj

(Ri+Rj )2 ,

Ri,j � Ri + Rj + ζ ,

(32)

where Ri is the radius of the ith particle. Ri,j = |Ri − Rj |
is the distance of the centroid between ith particle and j th
particle. ε = 2RiRj

Ri+Rj
is the depth of the potential well. ζ is the

critical distance, which is set as ζ = �x in this paper, and the
particle-wall interaction can be obtained by

Fw
i,j =

⎧⎪⎨
⎪⎩

0, Ri,w > 2Ri + ζ ,

2.4ε
∑[

2
(

Ri

Ri,w

)14 − (
Ri

Ri,w

)8]Ri−Rw

(Ri )2 ,

Ri,w � 2Ri + ζ ,

(33)

where Ri,w is the distance between ith particle and the wall.
Obviously, different from the other particle or wall-particle
interactions models, the above model does not include any
artificial parameters.

The governing equations of particle motion are given by

Mp

dUp

dt
= Fp, (34)

Ip

d�p

dt
= Tp, (35)

dXc

dt
= Up, (36)

dθp

dt
= �p, (37)
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where Mp and Ip are the mass and moment of inertia of the
particle, respectively. Up,�p are the translational velocity and
rotational velocity of the particle. θp is the angle of the particle.
The total force Fp and moment Tp acting on the particle are
written as

Fp = Fout
pf + Fpp + Fpw, (38)

Tp = Tout
pf . (39)

Clearly, we notice that Fpf is more easily calculated than
Fout

pf . So we note that

Ftol
p = Fpf + Fpp + Fpw, (40)

Ttol
p = Tpf ; (41)

we have

Fp = Ftol
p − Fin

pf , (42)

Tp = Ttol
p − Tin

pf . (43)

Moreover, the following equations hold:

Mf

dUp

dt
= Fin

pf , (44)

If

d�p

dt
= Tin

pf . (45)

Therefore, we have(
ρp

ρf

− 1

)
dUp

dt
= Ftol

p

Mf

, (46)

(
ρp

ρf

− 1

)
d�p

dt
= Ttol

p

If

, (47)

where ρp and ρf mean the density of the particle and fluid,
respectively. In Ladd’s method, the leapfrog scheme is used
to solve Eqs. (46) and (47). The following condition must be
satisfied when the leapfrog scheme is applied:

ρp

ρf

> 1 + 10�x

Rp

. (48)

To get a more stable scheme, Aidun et al. proposed an
improved version [4]. In this method, only exterior fluid nodes
are used. However, the complex local construction at the fluid
or solid nodes must be considered. In addition, Lowe et al.
developed an implicit method to overcome this drawback.
Obviously, the implicit scheme does need more computational
overhead.

In this paper, inspired by Feng and Michaelides [21],
we propose a generalized explicit three-time-level difference
scheme:

λ
dU(tn+1)

dt
∼= aU(tn+1) − bU(tn) − cU(tn−1)

�t
, (49)

b = 2a − λ, (50)

c = λ − a, (51)

where λ = ρp/ρf − 1. a is a positive number. We introduce
a critical value ς of λ. When λ is larger than ς , a is set as
a = 3λ. Conversely, a relatively large positive number can be
selected to assign to a when λ is less than ς . In this paper, ς

is set as 0.2 in all numerical examples.
Equations (34)–(37) are solved as follows:

Up(tn+1) =
[
bUp(tn) + cUp(tn−1) + �tFtol

p (tn)

Mp

]/
a,

(52)

�p(tn+1) =
[
b�p(tn) + c�p(tn−1) + �tTtol

p (tn)

Ip

]/
a,

(53)

Xc(tn+1) = Xc(tn) + 1

2
[Up(tn+1) + Up(tn)]�t, (54)

θp(tn+1) = θp(tn) + 1

2
[�p(tn+1) + �p(tn)]�t. (55)

We can increase the value of a to ensure the stability of the
above computational procedure:

Once get the translational velocity Un+1
p and rotational

velocity �n+1
p at the time level n + 1, the velocity of boundary

point are computed as follows:

U(XB) = Up + �p × (XB − Xc), (56)

III. RESULTS AND DISCUSSION

To test the performance of the present momentum exchange
method, some two- and three-dimensional problems are
simulated in the following.

A. Circular-particle sedimentation

Single-circular-particle sedimentation is a classical prob-
lem. Many scholars have investigated this problem using
different methods. First, the numerical simulation for particle
settling in an infinite channel is considered. The ratio of
channel width and particle diameter is set as W∗ = W/D = 4.
When the ratio of particle density to fluid density ρp/ρf is very
close to 1, compared with the effect of the fluid viscosity, the
effect of inertia is weak. The terminal velocity of the particle
can be computed using the following approximately analytical
solution:

ut = D2

16Kν

(
ρp

ρf

− 1

)
g, (57)

where g is the gravitational acceleration, and the coefficient K

is given by Happel and Brenner [30].
In the present study, K = 1.747 86 can be obtained when

W ∗ = 4. The cases with ρp/ρf = 1.000 01,0.999 99 are
investigated to test the modified momentum exchange method
and particle motion scheme. The viscosity and gravitational
acceleration are fixed to be ν = 0.08 cm/s2,g = 980 cm/s2.
In fact, the computational procedures are stable for different a

in the Eq. (49). As shown in Table I, the present numerical
solutions with a = 0.3,0.5 show good agreement with the
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TABLE I. Comparison of the terminal velocity between the
numerical solutions and analytical solutions.

ρp/ρf 1.000 01 0.999 99

Analytical solutions −4.4380 × 10−3 4.4380 × 10−3

a = 0.5 −4.4338 × 10−3 4.4340 × 10−3

a = 0.8 −4.4319 × 10−3 4.4317 × 10−3

analytical solutions. We notice that the ratio of particle to
fluid densities in this case is very close to 1 or less than 1.
The numerical results indicate that the present explicit scheme
can remove the restriction of ratio of particle to fluid densities
in the shell model and the present method is robust. In the
following simulations, a = 0.8 is selected.

Second, a circular particle falls in a bounded cavity is
considered. A rectangular computational domain with a size
of 2 cm × 6 cm is used. A particle with diameter of 0.25 cm
is located at (1 cm,4 cm) at the initial time. Compared with
the above cases with density ratio is close to 1, two different
heavy particles with ρp = 1.25 g/cm2, 1.5 g/cm2 are tested.
The density of fluid is set as ρf = 1.0 g/cm2. The viscosity μ

is either 0.1 cm2/s or 0.01 cm2/s.
A 200 × 600 grid is used to carry out our simulation.

Figure 5 plots the time history for the y coordinate of the
center of the particle for ρp = 1.25 g/cm2 and ν = 0.1 cm2/s,
and Fig. 6 presents the change of y coordinate of the translation
velocity of the particle over time. Obviously, the particle
quickly reaches the terminal velocity in a short time. When
the particle hits the bottom, the velocity of the particle fall
to zero quickly. It can be observed that a good agreement is
achieved between the present results and the results of Wan
et al. and Glowinski et al. [31,32]. Moreover, another case with
ρp = 1.5 g/cm2, ν = 0.01 cm2/s is also simulated. As shown
in Figs. 7 and 8, both position and velocity of the particle are
in line with the results of Glowinski et al. [32].

Third, the sedimentation of a circular cylinder which is
located away from the center line in a vertical channel is simu-
lated. Compared with the above single-particle-sedimentation
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y
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Wan et al.
Glowinski et al.

FIG. 5. (Color online) Histories for the y coordinate of the center
of the particle for ρp = 1.25 g/cm2 and ν = 0.1 cm2/s.
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FIG. 6. (Color online) Histories for the y coordinate of the trans-
lation velocity of the particle for ρp = 1.25 g/cm2 and ν = 0.1 cm2/s.
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FIG. 7. (Color online) Histories for the y coordinate of the center
of the particle for ρp = 1.5 g/cm2 and ν = 0.01 cm2/s.
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FIG. 8. (Color online) Histories for the y coordinate of the trans-
lation velocity of the particle for ρp = 1.5 g/cm2 and ν = 0.01 cm2/s.
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problems, the moment equation (47) plays an important role
during the motion of particle. Wen et al. and Li et al. studied
this problem [5,33]. In this paper, the numerical results by Hu
et al. which are obtained by the arbitrary Lagrangian-Eulerian
method (ALE) are adopted as the benchmark solutions [34].

The channel of 2 cm width and 8 cm height is used as
the computational domain. The cylinder with radius rp =
0.1 cm is initially located at 0.076 cm,1 cm away from the
left wall and top wall, respectively. The fluid density and
kinematic viscosity are set to be 1 g/cm3 and 0.01 cm2/s,
respectively. Four different cases with different solid-fluid
ratios 1.0015,1.003,1.01,1.03 are studied. The solid-fluid
ratios in these cases are very close to 1, so the generalized
explicit time marching scheme with a = 0.8 (49) is used.

The computational domain is divided into 200 × 800 grid
cells. As shown in Fig. 9, the particle trajectories for different
cases are presented. Clearly the present results show good
agreement with the FEM data. However, the curved boundary-
based method (CBM) [10] deviates significantly from the
present method and ALE method. Figure 10 plots the particle
velocities in a horizontal direction for different cases. The
correct particle dynamics can be obtained using the present

0 1 2 3 4
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0.1

0.14

0.18

0.22

0.26

Y(cm)

X
(c

m
)

Present
ALE,case 1
ALE,case 2
ALE,case 3
ALE,case 4
Conventional CBM

FIG. 9. (Color online) Comparison of the particle trajectories for
different cases.

method. It indicates that the present force evaluation method
has very high

K = 1

ln W ∗ − 0.9157 + 1.7244(W ∗)−2 − 1.7302(W ∗)−4 + 2.4056(W∗)−6 − 4.5913(W ∗)−8
. (58)

accuracy and reliability.

B. Circular particle motion in the shear flows

To test the Galilean invariance of the present method,
the problem of circular particle motion in the shear flows is
simulated. Some works have discussed this issue [6,8,26,35].
The present numerical example is the same as that in the
Ref. [6]. As shown in Fig. 11, a rectangular channel with
the size of 500 × 100 is chosen as the computational do-
main. The circular disk is located in the middle of the
channel. The radius of the circular disk is set as rp = 0.1,
and the density ratio of the particle and fluid is fixed
at ρp/ρf = 3.0. The velocities on the top and bottom
walls are Ux + γ̇ H

2 and Ux − γ̇ H

2 , respectively. Here γ̇ is
the shear rate. The fluid velocity is changing in a linear
fashion along the y direction. If the numerical method
does not break the Galilean invariance, the y component
of the particle-fluid interaction force should be able to be
negligible.

As same as the Ref. [6], the value of translational velocity
Ux and shear rate γ̇ change separately. Moreover, the force
acting on the particle is computed using a time-average
method. As shown in Fig. 11(a), the translational velocity Ux

is fixed at 0.05. As shown in Fig. 12(a), for the conventional
bounce-back method (BBM) [1–3] and curved boundary-
based method (CBM)[10], the y direction force Fy is linearly
related to the shear rate. Compared with conventional methods,
Fy is kept almost unchanged as the shear rate γ̇ increase in
the present method. It indicates that the Galilean invariance
is satisfied in the modified momentum exchange method.
Figure 12(b) depicts the correlation between the Fy and the

translational velocity in three methods. The same conclusion
can be obtained in this case.

C. Elliptical-particle sedimentation

Different from the circular particle, the elliptical particle
is anisotropic. Therefore, elliptical particle is more sensitive
to the numerical errors. When an elliptical particle falls in
a narrow channel, the flow field is more complex. As same
as the Ref. [6], the numerical results of Xia et al. which are
obtained by the finite element method are used for benchmark
comparison [36]. In this paper, a rectangular computational
domain with a size of L × 30L = 0.4 cm × 12 cm is adopted.
The density and kinematic viscosity of the fluid are set as
ρf = 1.0 g/cm2, ν = 1.0 × 10−2 cm2/s. The gravitational
acceleration is g = 980 cm/s2. The sizes of major and minor
axes of the elliptical particle are a = 0.05 cm, b = 0.025 cm.
As in the previous literature [36], the density ratio of the solid
particle and fluid is set as ρp/ρf = 1.1.

The grids with L = 104 and 208 lattice units are used for
this case. In the initial time, the center of elliptical particle is
located at 2 cm from the top wall, and its coordinate is set
as (0.2 cm,0 cm). The initial angle of deviation is π/4. The
nonslip boundary condition is imposed on the four outer walls
of the computational domain.

In Figs. 13 and 14 the particle trajectories and orientations
are compared. In Ref. [6], Chen et al. evaluates some typical
momentum exchange methods. It indicates the corrected
momentum exchange method proposed by them and Caiazzo
et al. are superior over others. So in addition to the data of Xia
et al. [36], the computational results which are obtained using
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FIG. 10. (Color online) Comparison of the particle velocities in the x direction for different cases.

the corrected momentum exchange methods [6,26] are also
adopted. Obviously, the present results which are computed in
the coarse grid (L = 104 lattice units) slightly deviate from the
other results. However, when the grids become finer (L = 208
lattice units), the present results show good agreements with
the other numerical results. In Fig. 15 the fluid force acting on
the particle during the quasi steady state obtained by the above
momentum exchange methods is presented. Although some
corrected terms are added in the momentum exchange method
of Chen et al. and Caiazzo et al., the force still fluctuates

to some degree. However, the force obtained by the present
method is very smooth. The smooth mechanism of the present
method roots from (30).

In addition, we also investigate the effect of differ-
ent density ratios. Four different particle densities, ρp =
1.01 g/cm2, 1.1 g/cm2, 1.3 g/cm2, 1.5 g/cm2, are selected. In
the cases with low-density ratios, ρp = 1.01 g/cm2,1.1 g/cm2,
a is set as 0.8 in Eq. (49). In Fig. 16 we compare the
vertical velocities of sedimentation for different density ratios
with the results by Xia et al. [36]. It can be observed that

(a) (b)

FIG. 11. (Color online) The geometry configuration of the problem used to check the Galilean invariance of the present method.
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FIG. 12. (Color online) The shear flow test used to check the Galilean invariance.

the terminal velocities with low-density ratios keep stable.
However, in the case of high-density ratios, the terminal
velocities are periodically oscillatory. Moreover, the present
results are in good agreement with the numerical results of Xia
et al. [36].

D. A sphere settling in a cavity

To test the capacity of the present momentum exchange
method to simulate three-dimensional flows, the simulation on
a single-sphere settling under gravity are presented. The nu-
merical results will be compared with the experimental results
which are provided by Cate et al. [37]. The experimental data
are measured by using the PIV system. As shown in Fig. 17,
a rectangular cavity with sizes 10 cm × 10 cm × 16 cm is
chosen as the computational domain. The radius of the sphere
is rp = 0.75 cm, and the density of this sphere is fixed at ρp =
1.12 g/cm3. The initial position of the center of sphere is set to
(5 cm,5 cm,12.75 cm).

0 1 2 3 4 5
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0.52
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x/
L

Present, L=104 lattice units
Present, L= 208 lattice units
Caiazzo et al.
Chen et al.
Xia et al., FEM

FIG. 13. (Color online) Comparison of trajectories of the center
of the elliptical particle.

In this simulation, four cases with different fluid densities
and dynamic viscosities are considered. The fluid densities
ρf (g/cm2) and dynamic viscosities μf [/(cm · s)] are set to be

Case 1: (ρf ,μf ) = (0.97,3.73),
Case 2: (ρf ,μf ) = (0.965,2.12),
Case 3: (ρf ,μf ) = (0.962,1.13),
Case 4: (ρf ,μf ) = (0.96,0.58).
Before our simulation, the surface of the sphere must be

divided to a set of control domain. In this paper, the points
distribution method proposed by Saff and Kuijlaars [38] is
applied. Using the spherical coordinates (θ,φ,rp), we have

θk = arccos(hk), hk = −1 + 2(k − 1)

N − 1
, 1 � k � N,

(59)

φ1 = φN = 0, φk = φk−1 + 3.6√
N

(
1 − h2

k

) , 1 < k < N,

(60)

where N is the number of the points.
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FIG. 14. (Color online) Comparison of orientation of the ellipti-
cal particle.

033301-10



MODIFIED MOMENTUM EXCHANGE METHOD FOR FLUID- . . . PHYSICAL REVIEW E 91, 033301 (2015)

40000 40010 40020 40030 40040
−0.017

−0.0168

−0.0166

−0.0164

−0.0162

−0.016

−0.0158

Lattice time

F
y

Present
Caiazzo et al.
Chen et al.

FIG. 15. (Color online) Comparison of the y component force,
which acts on the particle during the terminal settling state.

In the present method, the volume of the curved edge
parallelogram depends on the lattice models. So the numerical
results which are computed using the D3Q15 and D3Q19
models are compared. As shown in Fig. 18, for case 3, the
particle settling velocities which are obtained by the same grid
(120 × 120 × 192) while using different lattice models are
compared. Obviously, no significant differences are revealed
between them. It indicates the present method does not
depend on the specific model. Considering the computational
efficiency, the D3Q15 model is used in the following section.

In Fig. 19 the effect of grid refinement for the present
method is tested. As the mesh becomes finer, the final sedimen-
tation velocity of the particle becomes larger. As a compromise
between accuracy and efficiency, the 120 × 120 × 192 grid is

FIG. 17. Schematic diagram for a sphere setting in a cavity.

adopted in this study. The numerical results of using this grid
can be acceptable.

As shown in Fig. 20, the z direction velocities of the particle
as the function of time are presented. The present simulation
results agree very well with the experimental data. It can be
observed that the present falling velocities are slightly larger
than the experimental values for all cases. We also notice that
the largest differences between the experiment and simulation
results are found for case 4. A similar phenomenon is also
observed in Ref. [39–41] (IBM). The reason may be that
the smoothed technique is adopted in IBM and the present
momentum exchange method. It could result in large numerical
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FIG. 16. (Color online) Comparison of terminal velocity of the elliptical particle.
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FIG. 18. (Color online) Comparison of particle settling velocity
for case 3 while using the D3Q15 and D3Q19 models.

dissipation and the numerical viscosity playing an important
role in the simulation.

E. The DKT motion

In the fluid-particle coupling system, except for the direct
interaction such as particle-particle collision, the fluid can
be a medium to deliver the interaction of the particle. In
this case, the interaction is indirect. A classical problem is
the two-particle sedimentation. When two particles become
close, the drafting, kissing, and tumbling phenomenon (DKT)
will appear. In fact, when the leading particle moves down,
a low-pressure area will generate above the leading particle.
The fluid resistance acting on the trailing particle is smaller
than the leading one. So it moves more faster. The two particles
will be close to each other. After some period, the two particles
will contact each other. Due to the instability of the contact
position, the particles will tumble. In this case, the leading
particle will move with a large lateral velocity, and trailing
particle overtakes the leading one. The DKT motion was
studied by Fortes et al. using the experimental method [42]. In
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FIG. 19. (Color online) Comparison of particle settling velocity
for case 3 when different grid sizes were used.
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FIG. 20. (Color online) Comparison of particle settling velocity
with the experimental data for different cases.

this paper, we compare our results with numerical results by
Feng et al. [43].

In this simulation, the density of the fluid and particle is
set as ρf = 1.0 g/cm2, ρp = 1.01 g/cm2. The viscosity of the
fluid is ν = 0.01 cm2/s, and the gravitational acceleration is
g = 980 cm/s2. Two particles are inside a rectangle channel
with a size of 2 cm × 8 cm. The initial positions of the particles
are set as (0.999 cm,7.2 cm) and (1.0 cm,6.8 cm), respectively.
The simulation starts with zero velocity condition. The nonslip
wall boundary condition is used. The computational domain
is divided into 200 × 800 lattice units.

As shown in Figs. 21 and 22, the transverse and longitudinal
coordinates of the centers of the two particles are plotted. It
can be observed that the present curves and the results of
Feng et al. are almost coincident before two particles make
contact. Analogously, in Figs. 23 and 24, the transverse and
longitudinal velocities of the particles are very close until the
two particle collide. The motion of the two particles shows
significant differences between the present results and the
results of Feng et al. [43]. One reason which leads to the
differences is that different collision models are used. As
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FIG. 21. (Color online) X component of coordinates of the cen-
ters of the two particles.
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FIG. 22. (Color online) Y component of coordinates of the cen-
ters of the two particles.

Fortes et al. pointed out, another reason is the instability of
the particles’ contact position [42].

To describe the details of the DKT motion, we investigate
the change of the distance dr of the centers between two
particles. dr is defined as

dr =
√

(xc1 − xc2)2 + (yc1 − yc2)2, (61)

where xc1, xc2, yc1, yc2 are the x component and y component
of coordinates of the centers of the two particles, respectively.

As shown in Fig. 25, the evolution of the distance of centers
between two particles falls into three stages according to its
motion characteristics:

(1) Falling independently
At 0 < t < 0.5 s, the distance of the centers of two particles
is almost unchanged because it will take time to spread the
disturbance of the fluid. The settlement of two particles is
uncorrelated at this stage.

(2) Drafting
At 0.5s � t � 1.32 s, the leading particle moves more slowly
than the trailing particle. Hence the distance decreases as time
goes on.

(3) Kissing
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FIG. 23. (Color online) X component of velocities of the two
particles.
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FIG. 24. (Color online) Y component of velocities of the two
particles.

At t ≈ 1.32 s, the two particles collide at this moment. The
distance has become minimized.

(4) Tumbling
At 1.32s � t � 2.5 s, the particles begin to tumble. However,
the particles fit closely together. So the distance remains
approximately constant during this period.

(5) Separating
At t > 2.5 s, two particles begin to separate and the distance
increases.

IV. CONCLUSION

In the present work, a simple and efficient momentum
exchange method based on the lattice Boltzmann method is
developed to simulate the fluid-particle interactions. The real
curved boundary can be captured using the present momentum
exchange method. Therefore, the shape of the particle can be
ensured during the simulations. The change of momentum on
an arc (area) element is computed using a strategy which con-
siders some control volumes in which the fluid particles would
hit the arc (area) element during a certain period. The fluid field
is corrected by the force, which distributed from the boundary
marker points using an assigning function. For the density
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FIG. 25. (Color online) The time evolution of distance of the
centers between two particles.
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ratio between particle and fluid close to 1 or less than 1, we
propose a three-time-level scheme to resolve the motion of the
particle.

Numerical simulations of several two- and three-
dimensional sedimentation problems have been carried out
to test our scheme. The present results show good agreements
with the previous studies. It can be observed that the present
method is capable of simulating the complex coupled fluid-
particle interaction system.
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